preserves/preserves.md

893 lines
38 KiB
Markdown
Raw Normal View History

---
2019-08-18 21:08:55 +00:00
no_site_title: true
title: "Preserves: an Expressive Data Language"
---
2018-09-24 11:59:22 +00:00
Tony Garnock-Jones <tonyg@leastfixedpoint.com>
May 2021. Version 0.6.0.
[sexp.txt]: http://people.csail.mit.edu/rivest/Sexp.txt
[spki]: http://world.std.com/~cme/html/spki.html
[varint]: https://developers.google.com/protocol-buffers/docs/encoding#varints
2019-11-22 15:27:59 +00:00
[LEB128]: https://en.wikipedia.org/wiki/LEB128
[erlang-map]: http://erlang.org/doc/reference_manual/data_types.html#map
[abnf]: https://tools.ietf.org/html/rfc7405
[canonical]: canonical-binary.html
2018-09-24 11:59:22 +00:00
This document proposes a data model and serialization format called
*Preserves*.
2021-01-29 11:03:28 +00:00
Preserves supports *records* with user-defined *labels*, embedded
*references*, and the usual suite of atomic and compound data types,
including *binary* data as a distinct type from text strings. Its
*annotations* allow separation of data from metadata such as
[comments](conventions.html#comments), trace information, and
provenance information.
2018-09-24 11:59:22 +00:00
2021-01-29 11:03:28 +00:00
Preserves departs from many other data languages in defining how to
*compare* two values. Comparison is based on the data model, not on
syntax or on data structures of any particular implementation
language.
2018-09-24 11:59:22 +00:00
## Starting with Semantics
Taking inspiration from functional programming, we start with a
definition of the *values* that we want to work with and give them
meaning independent of their syntax.
Our `Value`s fall into two broad categories: *atomic* and *compound*
data. Every `Value` is finite and non-cyclic. Embedded values, called
`Embedded`s, are a third, special-case category.
Value = Atom
2021-01-29 11:03:28 +00:00
| Compound
| Embedded
2018-09-23 21:44:43 +00:00
Atom = Boolean
2021-01-29 11:03:28 +00:00
| Float
| Double
| SignedInteger
| String
| ByteString
| Symbol
Compound = Record
2021-01-29 11:03:28 +00:00
| Sequence
| Set
| Dictionary
**Total order.**<a name="total-order"></a> As we go, we will
incrementally specify a total order over `Value`s. Two values of the
same kind are compared using kind-specific rules. The ordering among
values of different kinds is essentially arbitrary, but having a total
order is convenient for many tasks, so we define it as
2019-10-23 21:58:47 +00:00
follows:
(Values) Atom < Compound < Embedded
(Compounds) Record < Sequence < Set < Dictionary
2018-09-23 21:44:43 +00:00
(Atoms) Boolean < Float < Double < SignedInteger
< String < ByteString < Symbol
**Equivalence.**<a name="equivalence"></a> Two `Value`s are equal if
neither is less than the other according to the total order.
### Signed integers.
A `SignedInteger` is a signed integer of arbitrary width.
`SignedInteger`s are compared as mathematical integers.
### Unicode strings.
A `String` is a sequence of Unicode
[code-point](http://www.unicode.org/glossary/#code_point)s. `String`s
are compared lexicographically, code-point by
code-point.[^utf8-is-awesome]
[^utf8-is-awesome]: Happily, the design of UTF-8 is such that this
gives the same result as a lexicographic byte-by-byte comparison
of the UTF-8 encoding of a string!
### Binary data.
A `ByteString` is a sequence of octets. `ByteString`s are compared
lexicographically.
### Symbols.
Programming languages like Lisp and Prolog frequently use string-like
values called *symbols*. Here, a `Symbol` is, like a `String`, a
sequence of Unicode code-points representing an identifier of some
kind. `Symbol`s are also compared lexicographically by code-point.
### Booleans.
There are two `Boolean`s, “false” and “true”. The “false” value is
less-than the “true” value.
### IEEE floating-point values.
`Float`s and `Double`s are single- and double-precision IEEE 754
floating-point values, respectively. `Float`s, `Double`s and
`SignedInteger`s are disjoint; by the rules [above](#total-order),
every `Float` is less than every `Double`, and every `SignedInteger`
is greater than both. Two `Float`s or two `Double`s are to be ordered
by the `totalOrder` predicate defined in section 5.10 of
[IEEE Std 754-2008](https://dx.doi.org/10.1109/IEEESTD.2008.4610935).
### Records.
A `Record` is a *labelled* tuple of `Value`s, the record's *fields*. A
label can be any `Value`, but is usually a `Symbol`.[^extensibility]
[^iri-labels] `Record`s are compared lexicographically: first by
label, then by field sequence.
[^extensibility]: The [Racket](https://racket-lang.org/) programming
language defines
2018-09-24 17:34:07 +00:00
“[prefab](http://docs.racket-lang.org/guide/define-struct.html#(part._prefab-struct))”
structure types, which map well to our `Record`s. Racket supports
record extensibility by encoding record supertypes into record
labels as specially-formatted lists.
