#include #include #include #include #include #include #include "treetrie.h" #include "critbit.h" #include "route.h" static inline tt_node_ptr_t rseq(tt_arena_t *a, tt_atom_t s, tt_node_ptr_t r) { if (TT_EMPTY_P(r)) { return TT_EMPTY; } assert(s != TT_WILD); return tt_cons_branch(a, TT_EMPTY, RET_IF_NO_PTR(tt_dict_singleton(a, s, r))); } static inline tt_node_ptr_t rwild(tt_arena_t *a, tt_node_ptr_t r) { if (TT_EMPTY_P(r)) { return TT_EMPTY; } return tt_cons_branch(a, r, TT_EMPTY_DICT); } static inline tt_node_ptr_t rbranch(tt_arena_t *a, tt_node_ptr_t wild, /* trie */ tt_node_ptr_t others) /* dict */ { if (TT_EMPTY_P(wild) && TT_EMPTY_DICT_P(others)) { return TT_EMPTY; } return tt_cons_branch(a, wild, others); } static inline tt_node_ptr_t rwildseq(tt_arena_t *a, tt_node_ptr_t r) { if (TT_EMPTY_P(r)) { return TT_EMPTY; } return tt_cons_tail(a, r); } static inline tt_node_ptr_t runwildseq(tt_arena_t *a, tt_node_ptr_t r) { if (tt_ptr_tag(r) == TT_TAG_TAIL) { return TT_TAIL_TRIE(a,r); } else { return TT_EMPTY; } } static inline tt_node_ptr_t rlookup_dict(tt_arena_t *a, tt_node_ptr_t wild, tt_node_ptr_t others, tt_atom_t key) { tt_node_ptr_t result; result = tt_dict_get(a, others, key); if (!TT_NO_PTR_P(result)) { return result; } result = wild; switch (key) { case TT_BOS: return rwildseq(a, result); case TT_EOS: return runwildseq(a, result); default: return result; } } static inline tt_node_ptr_t rlookup(tt_arena_t *a, tt_node_ptr_t r, tt_atom_t key) { assert(tt_ptr_tag(r) == TT_TAG_BRANCH); return rlookup_dict(a, TT_BRANCH_WILDCARD(a,r), TT_BRANCH_OTHERS(a,r), key); } static inline tt_node_ptr_t rupdate_dict(tt_arena_t *a, tt_node_ptr_t old_wild, /* trie */ tt_node_ptr_t old_others, /* dict */ tt_atom_t key, tt_node_ptr_t k) /* trie */ { assert(key != TT_WILD); assert(TT_EMPTY_DICT_P(old_others) || tt_ptr_tag(old_others) == TT_TAG_DICT); #define OTHERS_SANS_KEY() (tt_dict_remove(a, old_others, key)) #define OTHERS_WITH_KEY() (tt_dict_set(a, old_others, key, k)) switch (key) { case TT_BOS: if (tt_ptr_tag(k) == TT_TAG_TAIL) { return (TT_TAIL_TRIE(a,k) == old_wild) ? OTHERS_SANS_KEY() : OTHERS_WITH_KEY(); } else { return TT_EMPTY_P(k) ? OTHERS_SANS_KEY() : OTHERS_WITH_KEY(); } case TT_EOS: if (tt_ptr_tag(old_wild) == TT_TAG_TAIL) { return (TT_TAIL_TRIE(a,old_wild) == k) ? OTHERS_SANS_KEY() : OTHERS_WITH_KEY(); } else { return TT_EMPTY_P(k) ? OTHERS_SANS_KEY() : OTHERS_WITH_KEY(); } default: return (k == old_wild) ? OTHERS_SANS_KEY() : OTHERS_WITH_KEY(); } #undef OTHERS_SANS_KEY #undef OTHERS_WITH_KEY } static inline tt_node_ptr_t rupdate(tt_arena_t *a, tt_node_ptr_t r0, /* branch */ tt_atom_t key, tt_node_ptr_t k) /* trie */ { assert(key != TT_WILD); if (TT_EMPTY_P(r0)) { return rseq(a, key, k); } else { tt_node_ptr_t new_others; assert(tt_ptr_tag(r0) == TT_TAG_BRANCH); new_others = rupdate_dict(a, TT_BRANCH_WILDCARD(a,r0), TT_BRANCH_OTHERS(a,r0), key, k); return rbranch(a, TT_BRANCH_WILDCARD(a,r0), RET_IF_NO_PTR(new_others)); } } static inline tt_node_ptr_t expand(tt_arena_t *a, tt_node_ptr_t tailnode) { tt_node_ptr_t others = RET_IF_NO_PTR(tt_dict_singleton(a, TT_EOS, TT_TAIL_TRIE(a,tailnode))); return