syndicate-rs/syndicate/src/actor.rs

2202 lines
81 KiB
Rust

#![doc = concat!(
include_str!("../doc/actor.md"),
include_str!("../doc/what-is-an-actor.md"),
include_str!("../doc/flow-control.md"),
include_str!("../doc/linked-tasks.md"),
)]
use super::dataflow::Graph;
use super::error::Error;
use super::error::error;
use super::rewrite::CaveatError;
use super::rewrite::CheckedCaveat;
use super::schemas::sturdy;
use parking_lot::Mutex;
use parking_lot::RwLock;
use preserves::value::ArcValue;
use preserves::value::Domain;
use preserves::value::IOValue;
use preserves::value::Map;
use preserves::value::NestedValue;
use preserves::value::Set;
use preserves_schema::ParseError;
use preserves_schema::support::Parse;
use preserves_schema::support::Unparse;
use std::any::Any;
use std::boxed::Box;
use std::collections::hash_map::HashMap;
use std::convert::TryFrom;
use std::convert::TryInto;
use std::marker::PhantomData;
use std::num::NonZeroU64;
use std::sync::Arc;
use std::sync::Weak;
use std::sync::atomic::{AtomicI64, AtomicU64, Ordering};
use std::time;
use tokio::select;
use tokio::sync::Notify;
use tokio::sync::mpsc::{unbounded_channel, UnboundedSender, UnboundedReceiver};
use tokio_util::sync::CancellationToken;
use tracing::Instrument;
/// The type of messages and assertions that can be exchanged among
/// distributed objects, including via [dataspace][crate::dataspace].
///
/// A Preserves value where embedded references are instances of
/// [`Cap`].
///
/// While [`Ref<M>`] can be used within a process, where arbitrary
/// `M`-values can be exchanged among objects, for distributed or
/// polyglot systems a *lingua franca* has to be chosen. `AnyValue` is
/// that language.
pub type AnyValue = ArcValue<Arc<Cap>>;
/// The type of process-unique actor IDs.
pub type ActorId = u64;
/// The type of process-unique facet IDs.
pub type FacetId = NonZeroU64;
/// The type of process-unique assertion handles.
///
/// Used both as a reference to [retract][Entity::retract]
/// previously-asserted assertions and as an indexing key to associate
/// local state with some incoming assertion in an entity.
pub type Handle = u64;
/// The type of process-unique field instance IDs.
pub type FieldId = NonZeroU64;
/// The type of process-unique field observer block IDs.
pub type BlockId = NonZeroU64;
/// Responses to events must have type `ActorResult`.
pub type ActorResult = Result<(), Error>;
/// The [`Actor::boot`] method returns an `ActorHandle`, representing
/// the actor's mainloop task.
pub type ActorHandle = tokio::task::JoinHandle<ActorResult>;
/// The type of the "disarm" function returned from [`Activation::prevent_inert_check`].
pub type DisarmFn = Box<dyn Send + FnOnce()>;
/// A small protocol for indicating successful synchronisation with
/// some peer; see [Entity::sync].
#[derive(Debug)]
pub struct Synced;
/// The core metaprotocol implemented by every object.
///
/// Entities communicate with each other by asserting and retracting
/// values and by sending messages (which can be understood very
/// approximately as "infinitesimally brief" assertions of the message
/// body).
///
/// Every assertion placed at a receiving entity *R* from some sending
/// entity *S* lives so long as *S*'s actor survives, *R*'s actor
/// survives, and *S* does not retract the assertion. Messages, by
/// contrast, are transient.
///
/// Implementors of [`Entity`] accept assertions from peers in method
/// [`assert`][Entity::assert]; notification of retraction of a
/// previously-asserted value happens in method
/// [`retract`][Entity::retract]; and notification of a message in
/// method [`message`][Entity::message].
///
/// In addition, entities may *synchronise* with each other: the
/// [`sync`][Entity::sync] method responds to a synchronisation
/// request.
///
/// Finally, the Rust implementation of the Syndicated Actor model
/// offers a hook for running some code at the end of an Entity's
/// containing [`Actor`]'s lifetime
/// ([`exit_hook`][Entity::exit_hook]).
///
/// # What to implement
///
/// The default implementations of the methods here generally do
/// nothing; override them to add actual behaviour to your entity.
///
#[allow(unused_variables)]
pub trait Entity<M>: Send {
/// Receive notification of a new assertion from a peer.
///
/// The `turn` parameter represents the current
/// [activation][Activation]; `assertion` is the value (of type
/// `M`) asserted; and `handle` is the process-unique name for
/// this particular assertion instance that will be used later
/// when it is [retracted][Entity::retract].
///
/// The default implementation does nothing.
fn assert(&mut self, turn: &mut Activation, assertion: M, handle: Handle) -> ActorResult {
Ok(())
}
/// Receive notification of retraction of a previous assertion from a peer.
///
/// This happens either when the asserting peer explicitly
/// retracts an assertion, or when its animating [`Actor`]
/// terminates.
///
/// The `turn` parameter represents the current
/// [activation][Activation], and `handle` is the process-unique
/// name for this particular assertion instance being retracted.
///
/// Note that no `assertion` value is provided: entities needing
/// to know the value that was previously asserted must remember
/// it themselves (perhaps in a [`Map`] keyed by `handle`).
///
/// The default implementation does nothing.
fn retract(&mut self, turn: &mut Activation, handle: Handle) -> ActorResult {
Ok(())
}
/// Receive notification of a message from a peer.
///
/// The `turn` parameter represents the current
/// [activation][Activation], and `message` is the body of the
/// message sent.
///
/// The default implementation does nothing.
fn message(&mut self, turn: &mut Activation, message: M) -> ActorResult {
Ok(())
}
/// Respond to a synchronisation request from a peer.
///
/// Implementors of [`Entity`] will seldom override this. The
/// default implementation fulfils the synchronisation protocol by
/// responding to `peer` with a `Synced` message.