[^iri-labels]: It is occasionally (but seldom) necessary to
interpret such `Symbol` labels as UTF-8 encoded IRIs. Where a
label can be read as a relative IRI, it is notionally interpreted
with respect to the IRI
`urn:uuid:6bf094a6-20f1-4887-ada7-46834a9b5b34`; where a label can
be read as an absolute IRI, it stands for that IRI; and otherwise,
it cannot be read as an IRI at all, and so the label simply stands
2018-09-24 11:59:22 +00:00
for itself—for its own `Value`.
### Sequences.
A `Sequence` is a sequence of `Value`s. `Sequence`s are compared
lexicographically.
### Sets.
A `Set` is an unordered finite set of `Value`s. It contains no
duplicate values, following the [equivalence relation](#equivalence)
induced by the total order on `Value`s. Two `Set`s are compared by
2018-09-24 11:59:22 +00:00
sorting their elements ascending using the [total order](#total-order)
and comparing the resulting `Sequence`s.
2018-09-24 11:59:22 +00:00
### Dictionaries.
2018-09-24 11:59:22 +00:00
A `Dictionary` is an unordered finite collection of pairs of `Value`s.
Each pair comprises a *key* and a *value*. Keys in a `Dictionary` are
pairwise distinct. Instances of `Dictionary` are compared by
2018-09-24 11:59:22 +00:00
lexicographic comparison of the sequences resulting from ordering each
`Dictionary`'s pairs in ascending order by key.
### Embeddeds.
2021-01-29 11:03:28 +00:00
An `Embedded` allows inclusion of *domain-specific*, potentially
*stateful* or *located* data into a `Value`.[^embedded-rationale]
`Embedded`s may be used to denote stateful objects, network services,
object capabilities, file descriptors, Unix processes, or other
possibly-stateful things. Because each `Embedded` is a domain-specific
datum, comparison of two `Embedded`s is done according to
2021-01-29 11:03:28 +00:00
domain-specific rules.
[^embedded-rationale]: **Rationale.** Why include `Embedded`s as a
2021-01-29 11:03:28 +00:00
special class, distinct from, say, a specially-labeled `Record`?
First, a `Record` can only hold other `Value`s: in order to embed
values such as live pointers to Java objects, some means of
"escaping" from the `Value` data type must be provided. Second,
`Embedded`s are meant to be able to denote stateful entities, for
2021-01-29 11:03:28 +00:00
which comparison by address is appropriate; however, we do not
wish to place restrictions on the *nature* of these entities: if
we had used `Record`s instead of distinct `Embedded`s, users would
2021-01-29 11:03:28 +00:00
have to invent an encoding of domain data into `Record`s that
reflected domain ordering into `Value` ordering. This is often
difficult and may not always be possible. Finally, because
`Embedded`s are intended to be able to represent network and
memory *locations*, they must be able to be rewritten at network
and process boundaries. Having a distinct class allows generic
`Embedded` rewriting without the quotation-related complications
of encoding references as, say, `Record`s.
*Examples.* In a Java or Python implementation, an `Embedded` may
denote a reference to a Java or Python object; comparison would be
done via the language's own rules for equivalence and ordering. In a
Unix application, an `Embedded` may denote an open file descriptor or
a process ID. In an HTTP-based application, each `Embedded` might be a
2021-01-29 11:03:28 +00:00
URL, compared according to
[RFC 6943](https://tools.ietf.org/html/rfc6943#section-3.3). When a
`Value` is serialized for storage or transfer, `Embedded`s will
usually be represented as ordinary `Value`s, in which case the
2021-01-29 11:03:28 +00:00
ordinary rules for comparing `Value`s will apply.
## Textual Syntax
Now we have discussed `Value`s and their meanings, we may turn to
techniques for *representing* `Value`s for communication or storage.
In this section, we use [case-sensitive ABNF][abnf] to define a
textual syntax that is easy for people to read and
write.[^json-superset] Most of the examples in this document are
written using this syntax. In the following section, we will define an
equivalent compact machine-readable syntax.
[^json-superset]: The grammar of the textual syntax is a superset of
JSON, with the slightly unusual feature that `true`, `false`, and
`null` are all read as `Symbol`s, and that `SignedInteger`s are
never read as `Double`s.
2019-07-03 23:35:56 +00:00
### Character set.
[ABNF][abnf] allows easy definition of US-ASCII-based languages.
However, Preserves is a Unicode-based language. Therefore, we
reinterpret ABNF as a grammar for recognising sequences of Unicode
code points.
Textual syntax for a `Value` *SHOULD* be encoded using UTF-8 where
possible.
2019-07-03 23:35:56 +00:00
### Whitespace.
Whitespace is defined as any number of spaces, tabs, carriage returns,
line feeds, or commas.
ws = *(%x20 / %x09 / newline / ",")
newline = CR / LF
2019-07-03 23:35:56 +00:00
### Grammar.
Standalone documents may have trailing whitespace.
