house/src/turtle.ts

240 lines
7.7 KiB
TypeScript

import {
Mesh,
MeshBuilder,
Plane,
Quaternion,
Ray,
Scene,
Vector3,
} from '@babylonjs/core/Legacy/legacy';
import { VM as BaseVM, Input, Primitives, Environment } from './cat.js';
export class PenState {
templatePath: Vector3[] = [new Vector3()];
paths: Vector3[][] | null = null;
get isDown(): boolean {
return this.paths !== null;
}
clear() {
this.templatePath = [new Vector3()];
this.paths = null;
}
set() {
if (!this.paths) throw new Error("Cannot set pen with no paths");
this.templatePath = this.paths[0];
this.paths = null;
}
down() {
this.paths = this.templatePath.map(_p => []);
}
push(pos: Vector3, q: Quaternion) {
this.templatePath.forEach((p, i) => {
const r = new Vector3();
// p.multiplyToRef(this.templateScale, r);
// r.rotateByQuaternionToRef(q, r);
p.rotateByQuaternionToRef(q, r);
r.addInPlace(pos);
this.paths![i].push(r);
});
}
};
const D2R = Math.PI / 180;
export class TurtleVM extends BaseVM<TurtleVM> {
container: Mesh;
meshes: Mesh[] = [];
counter = 0;
sideOrientation = Mesh.BACKSIDE; // TODO: see SideOrientation primitive below
pen = new PenState();
pos = new Vector3();
q = new Quaternion();
prevQ = this.q;
get euler(): Vector3 {
return this.q.toEulerAngles();
}
constructor(
name: string,
scene: Scene | null,
program: Input,
) {
super(program, TurtlePrimitives);
this.container = new Mesh(name, scene);
}
forwardBy(dist: number) {
const v = new Vector3(0, 0, dist);
v.rotateByQuaternionToRef(this.q, v);
this.pos.addInPlace(v);
if (this.pen.isDown) this.pen.push(this.pos, this.q);
}
setQ(newQ: Quaternion) {
this.q = newQ;
}
resetQ(newQ: Quaternion) {
this.q = this.prevQ = newQ;
}
rotate(y: number, x: number, z: number) {
const e = this.euler;
e.addInPlaceFromFloats(x * D2R, y * D2R, z * D2R);
this.setQ(e.toQuaternion());
}
relativeRotate(y: number, x: number, z: number) {
this.setQ(this.q.multiply(Quaternion.FromEulerAngles(x * D2R, y * D2R, z * D2R)));
}
penDown() {
this.pen.down();
this.pen.push(this.pos, this.q);
}
penUp(close: boolean) {
if (!this.pen.isDown) return;
if (close) {
throw new Error('todo');
}
const m = MeshBuilder.CreateRibbon(this.container.name + this.counter++, {
pathArray: this.pen.paths!,
sideOrientation: this.sideOrientation,
});
m.parent = this.container;
this.meshes.push(m);
}
}
export const TurtlePrimitives: Environment<TurtleVM> = Object.assign({}, Primitives, {
'Home'() { this.pos = new Vector3(); this.resetQ(new Quaternion()); return []; },
'GetPos'() { return [this.pos.asArray()]; },
'GetX'() { return [this.pos.x]; },
'GetY'() { return [this.pos.y]; },
'GetZ'() { return [this.pos.z]; },
'SetX'(v) { this.pos.x = v as number; return []; },
'SetY'(v) { this.pos.y = v as number; return []; },
'SetZ'(v) { this.pos.z = v as number; return []; },
'SetPos'(x, y, z) {
this.pos.set(x as number, y as number, z as number);
return [];
},
'GetHeading'() { return [this.euler.asArray().map(v => v / D2R)]; },
'GetRX'() { return [this.euler.x / D2R]; },
'GetRY'() { return [this.euler.y / D2R]; },
'GetRZ'() { return [this.euler.z / D2R]; },
'SetRX'(v) { this.q.x = v as number * D2R; return []; },
'SetRY'(v) { this.q.y = v as number * D2R; return []; },
'SetRZ'(v) { this.q.z = v as number * D2R; return []; },
'SetHeading'(x, y, z) {
this.resetQ(Quaternion.FromEulerAngles(x as number * D2R, y as number * D2R, z as number * D2R));