///
/// In special cases, for example when an entity is a proxy for
/// some remote entity, the right thing to do is to forward the
/// synchronisation request on to another entity; in those cases,
/// overriding the default behaviour is appropriate.
fn sync(&mut self, turn: &mut Activation, peer: Arc<Ref<Synced>>) -> ActorResult {
turn.message(&peer, Synced);
Ok(())
}
/// Optional callback for running actions when the entity's owning [Facet] terminates
/// cleanly. Will not be called in case of abnormal shutdown (crash) of an actor. Callbacks
/// run in the context of the owning facet's *parent* facet.
///
/// Programs register an entity's stop hook with [Activation::on_stop_notify].
///
/// The default implementation does nothing.
fn stop(&mut self, turn: &mut Activation) -> ActorResult {
Ok(())
}
/// Optional callback for running cleanup actions when the
/// entity's animating [Actor] terminates.
///
/// Programs register an entity's exit hook with
/// [RunningActor::add_exit_hook].
///
/// The default implementation does nothing.
fn exit_hook(&mut self, turn: &mut Activation, exit_status: &Arc<ActorResult>) -> ActorResult {
Ok(())
}
}
/// An "inert" entity, that does nothing in response to any event delivered to it.
///
/// Useful as a placeholder or dummy in various situations.
pub struct InertEntity;
impl<M> Entity<M> for InertEntity {}
enum CleanupAction {
ForMyself(Action),
ForAnother(Arc<Mailbox>, Action),
}
type CleanupActions = Map<Handle, CleanupAction>;
type Action = Box<dyn Send + FnOnce(&mut Activation) -> ActorResult>;
type Block = Box<dyn Send + FnMut(&mut Activation) -> ActorResult>;
#[doc(hidden)]
pub type PendingEventQueue = Vec<Action>;
/// The main API for programming Syndicated Actor objects.
///
/// Through `Activation`s, programs can access the state of their
/// animating [`RunningActor`] and their active [`Facet`].
///
/// Usually, an `Activation` will be supplied to code that needs one; but when non-Actor code
/// (such as a [linked task][crate::actor#linked-tasks]) needs to enter an Actor's execution
/// context, use [`FacetRef::activate`] to construct one.
///
/// Many actions that an entity can perform are methods directly on
/// `Activation`, but methods on the [`RunningActor`] and [`FacetRef`]
/// values contained in an `Activation` are also sometimes useful.
///
/// This is what other implementations call a "Turn", renamed here to
/// avoid conflicts with [`crate::schemas::protocol::Turn`].
pub struct Activation<'activation> {
/// A reference to the currently active [`Facet`] and the implementation-side state of its
/// [`Actor`].
pub facet: FacetRef,
/// A reference to the current state of the active [`Actor`].
pub state: &'activation mut RunningActor,
active_block: Option<BlockId>,
pending: EventBuffer,
}
struct EventBuffer {
pub account: Arc<Account>,
queues: HashMap<ActorId, (UnboundedSender<SystemMessage>, PendingEventQueue)>,
for_myself: PendingEventQueue,
}
/// An `Account` records a "debt" in terms of outstanding work items.
///
/// It is part of the flow control mechanism - see [the module-level
/// documentation][crate::actor#flow-control] for more.
#[derive(Debug)]
pub struct Account {
id: u64,
debt: Arc<AtomicI64>,
notify: Notify,
}
/// A `LoanedItem<T>` is a `T` with an associated `cost` recorded
/// against it in the ledger of a given [`Account`]. The cost is
/// repaid automatically when the `LoanedItem<T>` is `Drop`ped.
///
/// `LoanedItem`s are part of the flow control mechanism - see [the
/// module-level documentation][crate::actor#flow-control] for more.
#[derive(Debug)]
pub struct LoanedItem<T> {
/// The account against which this loan is recorded.
pub account: Arc<Account>,
/// The cost of this particular `T`.
pub cost: usize,
/// The underlying item itself.
pub item: T,
}
enum SystemMessage {
Release,
ReleaseField(FieldId),
Turn(LoanedItem<PendingEventQueue>),
Crash(Error),
}
/// The mechanism by which events are delivered to a given [`Actor`].
pub struct Mailbox {
/// The ID of the actor this mailbox corresponds to.
pub actor_id: ActorId,
tx: UnboundedSender<SystemMessage>,
}
/// Each actor owns an instance of this structure.
///
/// It holds the receive-half of the actor's mailbox, plus a reference
/// to the actor's private state.
pub struct Actor {
rx: UnboundedReceiver<SystemMessage>,
ac_ref: ActorRef,
}
/// A reference to an actor's private [`ActorState`].
#[derive(Clone)]
pub struct ActorRef {
/// The ID of the referenced actor.
pub actor_id: ActorId,
state: Arc<Mutex<ActorState>>,
}
/// A combination of an [`ActorRef`] with a [`FacetId`], acting as a capability to enter the
/// execution context of a facet from a linked task.
#[derive(Clone)]
pub struct FacetRef {
pub actor: ActorRef,
pub facet_id: FacetId,
}
/// The state of an actor: either `Running` or `Terminated`.
pub enum ActorState {
/// A non-terminated actor has an associated [`RunningActor`] state record.
Running(RunningActor),
/// A terminated actor has an [`ActorResult`] as its `exit_status`.
Terminated {
/// The exit status of the actor: `Ok(())` for normal
/// termination, `Err(_)` for abnormal termination.
exit_status: Arc<ActorResult>,
},
}
/// State associated with each non-terminated [`Actor`].
pub struct RunningActor {
/// The ID of the actor this state belongs to.
pub actor_id: ActorId,
tx: UnboundedSender<SystemMessage>,
mailbox: Weak<Mailbox>,
dataflow: Graph<FieldId, BlockId>,
fields: HashMap<FieldId, Box<dyn Any + Send>>,
blocks: HashMap<BlockId, (FacetId, Block)>,
exit_hooks: Vec<Box<dyn Send + FnOnce(&mut Activation, &Arc<ActorResult>) -> ActorResult>>,
cleanup_actions: CleanupActions,
facet_nodes: Map<FacetId, Facet>,
facet_children: Map<FacetId, Set<FacetId>>,
root: FacetId,
}
/// Handle to a shared, mutable field (i.e. a *dataflow variable*) within a [`RunningActor`].