Document = Value ws
Any `Value` may be preceded by whitespace.
Value = ws (Record / Collection / Atom / Embedded / Compact)
Collection = Sequence / Dictionary / Set
Atom = Boolean / Float / Double / SignedInteger /
String / ByteString / Symbol
2019-08-11 22:54:57 +00:00
Each `Record` is an angle-bracket enclosed grouping of its
label-`Value` followed by its field-`Value`s.
2019-08-11 22:54:57 +00:00
Record = "<" Value *Value ws ">"
`Sequence`s are enclosed in square brackets. `Dictionary` values are
curly-brace-enclosed colon-separated pairs of values. `Set`s are
written as values enclosed by the tokens `#{` and
2019-08-18 12:56:13 +00:00
`}`.[^printing-collections] It is an error for a set to contain
duplicate elements or for a dictionary to contain duplicate keys.
Sequence = "[" *Value ws "]"
Dictionary = "{" *(Value ws ":" Value) ws "}"
Set = "#{" *Value ws "}"
[^printing-collections]: **Implementation note.** When implementing
printing of `Value`s using the textual syntax, consider supporting
(a) optional pretty-printing with indentation, (b) optional
JSON-compatible print mode for that subset of `Value` that is
compatible with JSON, and (c) optional submodes for no commas,
commas separating, and commas terminating elements or key/value
pairs within a collection.
`Boolean`s are the simple literal strings `#t` and `#f` for true and
false, respectively.
Boolean = %s"#t" / %s"#f"
Numeric data follow the
[JSON grammar](https://tools.ietf.org/html/rfc8259#section-6), with
2019-08-18 15:51:59 +00:00
the addition of a trailing “f” distinguishing `Float` from `Double`
values. `Float`s and `Double`s always have either a fractional part or
2018-09-27 12:34:32 +00:00
an exponent part, where `SignedInteger`s never have
either.[^reading-and-writing-floats-accurately]
[^arbitrary-precision-signedinteger]
Float = flt %i"f"
Double = flt
SignedInteger = int
digit1-9 = %x31-39
nat = %x30 / ( digit1-9 *DIGIT )
int = ["-"] nat
frac = "." 1*DIGIT
exp = %i"e" ["-"/"+"] 1*DIGIT
flt = int (frac exp / frac / exp)
2018-09-27 12:34:32 +00:00
[^reading-and-writing-floats-accurately]: **Implementation note.**
Your language's standard library likely has a good routine for
converting between decimal notation and IEEE 754 floating-point.
However, if not, or if you are interested in the challenges of
accurately reading and writing floating point numbers, see the
excellent matched pair of 1990 papers by Clinger and Steele &
White, and a recent follow-up by Jaffer:
Clinger, William D. How to Read Floating Point Numbers
Accurately. In Proc. PLDI. White Plains, New York, 1990.
<https://doi.org/10.1145/93542.93557>.
Steele, Guy L., Jr., and Jon L. White. How to Print
Floating-Point Numbers Accurately. In Proc. PLDI. White Plains,
New York, 1990. <https://doi.org/10.1145/93542.93559>.
Jaffer, Aubrey. Easy Accurate Reading and Writing of
Floating-Point Numbers. ArXiv:1310.8121 [Cs], 27 October 2013.
<http://arxiv.org/abs/1310.8121>.
[^arbitrary-precision-signedinteger]: **Implementation note.** Be
aware when implementing reading and writing of `SignedInteger`s
that the data model *requires* arbitrary-precision integers. Your
implementation may (but, ideally, should not) truncate precision
when reading or writing a `SignedInteger`; however, if it does so,
it should (a) signal its client that truncation has occurred, and
(b) make it clear to the client that comparing such truncated
values for equality or ordering will not yield results that match
the expected semantics of the data model.
2018-09-27 12:34:32 +00:00
`String`s are,
[as in JSON](https://tools.ietf.org/html/rfc8259#section-7), possibly
escaped text surrounded by double quotes. The escaping rules are the
2018-09-27 12:34:32 +00:00
same as for JSON.[^string-json-correspondence] [^escaping-surrogate-pairs]
String = %x22 *char %x22
char = unescaped / %x7C / escape (escaped / %x22 / %s"u" 4HEXDIG)
unescaped = %x20-21 / %x23-5B / %x5D-7B / %x7D-10FFFF
escape = %x5C ; \
escaped = ( %x5C / ; \ reverse solidus U+005C
%x2F / ; / solidus U+002F
%x62 / ; b backspace U+0008
%x66 / ; f form feed U+000C
%x6E / ; n line feed U+000A
%x72 / ; r carriage return U+000D
%x74 ) ; t tab U+0009
[^string-json-correspondence]: The grammar for `String` has the same
effect as the
[JSON](https://tools.ietf.org/html/rfc8259#section-7) grammar for
`string`. Some auxiliary definitions (e.g. `escaped`) are lifted
largely unmodified from the text of RFC 8259.