rbranch(a, tailnode, others); } /* N.B. Returns a tt_grab'd result. */ tt_node_ptr_t tt_trie_combine(tt_arena_t *a, tt_node_ptr_t r1, tt_node_ptr_t r2, int left_empty_keep, int right_empty_keep, int left_base_keep, int right_base_keep, void *f_context, /* Should return a tt_grab'd result. */ tt_node_ptr_t (*f)(void *f_context, tt_node_ptr_t r1, tt_node_ptr_t r2)) { /* N.B. Returns a tt_grab'd result. */ tt_node_ptr_t g(tt_node_ptr_t r1, tt_node_ptr_t r2) { tt_tag_t t1, t2; if (TT_EMPTY_P(r1)) { return left_empty_keep ? tt_grab(a, r2) : TT_EMPTY; } if (TT_EMPTY_P(r2)) { return right_empty_keep ? tt_grab(a, r1) : TT_EMPTY; } t1 = tt_ptr_tag(r1); t2 = tt_ptr_tag(r2); if (t1 == TT_TAG_BRANCH && t2 == TT_TAG_BRANCH) { tt_node_ptr_t w1 = TT_BRANCH_WILDCARD(a,r1); tt_node_ptr_t w2 = TT_BRANCH_WILDCARD(a,r2); tt_node_ptr_t dict1 = TT_BRANCH_OTHERS(a,r1); tt_node_ptr_t dict2 = TT_BRANCH_OTHERS(a,r2); tt_node_ptr_t result_wild = TT_NO_PTR; /* grab'd */ tt_node_ptr_t result_others = TT_EMPTY_DICT; /* grab'd */ tt_node_ptr_t result = TT_NO_PTR; /* grab'd */ int ok = 1; int examine_key(void *examine_key_context, tt_atom_t key, tt_node_ptr_t ignored_trie) { tt_node_ptr_t trie1, trie2; /* Looked up in r1 and r2 */ tt_node_ptr_t new_trie; /* Combination of trie1 and trie2 */ tt_node_ptr_t new_result_others; /* Updated dictionary with key---new_trie association */ trie1 = tt_grab(a, rlookup_dict(a, w1, dict1, key)); if (TT_NO_PTR_P(trie1)) return 0; trie2 = tt_grab(a, rlookup_dict(a, w2, dict2, key)); if (TT_NO_PTR_P(trie2)) { tt_drop(a, trie1); return 0; } new_trie = g(trie1, trie2); /* already grabbed */ tt_drop(a, trie1); tt_drop(a, trie2); if (TT_NO_PTR_P(new_trie)) return 0; new_result_others = tt_grab(a, rupdate_dict(a, result_wild, result_others, key, new_trie)); tt_drop(a, new_trie); if (TT_NO_PTR_P(new_result_others)) return 0; tt_drop(a, result_others); result_others = new_result_others; return 1; } if (!TT_EMPTY_P(w1) && !TT_EMPTY_P(w2)) { /* Two wildcards - worst case. Must loop over both dictionaries. */ result_wild = g(w1, w2); ok = ok && tt_dict_foreach(a, dict1, NULL, examine_key); ok = ok && tt_dict_foreach(a, dict2, NULL, examine_key); } else if ((!TT_EMPTY_P(w1)) || (TT_EMPTY_P(w2) && (tt_dict_size(a, dict1) >= tt_dict_size(a, dict2)))) { /* Either a wildcard on the left, or no wildcard at all but the left is larger */ result_wild = tt_grab(a, w1); result_others = left_base_keep ? tt_grab(a, dict1) : TT_EMPTY_DICT; ok = ok && tt_dict_foreach(a, dict2, NULL, examine_key); } else { /* Either a wildcard on the right, or no wildcard at all but the right is larger */ result_wild = tt_grab(a, w2); result_others = right_base_keep ? tt_grab(a, dict2) : TT_EMPTY_DICT; ok = ok && tt_dict_foreach(a, dict1, NULL, examine_key); } if (ok) { result = tt_grab(a, rbranch(a, result_wild, result_others)); } tt_drop(a, result_wild); tt_drop(a, result_others); return result; } if (t1 == TT_TAG_TAIL) { if (t2 == TT_TAG_TAIL) { tt_node_ptr_t combined = RET_IF_NO_PTR(g(TT_TAIL_TRIE(a,r1), TT_TAIL_TRIE(a,r2))); tt_node_ptr_t result = tt_grab(a, rwildseq(a, combined)); tt_drop(a, combined); return result; } else { tt_node_ptr_t r1_expanded = tt_grab(a, RET_IF_NO_PTR(expand(a, r1))); tt_node_ptr_t result = g(r1_expanded, r2); tt_drop(a, r1_expanded); return result; } } else if (t2 == TT_TAG_TAIL) { tt_node_ptr_t r2_expanded = tt_grab(a, RET_IF_NO_PTR(expand(a, r2))); tt_node_ptr_t result = g(r1, r2_expanded); tt_drop(a, r2_expanded); return result; } if (t1 == TT_TAG_OK || t2 == TT_TAG_OK) { return f(f_context, r1, r2); } /* There is no legitimate combination of tags that should let us get here. */ assert(0); } /* No need for tt_grab here - g has already done that for us */ return g(r1, r2); } tt_node_ptr_t tt_trie_union(tt_arena_t *a, tt_node_ptr_t r1, tt_node_ptr_t r2) { tt_node_ptr_t f_union(void *f_context, tt_node_ptr_t r1, tt_node_ptr_t r2) { tt_tag_t t1 = tt_ptr_tag(r1); tt_tag_t t2 = tt_ptr_tag(r2); if (t1 != TT_TAG_OK) { /* t2 must be ok. */ return tt_grab(a, r2); } else if (t2 != TT_TAG_OK) { return tt_grab(a, r1); } else { tt_node_ptr_t s = RET_IF_NO_PTR(tt_dictset_union(a, TT_OK_DICT(a,r1), TT_OK_DICT(a,r2))); tt_node_ptr_t result = tt_cons_ok(a, s); tt_drop(a, s); return tt_grab(a, result); } } return tt_trie_combine(a, r1, r2, 1, 1, 1, 1, NULL, f_union); } tt_node_ptr_t tt_begin_path(tt_arena_t *a, tt_node_ptr_t ok_dict) { return tt_cons_ok(a, ok_dict); } tt_node_ptr_t tt_prepend_path(tt_arena_t *a, tt_atom_t tok, tt_node_ptr_t tail) { if (tok == TT_WILD) { return rwild(a, tail); } else { return rseq(a, tok, tail); } } void print_indent(int spaces) { while (spaces--) { putchar(' '); } } void tt_dump_routingtable(tt_arena_t *a, tt_node_ptr_t r, int initial_indent) { void walk(int indent, tt_node_ptr_t r) { switch (tt_ptr_tag(r)) { case TT_TAG_TAIL: printf(" ...>"); walk(indent + 5, TT_TAIL_TRIE(a, r)); break; case TT_TAG_OK: { int need_space = 0; int pkey(void *context, tt_atom_t key, tt_node_ptr_t ignored_trie) { if (need_space) { putchar(' '); } else { need_space = 1; } printf("%d", key); return 1; } fputs(" {", stdout); tt_dict_foreach(a, TT_OK_DICT(a, r), NULL, pkey); putchar('}'); break; } case TT_TAG_BRANCH: { int need_sep = 0; int pedge(void *context, tt_atom_t key, tt_node_ptr_t node) { char keystr[256]; /* not very tight */ if (need_sep) { putchar('\n'); print_indent(indent); } else { need_sep = 1; } keystr[sizeof(keystr) - 1] = '\0'; switch (key) { case TT_WILD: snprintf(keystr, sizeof(keystr) - 1, " ★"); break; case TT_BOS: snprintf(keystr, sizeof(keystr) - 1, " <"); break; case TT_EOS: snprintf(keystr, sizeof(keystr) - 1, " >"); break; case TT_BOC: snprintf(keystr, sizeof(keystr) - 1, " {"); break; case TT_EOC: snprintf(keystr, sizeof(keystr) - 1, " }"); break; default: snprintf(keystr, sizeof(keystr) - 1, " %d", key); } fputs(keystr, stdout); walk(indent + strlen(keystr), node); return 1; } if (!TT_EMPTY_P(TT_BRANCH_WILDCARD(a, r))) { pedge(NULL, TT_WILD, TT_BRANCH_WILDCARD(a, r)); } tt_dict_foreach(a, TT_BRANCH_OTHERS(a, r), NULL, pedge); if (!need_sep) { printf(" ::: no edges!"); } break; } case TT_TAG_SPECIAL: if (TT_EMPTY_P(r)) { printf(" ::: nothing"); break; } /* fall through */ default: printf("?!?!?! %x", (unsigned int) r); break; } } walk(initial_indent, r); putchar('\n'); }