///
/// Use [`Activation::field`] to create fields, and use [`Activation::get`],
/// [`::get_mut`][Activation::get_mut], and [`::set`][Activation::set] to read and write field
/// values. Use [`Activation::dataflow`] to create a reactive block within a facet that will be
/// (re-)executed whenever some dependent field changes value.
///
pub struct Field<T: Any + Send> {
pub name: String,
pub field_id: FieldId,
tx: UnboundedSender<SystemMessage>,
phantom: PhantomData<T>,
}
/// State associated with each facet in an [`Actor`]'s facet tree.
///
/// # Inert facets
///
/// A facet is considered *inert* if:
///
/// 1. it has no child facets;
/// 2. it has no cleanup actions (that is, no assertions placed by any of its entities);
/// 3. it has no linked tasks; and
/// 4. it has no "inert check preventers" (see [Activation::prevent_inert_check]).
///
/// If a facet is created and is inert at the moment that its `boot` function returns, it is
/// automatically terminated.
///
/// When a facet is terminated, if its parent facet is inert, the parent is terminated.
///
/// If the root facet in an actor is terminated, the entire actor is terminated (with exit
/// status `Ok(())`).
///
pub struct Facet {
/// The ID of the facet.
pub facet_id: FacetId,
/// The ID of the facet's parent facet, if any; if None, this facet is the `Actor`'s root facet.
pub parent_facet_id: Option<FacetId>,
outbound_handles: Set<Handle>,
stop_actions: Vec<Action>,
linked_tasks: Map<u64, CancellationToken>,
inert_check_preventers: Arc<AtomicU64>,
}
/// A reference to an object that expects messages/assertions of type
/// `M`.
///
/// The object can be in the same actor, in a different local
/// (in-process) actor, or accessible across a network link.
pub struct Ref<M> {
/// Mailbox of the actor owning the referenced entity.
pub mailbox: Arc<Mailbox>,
/// ID of the facet (within the actor) owning the referenced entity.
pub facet_id: FacetId,
/// Mutex owning and guarding the state backing the referenced entity.
pub target: Mutex<Option<Box<dyn Entity<M>>>>,
}
/// Specialization of `Ref<M>` for messages/assertions of type
/// [`AnyValue`].
///
/// All polyglot and network communication is done in terms of `Cap`s.
///
/// `Cap`s can also be *attenuated* ([Hardy 2017]; [Miller 2006]) to
/// reduce (or otherwise transform) the range of assertions and
/// messages they can be used to send to their referent. The
/// Syndicated Actor model uses
/// [Macaroon](https://syndicate-lang.org/doc/capabilities/)-style
/// capability attenuation.
///
/// [Hardy 2017]: http://cap-lore.com/CapTheory/Patterns/Attenuation.html
/// [Miller 2006]: http://www.erights.org/talks/thesis/markm-thesis.pdf
#[derive(Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Cap {
#[doc(hidden)]
pub underlying: Arc<Ref<AnyValue>>,
#[doc(hidden)]
pub attenuation: Vec<CheckedCaveat>,
}
/// Adapter for converting an underlying [`Ref<M>`] to a [`Cap`].
///
/// The [`Entity`] implementation for `Guard` decodes `AnyValue`
/// assertions/messages to type `M` before passing them on to the
/// underlying entity.
pub struct Guard<L, M>
where
M: for<'a> Unparse<&'a L, AnyValue>,
M: for<'a> Parse<&'a L, AnyValue>,
{
underlying: Arc<Ref<M>>,
literals: Arc<L>,
}
/// Simple entity that stops its containing facet when any assertion it receives is
/// subsequently retracted.
pub struct StopOnRetract;
/// Returned from the function given to [`FacetRef::activate_exit`] to indicate how the actor
/// should proceed.
pub enum RunDisposition {
Continue,
Terminate(ActorResult),
}
/// Returned from [`Facet::activate`] and [`Facet::activate_exit`].
#[derive(Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
#[must_use]
pub enum ActivationResult {
/// The actor to be activated had already terminated by the time of the activation attempt.
AlreadyTerminated,
/// The activation succeeded.
Success,
/// The activation failed,
Failure(Error),
}
/// [Linked tasks][Activation::linked_task] terminate yielding values of this type.
pub enum LinkedTaskTermination {
/// Causes the task's associated [Facet] to be [stop][Activation::stop]ped when the task
/// returns.
Normal,
/// Causes no action to be taken regarding the task's associated [Facet] at the time the
/// task returns.
KeepFacet,
}
//---------------------------------------------------------------------------
const BUMP_AMOUNT: u8 = 10;
static NEXT_ACTOR_ID: AtomicU64 = AtomicU64::new(1);
#[doc(hidden)]
pub fn next_actor_id() -> ActorId {
NEXT_ACTOR_ID.fetch_add(BUMP_AMOUNT.into(), Ordering::Relaxed)
}
static NEXT_FACET_ID: AtomicU64 = AtomicU64::new(2);
#[doc(hidden)]
pub fn next_facet_id() -> FacetId {
FacetId::new(NEXT_FACET_ID.fetch_add(BUMP_AMOUNT.into(), Ordering::Relaxed))
.expect("Internal error: Attempt to allocate FacetId of zero. Too many FacetIds allocated. Restart the process.")