2018-09-27 12:34:32 +00:00
[^escaping-surrogate-pairs]: In particular, note JSON's rules around
the use of surrogate pairs for code points not in the Basic
Multilingual Plane. We encourage implementations to avoid using
`\u` escapes when producing output, and instead to rely on the
UTF-8 encoding of the entire document to handle non-ASCII
codepoints correctly.
2018-09-27 12:34:32 +00:00
A `ByteString` may be written in any of three different forms.
The first is similar to a `String`, but prepended with a hash sign
`#`. In addition, only Unicode code points overlapping with printable
7-bit ASCII are permitted unescaped inside such a `ByteString`; other
byte values must be escaped by prepending a two-digit hexadecimal
value with `\x`.
ByteString = "#" %x22 *binchar %x22
binchar = binunescaped / escape (escaped / %x22 / %s"x" 2HEXDIG)
binunescaped = %x20-21 / %x23-5B / %x5D-7E
2018-09-28 10:12:44 +00:00
The second is as a sequence of pairs of hexadecimal digits interleaved
with whitespace and surrounded by `#x"` and `"`.
ByteString =/ %s"#x" %x22 *(ws / 2HEXDIG) ws %x22
The third is as a sequence of
[Base64](https://tools.ietf.org/html/rfc4648) characters, interleaved
with whitespace and surrounded by `#[` and `]`. Plain and URL-safe
Base64 characters are allowed.
ByteString =/ "#[" *(ws / base64char) ws "]" /
base64char = %x41-5A / %x61-7A / %x30-39 / "+" / "/" / "-" / "_" / "="
2019-08-18 15:51:59 +00:00
A `Symbol` may be written in a “bare” form[^cf-sexp-token] so long as
it conforms to certain restrictions on the characters appearing in the
symbol. Alternatively, it may be written in a quoted form. The quoted
form is much the same as the syntax for `String`s, including embedded
escape syntax, except using a bar or pipe character (`|`) instead of a
double quote mark.
Symbol = symstart *symcont / "|" *symchar "|"
symstart = ALPHA / sympunct / symustart
symcont = ALPHA / sympunct / symustart / symucont / DIGIT / "-"
sympunct = "~" / "!" / "$" / "%" / "^" / "&" / "*" /
2019-08-11 22:54:57 +00:00
"?" / "_" / "=" / "+" / "/" / "."
symchar = unescaped / %x22 / escape (escaped / %x7C / %s"u" 4HEXDIG)
symustart = <any code point greater than 127 whose Unicode
category is Lu, Ll, Lt, Lm, Lo, Mn, Mc, Me,
Pc, Po, Sc, Sm, Sk, So, or Co>
symucont = <any code point greater than 127 whose Unicode
category is Nd, Nl, No, or Pd>
[^cf-sexp-token]: Compare with the [SPKI S-expression][sexp.txt]
2019-08-18 15:51:59 +00:00
definition of “token representation”, and with the
[R6RS definition of identifiers](http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-7.html#node_sec_4.2.4).
An `Embedded` is written as a `Value` chosen to represent the denoted
2021-01-29 11:03:28 +00:00
object, prefixed with `#!`.
Embedded = "#!" Value
2021-01-29 11:03:28 +00:00
Finally, any `Value` may be represented by escaping from the textual
syntax to the [compact binary syntax](#compact-binary-syntax) by
prefixing a `ByteString` containing the binary representation of the
2020-12-30 15:43:18 +00:00
`Value` with `#=`.[^rationale-switch-to-binary]
2019-08-20 19:32:58 +00:00
[^no-literal-binary-in-text] [^compact-value-annotations]
2020-12-30 15:43:18 +00:00
Compact = "#=" ws ByteString
[^rationale-switch-to-binary]: **Rationale.** The textual syntax
cannot express every `Value`: specifically, it cannot express the
several million floating-point NaNs, or the two floating-point
Infinities. Since the compact binary format for `Value`s expresses
each `Value` with precision, embedding binary `Value`s solves the
problem.
[^no-literal-binary-in-text]: Every text is ultimately physically
stored as bytes; therefore, it might seem possible to escape to
the raw binary form of compact binary encoding from within a
pieces of textual syntax. However, while bytes must be involved in
any *representation* of text, the text *itself* is logically a
sequence of *code points* and is not *intrinsically* a binary
structure at all. It would be incoherent to expect to be able to
access the representation of the text from within the text itself.
2019-08-20 19:32:58 +00:00
[^compact-value-annotations]: Any text-syntax annotations preceding
the `#` are prepended to any binary-syntax annotations yielded by
decoding the `ByteString`.
2019-08-20 19:32:58 +00:00
2019-07-03 23:33:37 +00:00
### Annotations.
2019-07-11 01:52:04 +00:00
**Syntax.** When written down, a `Value` may have an associated
sequence of *annotations* carrying “out-of-band” contextual metadata
about the value. Each annotation is, in turn, a `Value`, and may
itself have annotations.
2019-07-03 23:33:37 +00:00
Value =/ ws "@" Value Value
Each annotation is preceded by `@`; the underlying annotated value
follows its annotations. Here we extend only the syntactic nonterminal
2019-08-18 15:51:59 +00:00
named “`Value`” without altering the semantic class of `Value`s.