return [];
},
'F'(dist) { this.forwardBy(dist as number); return []; },
'B'(dist) { this.forwardBy(-(dist as number)); return []; },
'RX'(degrees) { this.rotate(0, degrees as number, 0); return []; },
'RY'(degrees) { this.rotate(degrees as number, 0, 0); return []; },
'RZ'(degrees) { this.rotate(0, 0, degrees as number); return []; },
'U'(degrees) { this.relativeRotate(0, -(degrees as number), 0); return []; },
'D'(degrees) { this.relativeRotate(0, degrees as number, 0); return []; },
'L'(degrees) { this.relativeRotate(-(degrees as number), 0, 0); return []; },
'R'(degrees) { this.relativeRotate(degrees as number, 0, 0); return []; },
'CW'(degrees) { this.relativeRotate(0, 0, -(degrees as number)); return []; },
'CCW'(degrees) { this.relativeRotate(0, 0, degrees as number); return []; },
'ClearPen'() { this.pen.clear(); return []; },
'SetPen'() { this.pen.set(); return []; },
'PenDown'() { this.penDown(); return []; },
'PenUp'() { this.penUp(false); return []; },
'Close'() { this.penUp(true); return []; },
'SideOrientation'(s) {
// TODO: why is this back to front?? argh
switch (s) {
case "default": this.sideOrientation = Mesh.BACKSIDE; break;
case "front": this.sideOrientation = Mesh.BACKSIDE; break;
case "back": this.sideOrientation = Mesh.FRONTSIDE; break;
case "double": this.sideOrientation = Mesh.DOUBLESIDE; break;
default:
break;
}
return [];
},
} satisfies Environment<TurtleVM>);
function mitredExtrude(
name: string,
options: { shape: Vector3[], path: Vector3[], close?: boolean },
scene: Scene,
): Mesh {
const shape = options.shape;
const path = options.path;
const closed = options.close ?? false;
function miterNormal(v1: Vector3, v2: Vector3): Vector3 {
return Vector3.Cross(Vector3.Cross(v2, v1), v2.subtract(v1));
}
var allPaths = [];
for (var s = 0; s < shape.length; s++) {
let axisZ = path[1].subtract(path[0]).normalize();
const axisX = Vector3.Cross(scene.activeCamera!.position, axisZ).normalize();
const axisY = Vector3.Cross(axisZ, axisX);
let startPoint = path[0].add(axisX.scale(shape[s].x)).add(axisY.scale(shape[s].y));
const ribbonPath = [startPoint];
for (var p = 0; p < path.length - 2; p++) {
const nextAxisZ = path[p + 2].subtract(path[p + 1]).normalize();
startPoint = startPoint.add(axisZ.scale(new Ray(startPoint, axisZ).intersectsPlane(Plane.FromPositionAndNormal(path[p + 1], miterNormal(axisZ, nextAxisZ)))!));
ribbonPath.push(startPoint);
axisZ = nextAxisZ;
}
// Last Point
if (closed) {
let nextAxisZ = path[0].subtract(path[path.length - 1]).normalize();
startPoint = startPoint.add(axisZ.scale(new Ray(startPoint, axisZ).intersectsPlane(Plane.FromPositionAndNormal(path[path.length - 1], miterNormal(axisZ, nextAxisZ)))!));
ribbonPath.push(startPoint);
axisZ = nextAxisZ;
nextAxisZ = path[1].subtract(path[0]).normalize();
startPoint = startPoint.add(axisZ.scale(new Ray(startPoint, axisZ).intersectsPlane(Plane.FromPositionAndNormal(path[0], miterNormal(axisZ, nextAxisZ)))!));
ribbonPath.shift();
ribbonPath.unshift(startPoint);
} else {
startPoint = startPoint.add(axisZ.scale(new Ray(startPoint, axisZ).intersectsPlane(Plane.FromPositionAndNormal(path[path.length - 1], axisZ))!));
ribbonPath.push(startPoint);
}
allPaths.push(ribbonPath);
}
return MeshBuilder.CreateRibbon(name, {
pathArray: allPaths,
sideOrientation: Mesh.DOUBLESIDE,
closeArray: true,
closePath: closed,
}, scene);
}