}
static NEXT_HANDLE: AtomicU64 = AtomicU64::new(3);
/// Allocate a process-unique `Handle`.
pub fn next_handle() -> Handle {
NEXT_HANDLE.fetch_add(BUMP_AMOUNT.into(), Ordering::Relaxed)
}
static NEXT_ACCOUNT_ID: AtomicU64 = AtomicU64::new(4);
static NEXT_TASK_ID: AtomicU64 = AtomicU64::new(5);
static NEXT_FIELD_ID: AtomicU64 = AtomicU64::new(6);
static NEXT_BLOCK_ID: AtomicU64 = AtomicU64::new(7);
preserves_schema::support::lazy_static! {
#[doc(hidden)]
pub static ref SYNDICATE_CREDIT: i64 = {
let credit =
std::env::var("SYNDICATE_CREDIT").unwrap_or("100".to_owned())
.parse::<i64>().expect("Valid SYNDICATE_CREDIT environment variable");
tracing::debug!("Configured SYNDICATE_CREDIT = {}", credit);
credit
};
#[doc(hidden)]
pub static ref ACCOUNTS: RwLock<Map<u64, (tracing::Span, Arc<AtomicI64>)>> = Default::default();
#[doc(hidden)]
pub static ref ACTORS: RwLock<Map<ActorId, (tracing::Span, ActorRef)>> = Default::default();
}
impl TryFrom<&AnyValue> for Synced {
type Error = ParseError;
fn try_from(value: &AnyValue) -> Result<Self, Self::Error> {
if let Some(true) = value.value().as_boolean() {
Ok(Synced)
} else {
Err(ParseError::conformance_error("Synced"))
}
}
}
impl From<&Synced> for AnyValue {
fn from(_value: &Synced) -> Self {
AnyValue::new(true)
}
}
impl<'a> Parse<&'a (), AnyValue> for Synced {
fn parse(_language: &'a (), value: &AnyValue) -> Result<Self, ParseError> {
Synced::try_from(value)
}
}
impl<'a> Unparse<&'a (), AnyValue> for Synced {
fn unparse(&self, _language: &'a ()) -> AnyValue {
self.into()
}
}
impl From<ActorResult> for RunDisposition {
fn from(v: ActorResult) -> Self {
match v {
Ok(()) => RunDisposition::Continue,
Err(e) => RunDisposition::Terminate(Err(e)),
}
}
}
impl FacetRef {
/// Executes `f` in a new "[turn][Activation]" for `actor`. If `f` returns `Ok(())`,
/// [commits the turn][Activation::deliver] and performs the buffered actions; otherwise,
/// [abandons the turn][Activation::clear] and discards the buffered actions.
///
/// Bills any activity to `account`.
pub fn activate<F>(
&self,
account: Arc<Account>,
f: F,
) -> ActivationResult where
F: FnOnce(&mut Activation) -> ActorResult,
{
self.activate_exit(account, |t| f(t).into())
}
/// Executes `f` in a new "[turn][Activation]" for `actor`. If `f` returns
/// `Some(exit_status)`, terminates `actor` with that `exit_status`. Otherwise, if `f`
/// returns `None`, leaves `actor` in runnable state. [Commits buffered
/// actions][Activation::deliver] unless `actor` terminates with an `Err` status.
///
/// Bills any activity to `account`.
pub fn activate_exit<F>(
&self,
account: Arc<Account>,
f: F,
) -> ActivationResult where
F: FnOnce(&mut Activation) -> RunDisposition,
{
let mut g = self.actor.state.lock();
match &mut *g {
ActorState::Terminated { exit_status } => {
tracing::debug!(?exit_status, "Could not activate terminated actor");
ActivationResult::AlreadyTerminated
}
ActorState::Running(state) => {
tracing::trace!(actor_id=?self.actor.actor_id, "activate");
let mut activation = Activation::make(self, account, state);
let f_result = f(&mut activation);
let result = match activation.restore_invariants(f_result) {
RunDisposition::Continue => Ok(()),
RunDisposition::Terminate(exit_status) => {
if exit_status.is_err() {
activation.clear();
}
drop(activation);
let exit_status = Arc::new(exit_status);
state.cleanup(&self.actor, &exit_status);
*g = ActorState::Terminated {
exit_status: Arc::clone(&exit_status),
};
(*exit_status).clone()
}
};
tracing::trace!(actor_id=?self.actor.actor_id, "deactivate");
match result {
Ok(()) => ActivationResult::Success,
Err(e) => ActivationResult::Failure(e),
}
}
}
}
}
impl<'activation> Activation<'activation> {
fn make(
facet: &FacetRef,
account: Arc<Account>,
state: &'activation mut RunningActor,
) -> Self {
Activation {
facet: facet.clone(),
state,
active_block: None,
pending: EventBuffer::new(account),
}
}
fn immediate_oid<M>(&self, r: &Arc<Ref<M>>) {
if r.mailbox.actor_id != self.facet.actor.actor_id {
panic!("Cannot use for_myself to send to remote peers");
}
}
fn with_facet<F>(&mut self, check_existence: bool, facet_id: FacetId, f: F) -> ActorResult
where
F: FnOnce(&mut Activation) -> ActorResult,
{
if !check_existence || self.state.facet_nodes.contains_key(&facet_id) {
tracing::trace!(check_existence, facet_id, "is_alive");
let old_facet_id = self.facet.facet_id;
self.facet.facet_id = facet_id;
let result = f(self);
self.facet.facet_id = old_facet_id;
result
} else {
tracing::trace!(facet_id, "not_alive");
Ok(())
}
}
#[doc(hidden)]
pub fn with_entity<M, F>(&mut self, r: &Arc<Ref<M>>, f: F) -> ActorResult where
F: FnOnce(&mut Activation, &mut dyn Entity<M>) -> ActorResult
{
self.with_facet(true, r.facet_id, |t| r.internal_with_entity(|e| f(t, e)))
}
fn active_facet<'a>(&'a mut self) -> Option<&'a mut Facet> {
self.state.get_facet(self.facet.facet_id)
}
/// Retrieves the chain of facet IDs, in order, from the currently-active [`Facet`] up to
/// and including the root facet of the active actor. Useful for debugging.
pub fn facet_ids(&mut self) -> Vec<FacetId> {
let mut ids = Vec::new();
let mut id = self.facet.facet_id;
loop {
ids.push(id);
match self.state.get_facet(id) {
None => break,
Some(f) => match f.parent_facet_id {
None => break,
Some(p) => id = p,
}
}
}
ids
}
/// Core API: assert `a` at recipient `r`.