2019-07-03 23:33:37 +00:00
**Comments.** Strings annotating a `Value` are conventionally
interpreted as comments associated with that value. Comments are
sufficiently common that special syntax exists for them.
Value =/ ws
";" *(%x00-09 / %x0B-0C / %x0E-%x10FFFF) newline
Value
When written this way, everything between the `;` and the newline is
included in the string annotating the `Value`.
2019-07-11 01:52:04 +00:00
**Equivalence.** Annotations appear within syntax denoting a `Value`;
however, the annotations are not part of the denoted value. They are
only part of the syntax. Annotations do not play a part in
equivalences and orderings of `Value`s.
2019-07-03 23:33:37 +00:00
Reflective tools such as debuggers, user interfaces, and message
routers and relays---tools which process `Value`s generically---may
use annotated inputs to tailor their operation, or may insert
annotations in their outputs. By contrast, in ordinary programs, as a
rule of thumb, the presence, absence or content of an annotation
should not change the control flow or output of the program.
Annotations are data *describing* `Value`s, and are not in the domain
of any specific application of `Value`s. That is, an annotation will
almost never cause a non-reflective program to do anything observably
different.
2019-07-03 23:33:37 +00:00
## Compact Binary Syntax
A `Repr` is a binary-syntax encoding, or representation, of a `Value`.
For a value `v`, we write `«v»` for the `Repr` of v.
2019-07-03 23:35:56 +00:00
### Type and Length representation.
Each `Repr` starts with a tag byte, describing the kind of information
represented. Depending on the tag, a length indicator, further encoded
information, and/or an ending tag may follow.
2018-09-23 21:35:00 +00:00
tag (simple atomic data and small integers)
tag ++ binarydata (most integers)
tag ++ length ++ binarydata (large integers, strings, symbols, and binary)
tag ++ repr ++ ... ++ endtag (compound data)
2018-09-23 21:35:00 +00:00
The unique end tag is byte value `0x84`.
2018-09-23 21:35:00 +00:00
If present after a tag, the length of a following piece of binary data
is formatted as a [base 128 varint][varint].[^see-also-leb128] We
write `varint(m)` for the varint-encoding of `m`. Quoting the
2019-11-22 15:27:59 +00:00
[Google Protocol Buffers][varint] definition,
[^see-also-leb128]: Also known as [LEB128][] encoding, for unsigned
integers. Varints and LEB128-encoded integers differ only for
signed integers, which are not used in Preserves.
> Each byte in a varint, except the last byte, has the most
> significant bit (msb) set this indicates that there are further
> bytes to come. The lower 7 bits of each byte are used to store the
> two's complement representation of the number in groups of 7 bits,
> least significant group first.
The following table illustrates varint-encoding.
2021-01-29 11:03:28 +00:00
| Number, `m` | `m` in binary, grouped into 7-bit chunks | `varint(m)` bytes |
| ------ | ------------------- | ------------ |
| 15 | `0001111` | 15 |
| 300 | `0000010 0101100` | 172 2 |
| 1000000000 | `0000011 1011100 1101011 0010100 0000000` | 128 148 235 220 3 |
It is an error for a varint-encoded `m` in a `Repr` to be anything
other than the unique shortest encoding for that `m`. That is, a
varint-encoding of `m` *MUST NOT* end in `0` unless `m`=0.
### Records, Sequences, Sets and Dictionaries.
2018-09-23 21:35:00 +00:00
«<L F_1...F_m>» = [0xB4] ++ «L» ++ «F_1» ++...++ «F_m» ++ [0x84]
«[X_1...X_m]» = [0xB5] ++ «X_1» ++...++ «X_m» ++ [0x84]
«#{E_1...E_m}» = [0xB6] ++ «E_1» ++...++ «E_m» ++ [0x84]
«{K_1:V_1...K_m:V_m}» = [0xB7] ++ «K_1» ++ «V_1» ++...++ «K_m» ++ «V_m» ++ [0x84]
2018-09-23 17:14:58 +00:00
2019-08-18 12:56:13 +00:00
There is *no* ordering requirement on the `E_i` elements or
2018-09-23 17:14:58 +00:00
`K_i`/`V_i` pairs.[^no-sorting-rationale] They may appear in any
order. However, the `E_i` and `K_i` *MUST* be pairwise distinct. In
addition, implementations *SHOULD* default to writing set elements and
dictionary key/value pairs in order sorted lexicographically by their
`Repr`s[^not-sorted-semantically], and *MAY* offer the option of
serializing in some other implementation-defined order.
2018-09-23 17:14:58 +00:00
[^no-sorting-rationale]: In the BitTorrent encoding format,
[bencoding](http://www.bittorrent.org/beps/bep_0003.html#bencoding),
dictionary key/value pairs must be sorted by key. This is a
necessary step for ensuring serialization of `Value`s is
canonical. We do not require that key/value pairs (or set
elements) be in sorted order for serialized `Value`s; however, a
[canonical form][canonical] for `Repr`s does exist where a sorted
ordering is required.
[^not-sorted-semantically]: It's important to note that the sort
ordering for writing out set elements and dictionary key/value
pairs is *not* the same as the sort ordering implied by the
semantic ordering of those elements or keys. For example, the
`Repr` of a negative number very far from zero will start with
byte that is *greater* than the byte which starts the `Repr` of
zero, making it sort lexicographically later by `Repr`, despite
being semantically *less than* zero.
**Rationale**. This is for ease-of-implementation reasons: not all
languages can easily represent sorted sets or sorted dictionaries,
but encoding and then sorting byte strings is much more likely to
be within easy reach.
2018-09-24 11:59:22 +00:00
2019-07-03 23:35:56 +00:00
### SignedIntegers.
«x» when x ∈ SignedInteger = [0xB0] ++ varint(m) ++ intbytes(x) if ¬(-3≤x≤12) ∧ m>16
([0xA0] + m - 1) ++ intbytes(x) if ¬(-3≤x≤12) ∧ m≤16
([0xA0] + x) if (-3≤x≤-1)
([0x90] + x) if ( 0≤x≤12)
where m = |intbytes(x)|
Integers in the range [-3,12] are compactly represented with tags
between `0x90` and `0x9F` because they are so frequently used.
Integers up to 16 bytes long are represented with a single-byte tag
encoding the length of the integer. Larger integers are represented
with an explicit varint length. Every `SignedInteger` *MUST* be
represented with its shortest possible encoding.
2018-09-23 21:35:00 +00:00
2018-09-24 11:59:22 +00:00
The function `intbytes(x)` gives the big-endian two's-complement
binary representation of `x`, taking exactly as many whole bytes as
needed to unambiguously identify the value and its sign, and `m =
2018-09-24 13:09:26 +00:00
|intbytes(x)|`. The most-significant bit in the first byte in
`intbytes(x)` <!-- for `x`≠0 --> is the sign bit.[^zero-intbytes] For
example,
«87112285931760246646623899502532662132736»
= B0 12 01 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00
«-257» = A1 FE FF «-3» = 9D «128» = A1 00 80
«-256» = A1 FF 00 «-2» = 9E «255» = A1 00 FF
«-255» = A1 FF 01 «-1» = 9F «256» = A1 01 00
«-254» = A1 FF 02 «0» = 90 «32767» = A1 7F FF
«-129» = A1 FF 7F «1» = 91 «32768» = A2 00 80 00
«-128» = A0 80 «12» = 9C «65535» = A2 00 FF FF
«-127» = A0 81 «13» = A0 0D «65536» = A2 01 00 00
«-4» = A0 FC «127» = A0 7F «131072» = A2 02 00 00
2018-09-24 11:59:22 +00:00
2018-09-24 13:09:26 +00:00
[^zero-intbytes]: The value 0 needs zero bytes to identify the
value, so `intbytes(0)` is the empty byte string. Non-zero values
need at least one byte.
2018-09-23 17:14:58 +00:00
2019-07-03 23:35:56 +00:00
### Strings, ByteStrings and Symbols.
Syntax for these three types varies only in the tag used. For `String`
and `Symbol`, the data following the tag is a UTF-8 encoding of the
`Value`'s code points, while for `ByteString` it is the raw data
contained within the `Value` unmodified.
«S» = [0xB1] ++ varint(|utf8(S)|) ++ utf8(S) if S ∈ String
[0xB2] ++ varint(|S|) ++ S if S ∈ ByteString
[0xB3] ++ varint(|utf8(S)|) ++ utf8(S) if S ∈ Symbol
2018-09-23 21:35:00 +00:00
### Booleans.
«#f» = [0x80]
«#t» = [0x81]
### Floats and Doubles.
«F» when F ∈ Float = [0x82] ++ binary32(F)
«D» when D ∈ Double = [0x83] ++ binary64(D)
2018-09-24 11:59:22 +00:00
The functions `binary32(F)` and `binary64(D)` yield big-endian 4- and
8-byte IEEE 754 binary representations of `F` and `D`, respectively.
### Embeddeds.
2021-01-29 11:03:28 +00:00
The `Repr` of an `Embedded` is the `Repr` of a `Value` chosen to
2021-01-29 11:03:28 +00:00
represent the denoted object, prefixed with `[0x86]`.