///
/// Returns the [`Handle`] for the new assertion.
pub fn assert<M: 'static + Send + std::fmt::Debug>(&mut self, r: &Arc<Ref<M>>, a: M) -> Handle {
let handle = next_handle();
if let Some(f) = self.state.get_facet(self.facet.facet_id) {
tracing::trace!(?r, ?handle, ?a, "assert");
f.outbound_handles.insert(handle);
drop(f);
self.state.insert_retract_cleanup_action(&r, handle);
{
let r = Arc::clone(r);
self.pending.queue_for(&r).push(Box::new(
move |t| t.with_entity(&r, |t, e| {
tracing::trace!(?handle, ?a, "asserted");
e.assert(t, a, handle)
})));
}
}
handle
}
/// Core API: assert `a` at `r`, which must be a `Ref<M>` within the active actor.
///
/// It's perfectly OK to use method [`assert`][Self::assert] even
/// for `Ref`s that are part of the active actor. The difference
/// between `assert` and `assert_for_myself` is that `r`'s handler
/// for `assert` runs in a separate, later [`Activation`], while
/// `r`'s handler for `assert_for_myself` runs in *this*
/// [`Activation`], before it commits.
///
/// Returns the [`Handle`] for the new assertion.
///
/// # Panics
///
/// Panics if `r` is not part of the active actor.
pub fn assert_for_myself<M: 'static + Send + std::fmt::Debug>(&mut self, r: &Arc<Ref<M>>, a: M) -> Handle {
self.immediate_oid(r);
let handle = next_handle();
if let Some(f) = self.active_facet() {
tracing::trace!(?r, ?handle, ?a, "assert_for_myself");
f.outbound_handles.insert(handle);
drop(f);
{
let r = Arc::clone(r);
self.state.cleanup_actions.insert(
handle,
CleanupAction::ForMyself(Box::new(
move |t| t.with_entity(&r, |t, e| {
tracing::trace!(?handle, "retracted");
if let Some(f) = t.active_facet() {
f.outbound_handles.remove(&handle);
}
e.retract(t, handle)
}))));
}
{
let r = Arc::clone(r);
self.pending.for_myself.push(Box::new(
move |t| t.with_entity(&r, |t, e| {
tracing::trace!(?handle, ?a, "asserted");
e.assert(t, a, handle)
})));
}
}
handle
}
fn half_link(&mut self, t_other: &mut Activation) {
let entity_ref = t_other.create::<AnyValue, _>(StopOnRetract);
let handle = next_handle();
tracing::trace!(?handle, ?entity_ref, "half_link");
self.state.insert_retract_cleanup_action(&entity_ref, handle);
self.active_facet().unwrap().outbound_handles.insert(handle);
t_other.with_entity(&entity_ref, |t, e| e.assert(t, AnyValue::new(true), handle)).unwrap();
}
/// Core API: retract a previously-established assertion.
pub fn retract(&mut self, handle: Handle) {
tracing::trace!(?handle, "retract");
if let Some(d) = self.state.cleanup_actions.remove(&handle) {
self.pending.execute_cleanup_action(d)
}
}
/// Core API: assert, retract, or replace an assertion.
pub fn update<M: 'static + Send + std::fmt::Debug>(
&mut self,
handle: &mut Option<Handle>,
r: &Arc<Ref<M>>,
a: Option<M>,
) {
let saved = handle.take();
if let Some(a) = a {
*handle = Some(self.assert(r, a));
}
if let Some(h) = saved {
self.retract(h);
}
}
/// Core API: send message `m` to recipient `r`.
pub fn message<M: 'static + Send + std::fmt::Debug>(&mut self, r: &Arc<Ref<M>>, m: M) {
tracing::trace!(?r, ?m, "message");
let r = Arc::clone(r);
self.pending.queue_for(&r).push(Box::new(
move |t| t.with_entity(&r, |t, e| {
tracing::trace!(?m, "delivered");
e.message(t, m)
})))
}
/// Core API: send message `m` to recipient `r`, which must be a
/// `Ref<M>` within the active actor.
///
/// Method `message_for_myself` is to [`message`][Self::message]
/// as [`assert_for_myself`][Self::assert_for_myself] is to
/// [`assert`][Self::assert].
///
/// # Panics
///
/// Panics if `r` is not part of the active actor.
pub fn message_for_myself<M: 'static + Send>(&mut self, r: &Arc<Ref<M>>, m: M) {
self.immediate_oid(r);
let r = Arc::clone(r);
self.pending.for_myself.push(Box::new(
move |t| t.with_entity(&r, |t, e| e.message(t, m))))
}
/// Core API: begins a synchronisation with `r`.
///
/// Once the synchronisation request reaches `r`'s actor, it will
/// send a response to `peer`, which acts as a continuation for
/// the synchronisation request.
pub fn sync<M: 'static + Send>(&mut self, r: &Arc<Ref<M>>, peer: Arc<Ref<Synced>>) {
let r = Arc::clone(r);
self.pending.queue_for(&r).push(Box::new(
move |t| t.with_entity(&r, |t, e| e.sync(t, peer))))
}
/// Registers the entity `r` in the list of stop actions for the active facet. If the facet
/// terminates cleanly, `r`'s [`stop`][Entity::stop] will be called in the context of the
/// facet's parent.
///
/// **Note.** If the actor crashes, stop actions will *not* be called.