«#!V» = [0x86] ++ «V»
### Annotations.
To annotate a `Repr` `r` with some `Value` `v`, prepend `r` with
`[0x85] ++ «v»`. For example, the `Repr` corresponding to textual
syntax `@a@b[]`, i.e. an empty sequence annotated with two symbols,
`a` and `b`, is
«@a @b []»
= [0x85] ++ «a» ++ [0x85] ++ «b» ++ «[]»
= [0x85, 0xB3, 0x01, 0x61, 0x85, 0xB3, 0x01, 0x62, 0xB5, 0x84]
## Examples
### Ordering.
The total ordering specified [above](#total-order) means that the following statements are true:
2021-01-29 11:03:28 +00:00
"bzz" < "c" < "caa" < #!"a"
#t < 3.0f < 3.0 < 3 < "3" < |3| < [] < #!#t
2019-07-03 23:35:56 +00:00
### Simple examples.
<!-- TODO: Give some examples of large and small Preserves, perhaps -->
<!-- translated from various JSON blobs floating around the internet. -->
| Value | Encoded byte sequence |
|-----------------------------|---------------------------------------------------------------------------------|
| `<capture <discard>>` | B4 B3 07 'c' 'a' 'p' 't' 'u' 'r' 'e' B4 B3 07 'd' 'i' 's' 'c' 'a' 'r' 'd' 84 84 |
| `[1 2 3 4]` | B5 91 92 93 94 84 |
| `[-2 -1 0 1]` | B5 9E 9F 90 91 84 |
| `"hello"` (format B) | B1 05 'h' 'e' 'l' 'l' 'o' |
| `["a" b #"c" [] #{} #t #f]` | B5 B1 01 'a' B3 01 'b' B2 01 'c' B5 84 B6 84 81 80 84 |
| `-257` | A1 FE FF |
| `-1` | 9F |
| `0` | 90 |
| `1` | 91 |
| `255` | A1 00 FF |
| `1.0f` | 82 3F 80 00 00 |
| `1.0` | 83 3F F0 00 00 00 00 00 00 |
| `-1.202e300` | 83 FE 3C B7 B7 59 BF 04 26 |
2018-09-23 21:35:00 +00:00
The next example uses a non-`Symbol` label for a record.[^extensibility2] The `Record`
2019-08-11 22:54:57 +00:00
<[titled person 2 thing 1] 101 "Blackwell" <date 1821 2 3> "Dr">
encodes to
B4 ;; Record
B5 ;; Sequence
B3 06 74 69 74 6C 65 64 ;; Symbol, "titled"
B3 06 70 65 72 73 6F 6E ;; Symbol, "person"
92 ;; SignedInteger, "2"
B3 05 74 68 69 6E 67 ;; Symbol, "thing"
91 ;; SignedInteger, "1"
84 ;; End (sequence)
A0 65 ;; SignedInteger, "101"
B1 09 42 6C 61 63 6B 77 65 6C 6C ;; String, "Blackwell"
B4 ;; Record
B3 04 64 61 74 65 ;; Symbol, "date"
A1 07 1D ;; SignedInteger, "1821"
92 ;; SignedInteger, "2"
93 ;; SignedInteger, "3"
84 ;; End (record)
B1 02 44 72 ;; String, "Dr"
84 ;; End (record)
[^extensibility2]: It happens to line up with Racket's
representation of a record label for an inheritance hierarchy
where `titled` extends `person` extends `thing`:
(struct date (year month day) #:prefab)
(struct thing (id) #:prefab)
(struct person thing (name date-of-birth) #:prefab)
(struct titled person (title) #:prefab)
For more detail on Racket's representations of record labels, see
[the Racket documentation for `make-prefab-struct`](http://docs.racket-lang.org/reference/structutils.html#%28def._%28%28quote._~23~25kernel%29._make-prefab-struct%29%29).
---
2019-07-03 23:35:56 +00:00
### JSON examples.
The examples from
[RFC 8259](https://tools.ietf.org/html/rfc8259#section-13) read as
valid Preserves, though the JSON literals `true`, `false` and `null`
read as `Symbol`s. The first example:
{
"Image": {
"Width": 800,
"Height": 600,
"Title": "View from 15th Floor",
"Thumbnail": {
"Url": "http://www.example.com/image/481989943",
"Height": 125,
"Width": 100
},
"Animated" : false,
"IDs": [116, 943, 234, 38793]
}
}
encodes to binary as follows:
B7
B1 05 "Image"
B7
2020-12-30 15:43:18 +00:00
B1 03 "IDs" B5
A0 74
A1 03 AF
A1 00 EA
A2 00 97 89
84
B1 05 "Title" B1 14 "View from 15th Floor"
B1 05 "Width" A1 03 20
B1 06 "Height" A1 02 58
B1 08 "Animated" B3 05 "false"
B1 09 "Thumbnail"
B7
B1 03 "Url" B1 26 "http://www.example.com/image/481989943"
B1 05 "Width" A0 64
B1 06 "Height" A0 7D
84
84
84
and the second example:
[
{
"precision": "zip",
"Latitude": 37.7668,
"Longitude": -122.3959,
"Address": "",
"City": "SAN FRANCISCO",
"State": "CA",
"Zip": "94107",
"Country": "US"
},
{
"precision": "zip",
"Latitude": 37.371991,
"Longitude": -122.026020,
"Address": "",
"City": "SUNNYVALE",
"State": "CA",
"Zip": "94085",
"Country": "US"
}
]
encodes to binary as follows:
B5
B7
B1 03 "Zip" B1 05 "94107"
B1 04 "City" B1 0D "SAN FRANCISCO"
B1 05 "State" B1 02 "CA"
B1 07 "Address" B1 00
B1 07 "Country" B1 02 "US"
B1 08 "Latitude" 83 40 42 E2 26 80 9D 49 52
B1 09 "Longitude" 83 C0 5E 99 56 6C F4 1F 21
B1 09 "precision" B1 03 "zip"
84
B7
B1 03 "Zip" B1 05 "94085"
B1 04 "City" B1 09 "SUNNYVALE"
B1 05 "State" B1 02 "CA"
B1 07 "Address" B1 00
B1 07 "Country" B1 02 "US"
B1 08 "Latitude" 83 40 42 AF 9D 66 AD B4 03
B1 09 "Longitude" 83 C0 5E 81 AA 4F CA 42 AF
B1 09 "precision" B1 03 "zip"
84
84
2018-09-24 11:59:22 +00:00
## Security Considerations
**Whitespace.** The textual format allows arbitrary whitespace in many
positions. Consider optional restrictions on the amount of consecutive
whitespace that may appear.
**Annotations.** Similarly, in modes where a `Value` is being read
while annotations are skipped, an endless sequence of annotations may
give an illusion of progress.
**Canonical form for cryptographic hashing and signing.** No canonical
textual encoding of a `Value` is specified. A
[canonical form][canonical] exists for binary encoded `Value`s, and
implementations *SHOULD* produce canonical binary encodings by
default; however, an implementation *MAY* permit two serializations of
the same `Value` to yield different binary `Repr`s.
2018-09-24 11:59:22 +00:00
2019-08-18 21:42:23 +00:00
## Acknowledgements
The treatment of commas as whitespace in the text syntax is inspired
by the same feature of [EDN](https://github.com/edn-format/edn).
2019-08-19 20:14:46 +00:00
The text syntax for `Boolean`s, `Symbol`s, and `ByteString`s is
directly inspired by [Racket](https://racket-lang.org/)'s lexical
syntax.
## Appendix. Autodetection of textual or binary syntax
Every tag byte in a binary Preserves `Document` falls within the range
[`0x80`, `0xBF`]. These bytes, interpreted as UTF-8, are *continuation
bytes*, and will never occur as the first byte of a UTF-8 encoded code
point. This means no binary-encoded document can be misinterpreted as
valid UTF-8.
Conversely, a UTF-8 document must start with a valid codepoint,
meaning in particular that it must not start with a byte in the range
[`0x80`, `0xBF`]. This means that no UTF-8 encoded textual-syntax
Preserves document can be misinterpreted as a binary-syntax document.
Examination of the top two bits of the first byte of a document gives
its syntax: if the top two bits are `10`, it should be interpreted as
a binary-syntax document; otherwise, it should be interpreted as text.
## Appendix. Table of tag values
80 - False
81 - True
82 - Float
83 - Double
84 - End marker
85 - Annotation
86 - Embedded
2021-01-29 11:03:28 +00:00
(8x) RESERVED 87-8F
9x - Small integers 0..12,-3..-1
An - Small integers, (n+1) bytes long
B0 - Small integers, variable length
B1 - String
B2 - ByteString
B3 - Symbol
B4 - Record
B5 - Sequence
B6 - Set
B7 - Dictionary
2018-09-24 11:59:22 +00:00
2020-05-22 12:36:33 +00:00
## Appendix. Binary SignedInteger representation
Languages that provide fixed-width machine word types may find the
following table useful in encoding and decoding binary `SignedInteger`
values.
| Integer range | Bytes required | Encoding (hex) |
| --- | --- | --- |
| -3 ≤ n ≤ 12 | 1 | `3X` |
| -2<sup>7</sup> ≤ n < 2<sup>7</sup> (i8) | 2 | `A0` `XX` |
| -2<sup>15</sup> ≤ n < 2<sup>15</sup> (i16) | 3 | `A1` `XX` `XX` |
| -2<sup>23</sup> ≤ n < 2<sup>23</sup> (i24) | 4 | `A2` `XX` `XX` `XX` |
| -2<sup>31</sup> ≤ n < 2<sup>31</sup> (i32) | 5 | `A3` `XX` `XX` `XX` `XX` |
| -2<sup>39</sup> ≤ n < 2<sup>39</sup> (i40) | 6 | `A4` `XX` `XX` `XX` `XX` `XX` |
| -2<sup>47</sup> ≤ n < 2<sup>47</sup> (i48) | 7 | `A5` `XX` `XX` `XX` `XX` `XX` `XX` |
| -2<sup>55</sup> ≤ n < 2<sup>55</sup> (i56) | 8 | `A6` `XX` `XX` `XX` `XX` `XX` `XX` `XX` |
| -2<sup>63</sup> ≤ n < 2<sup>63</sup> (i64) | 9 | `A7` `XX` `XX` `XX` `XX` `XX` `XX` `XX` `XX` |
2020-05-22 12:36:33 +00:00
2019-07-14 18:09:19 +00:00
<!-- Heading to visually offset the footnotes from the main document: -->
## Notes