///
/// Use [`RunningActor::add_exit_hook`] to install a callback that will be called at the
/// end of the lifetime of the *actor* rather than the facet. (Also, exit hooks are called
/// no matter whether actor termination was normal or abnormal.)
pub fn on_stop_notify<M: 'static + Send>(&mut self, r: &Arc<Ref<M>>) {
if let Some(f) = self.active_facet() {
let r = Arc::clone(r);
f.stop_actions.push(Box::new(move |t| r.internal_with_entity(|e| e.stop(t))));
}
}
/// Registers `action` in the list of stop actions for the active facet. If the facet
/// terminates cleanly, `action` will be called in the context of the facet's parent. See
/// also notes against [`on_stop_notify`][Activation::on_stop_notify].
pub fn on_stop<F: 'static + Send + FnOnce(&mut Activation) -> ActorResult>(&mut self, action: F) {
self.on_facet_stop(self.facet.facet_id, action)
}
fn on_facet_stop<F: 'static + Send + FnOnce(&mut Activation) -> ActorResult>(
&mut self,
facet_id: FacetId,
action: F,
) {
if let Some(f) = self.state.get_facet(facet_id) {
f.stop_actions.push(Box::new(action));
}
}
/// Retrieve the [`Account`] against which actions are recorded.
pub fn account(&self) -> &Arc<Account> {
&self.pending.account
}
/// Discards all pending actions in this activation.
pub fn clear(&mut self) {
self.pending.clear();
}
/// Delivers all pending actions in this activation.
///
/// This is called automatically when an `Activation` is
/// `Drop`ped.
///
/// # Panics
///
/// Panics if any pending actions "`for_myself`" (resulting from
/// [`assert_for_myself`][Self::assert_for_myself] or
/// [`message_for_myself`][Self::message_for_myself]) are
/// outstanding at the time of the call.
pub fn deliver(&mut self) {
self.pending.deliver();
}
/// Construct an entity with behaviour [`InertEntity`] within the active facet.
pub fn inert_entity<M>(&mut self) -> Arc<Ref<M>> {
self.create(InertEntity)
}
/// Construct an entity with behaviour `e` within the active facet.
pub fn create<M, E: Entity<M> + Send + 'static>(&mut self, e: E) -> Arc<Ref<M>> {
let r = self.create_inert();
r.become_entity(e);
r
}
/// Construct an entity (within the active facet) whose behaviour will be specified later
/// via [`become_entity`][Ref::become_entity].
pub fn create_inert<M>(&mut self) -> Arc<Ref<M>> {
Arc::new(Ref {
mailbox: self.state.mailbox(),
facet_id: self.facet.facet_id,
target: Mutex::new(None),
})
}
/// Start a new [linked task][crate::actor#linked-tasks] attached to the active facet. The
/// task will execute the future "`boot`" to completion unless it is cancelled first (by
/// e.g. termination of the owning facet or crashing of the owning actor). Stops the active
/// facet when the linked task completes. Uses `name` for log messages emitted by the task.
pub fn linked_task<F: 'static + Send + futures::Future<Output = Result<LinkedTaskTermination, Error>>>(
&mut self,
name: tracing::Span,
boot: F,
) {
let mailbox = self.state.mailbox();
let facet = self.facet.clone();
if let Some(f) = self.active_facet() {
let token = CancellationToken::new();
let task_id = NEXT_TASK_ID.fetch_add(BUMP_AMOUNT.into(), Ordering::Relaxed);
name.record("task_id", &task_id);
{
let token = token.clone();
tokio::spawn(async move {
tracing::trace!(task_id, "linked task start");
let result = select! {
_ = token.cancelled() => {
tracing::trace!(task_id, "linked task cancelled");
LinkedTaskTermination::Normal
}
result = boot => match result {
Ok(t) => {
tracing::trace!(task_id, "linked task normal stop");
t
}
Err(e) => {
tracing::error!(task_id, "linked task error: {}", e);
let _ = mailbox.tx.send(SystemMessage::Crash(e.clone()));
Err(e)?
}
}
};
let _ = facet.activate(
Account::new(crate::name!("release_linked_task")), |t| {
if let Some(f) = t.active_facet() {
tracing::trace!(task_id, "cancellation token removed");
f.linked_tasks.remove(&task_id);
}
if let LinkedTaskTermination::Normal = result {
t.stop();
}
Ok(())
});
Ok::<(), Error>(())
}.instrument(name));
}
f.linked_tasks.insert(task_id, token);
}
}
/// Executes the given action after the given duration has elapsed (so long as the active
/// facet still exists at that time).
pub fn after<F: 'static + Send + FnOnce(&mut Activation) -> ActorResult>(
&mut self,
duration: time::Duration,
a: F,
) {
self.at(time::Instant::now() + duration, a)
}
/// Executes the given action immediately, and then every time another multiple of the
/// given duration has elapsed (so long as the active facet still exists at that time).
pub fn every<F: 'static + Send + FnMut(&mut Activation) -> ActorResult>(
&mut self,
duration: time::Duration,
mut a: F,
) -> ActorResult {
let account = Arc::clone(self.account());
let facet = self.facet.clone();
let span = tracing::Span::current().clone();
self.linked_task(crate::name!(parent: None, "Activation::every"), async move {
let mut timer = tokio::time::interval(duration);
loop {
timer.tick().await;
let _entry = span.enter();
if facet.activate(Arc::clone(&account), |t| a(t)).as_result().is_err() {
return Ok(LinkedTaskTermination::Normal);
}
}
});
Ok(())
}
/// Executes the given action at the given instant (so long as the active facet still
/// exists at that time).
pub fn at<I: Into<tokio::time::Instant>, F: 'static + Send + FnOnce(&mut Activation) -> ActorResult>(
&mut self,
instant: I,
a: F,
) {
let account = Arc::clone(self.account());
let instant = instant.into();
let facet = self.facet.clone();
let span = tracing::Span::current().clone();
self.linked_task(crate::name!(parent: None, "Activation::at"), async move {
tokio::time::sleep_until(instant.into()).await;
let _entry = span.enter();
facet.activate(account, a).ignore_termination()?;
Ok(LinkedTaskTermination::KeepFacet)
});
}
/// Schedule the creation of a new actor when the Activation commits.
pub fn spawn<F: 'static + Send + FnOnce(&mut Activation) -> ActorResult>(
&mut self,
name: tracing::Span,
boot: F,
) -> ActorRef {
let ac = Actor::new(Some(self.state.actor_id));
let ac_ref = ac.ac_ref.clone();
self.pending.for_myself.push(Box::new(move |_| {
ac.boot(name, boot);
Ok(())
}));
ac_ref
}
/// Schedule the creation of a new actor when the Activation commits.
///
/// The new actor will be "linked" to the active facet: if the new actor terminates, the
/// active facet is stopped, and if the active facet stops, the new actor's root facet is
/// stopped.
pub fn spawn_link<F: 'static + Send + FnOnce(&mut Activation) -> ActorResult>(
&mut self,
name: tracing::Span,
boot: F,
) -> ActorRef {
let ac = Actor::new(Some(self.state.actor_id));
let ac_ref = ac.ac_ref.clone();
let facet_id = self.facet.facet_id;
self.pending.for_myself.push(Box::new(move |t| {
t.with_facet(true, facet_id, move |t| {
ac.link(t)?.boot(name, boot);
Ok(())
})
}));
ac_ref
}
/// Create a new subfacet of the currently-active facet. Runs `boot` in the new facet's
/// context. If `boot` returns leaving the new facet [inert][Facet#inert-facets], the new
/// facet is [stopped][Activation::stop_facet].
pub fn facet<F: FnOnce(&mut Activation) -> ActorResult>(
&mut self,
boot: F,
) -> Result<FacetId, Error> {
let f = Facet::new(Some(self.facet.facet_id));
let facet_id = f.facet_id;
self.state.facet_nodes.insert(facet_id, f);
tracing::trace!(parent_id = ?self.facet.facet_id,
?facet_id,
actor_facet_count = ?self.state.facet_nodes.len());
self.state.facet_children.entry(self.facet.facet_id).or_default().insert(facet_id);
self.with_facet(true /* TODO: tiny optimisation: "false" would be safe here */, facet_id, move |t| {
boot(t)?;
t.stop_if_inert();
Ok(())
})?;
Ok(facet_id)
}
/// Useful during facet (and actor) startup, in some situations: when a facet `boot`
/// procedure would return while the facet is inert, but the facet should survive until
/// some subsequent time, call `prevent_inert_check` to increment a counter that prevents
/// inertness-checks from succeeding on the active facet.
///
/// The result of `prevent_inert_check` is a function which, when called, decrements the
/// counter again. After the counter has been decremented, any subsequent inertness checks
/// will no longer be artificially forced to fail.
///
/// An example of when you might want this: creating an actor having only a single
/// Dataspace entity within it, then using the Dataspace from other actors. At the start of
/// its life, the Dataspace actor will have no outbound assertions, no child facets, and no
/// linked tasks, so the only way to prevent it from being prematurely garbage collected is
/// to use `prevent_inert_check` in its boot function.
pub fn prevent_inert_check(&mut self) -> DisarmFn {
if let Some(f) = self.active_facet() {
Box::new(f.prevent_inert_check())
} else {
Box::new(|| ())
}
}
/// If `continuation` is supplied, adds it as a stop action for the [`Facet`] named by
/// `facet_id`. Then, cleanly stops the facet immediately, without waiting for `self` to
/// commit.
pub fn stop_facet_and_continue<F: 'static + Send + FnOnce(&mut Activation) -> ActorResult>(
&mut self,
facet_id: FacetId,
continuation: Option<F>,
) -> ActorResult {
if let Some(k) = continuation {
self.on_facet_stop(facet_id, k);
}
self._terminate_facet(facet_id, true)
}
/// Arranges for the [`Facet`] named by `facet_id` to be stopped cleanly when `self`
/// commits.
///
/// Equivalent to `self.stop_facet_and_continue(facet_id, None)`, except that the lack of a
/// continuation means that there's no need for this method to return `ActorResult`.
pub fn stop_facet(&mut self, facet_id: FacetId) {
self.stop_facet_and_continue::<Action>(facet_id, None)
.expect("Non-failing stop_facet_and_continue")
}
/// Arranges for the active facet to be stopped cleanly when `self` commits.
///
/// Equivalent to `self.stop_facet(self.facet.facet_id)`.
pub fn stop(&mut self) {
self.stop_facet(self.facet.facet_id)
}
/// Arranges for the active actor's root facet to be stopped cleanly when `self` commits;
/// this is one way to arrange a clean shutdown of the entire actor.
///
/// Equivalent to `self.stop_facet(self.state.root)`.
pub fn stop_root(&mut self) {
self.stop_facet(self.state.root);
}
fn stop_if_inert(&mut self) {
let facet_id = self.facet.facet_id;
self.pending.for_myself.push(Box::new(move |t| {
tracing::trace!("Checking inertness of facet {} from facet {}", facet_id, t.facet.facet_id);
if t.state.facet_exists_and_is_inert(facet_id) {
tracing::trace!(" - facet {} is inert, stopping it", facet_id);
t.stop_facet(facet_id);
} else {
tracing::trace!(" - facet {} is not inert", facet_id);
}
Ok(())
}))
}
fn _terminate_facet(&mut self, facet_id: FacetId, alive: bool) -> ActorResult {
if let Some(mut f) = self.state.facet_nodes.remove(&facet_id) {
tracing::trace!(actor_facet_count = ?self.state.facet_nodes.len(),
"{} termination of {:?}",
if alive { "living" } else { "post-exit" },
facet_id);
if let Some(p) = f.parent_facet_id {
self.state.facet_children.get_mut(&p).map(|children| children.remove(&facet_id));
}
self.with_facet(false, facet_id, |t| {
if let Some(children) = t.state.facet_children.remove(&facet_id) {
for child_id in children.into_iter() {
t._terminate_facet(child_id, alive)?;
}
}
if alive {
let parent_facet_id = f.parent_facet_id;
t.with_facet(false, parent_facet_id.unwrap_or(facet_id), |t| {
for action in std::mem::take(&mut f.stop_actions) {
action(t)?;
}
Ok(())
})?;
f.retract_outbound(t);
// ^ we need retraction to happen right here so that child-facet
// cleanup-actions are performed before parent-facet cleanup-actions.
if let Some(p) = parent_facet_id {
if t.state.facet_exists_and_is_inert(p) {
tracing::trace!("terminating parent {:?} of facet {:?}", p, facet_id);
t._terminate_facet(p, true)?;
} else {
tracing::trace!("not terminating parent {:?} of facet {:?}", p, facet_id);
}
} else {
tracing::trace!("no parent of root facet {:?} to terminate", facet_id);
}
} else {
f.retract_outbound(t);
}
Ok(())
})
} else {
Ok(())
}
}
/// Create a new named dataflow variable (field) within the active [`Actor`].
pub fn named_field<T: Any + Send>(&mut self, name: &str, initial_value: T) -> Arc<Field<T>> {
let field_id = FieldId::new(NEXT_FIELD_ID.fetch_add(BUMP_AMOUNT.into(), Ordering::Relaxed))
.expect("Internal error: Attempt to allocate FieldId of zero. Too many FieldIds allocated. Restart the process.");
self.state.fields.insert(field_id, Box::new(initial_value));
Arc::new(Field {
name: name.to_owned(),
field_id,
tx: self.state.tx.clone(),
phantom: PhantomData,
})
}
/// Create a new anonymous dataflow variable (field) within the active [`Actor`].
pub fn field<T: Any + Send>(&mut self, initial_value: T) -> Arc<Field<T>> {
self.named_field("", initial_value)
}
/// Retrieve a reference to the current value of a dataflow variable (field); if execution
/// is currently within a [dataflow block][Activation::dataflow], marks the block as
/// *depending upon* the field.
///
pub fn get<T: Any + Send>(&mut self, field: &Field<T>) -> &T {
if let Some(block) = self.active_block {
tracing::trace!(?field, ?block, action = "get", "observed");
self.state.dataflow.record_observation(block, field.field_id);
}
let any = self.state.fields.get(&field.field_id)
.expect("Attempt to get() missing field: wrong actor?");
any.downcast_ref().expect("Attempt to access field at incorrect type")
}
/// Retrieve a mutable reference to the contents of a dataflow variable (field). As for
/// [`get`][Activation::get], if used within a dataflow block, marks the block as
/// *depending upon* the field. In addition, because the caller may mutate the field, this
/// function (pessimistically) marks the field as dirty, which will lead to later
/// reevaluation of dependent blocks.
///
pub fn get_mut<T: Any + Send>(&mut self, field: &Field<T>) -> &mut T {
{
// Overapproximation.
if let Some(block) = self.active_block {
tracing::trace!(?field, ?block, action = "get_mut", "observed");
self.state.dataflow.record_observation(block, field.field_id);
}
tracing::trace!(?field, active_block = ?self.active_block, action = "get_mut", "damaged");
self.state.dataflow.record_damage(field.field_id);
}
let any = self.state.fields.get_mut(&field.field_id)
.expect("Attempt to get_mut() missing field: wrong actor?");
any.downcast_mut().expect("Attempt to access field at incorrect type")
}
/// Overwrite the value of a dataflow variable (field). Marks the field as dirty, even if
/// the new value is [`eq`][std::cmp::PartialEq::eq] to the value being overwritten.
///
pub fn set<T: Any + Send>(&mut self, field: &Field<T>, value: T) {
tracing::trace!(?field, active_block = ?self.active_block, action = "set", "damaged");
// Overapproximation in many cases, since the new value may not produce an
// observable difference (may be equal to the current value).
self.state.dataflow.record_damage(field.field_id);
let any = self.state.fields.get_mut(&field.field_id)
.expect("Attempt to set() missing field: wrong actor?");
*any = Box::new(value);
}
fn with_block(&mut self, block_id: BlockId, block: &mut Block) -> ActorResult {
let saved = self.active_block.replace(block_id);
let result = block(self);
self.active_block = saved;
result
}
/// Creates (and immediately executes) a new *dataflow block* that will be reexecuted if
/// any of its *dependent fields* (accessed via e.g. [`get`][Activation::get] or
/// [`get_mut`][Activation::get_mut]) are mutated.
///
pub fn dataflow<F: 'static + Send + FnMut(&mut Activation) -> ActorResult>(&mut self, block: F) -> ActorResult {
let block_id = BlockId::new(NEXT_BLOCK_ID.fetch_add(BUMP_AMOUNT.into(), Ordering::Relaxed))
.expect("Internal error: Attempt to allocate BlockId of zero. Too many BlockIds allocated. Restart the process.");
let mut block: Block = Box::new(block);
self.with_block(block_id, &mut block)?;
self.state.blocks.insert(block_id, (self.facet.facet_id, block));
Ok(())
}
fn repair_dataflow(&mut self) -> Result<bool, Error> {
let mut pass_number = 0;
while !self.state.dataflow.is_clean() {
pass_number += 1;
tracing::trace!(?pass_number, "repair_dataflow");
let damaged_field_ids = self.state.dataflow.take_damaged_nodes();
for field_id in damaged_field_ids.into_iter() {
let block_ids = self.state.dataflow.take_observers_of(&field_id);
for block_id in block_ids.into_iter() {
if let Some((facet_id, mut block)) = self.state.blocks.remove(&block_id) {
let result = self.with_facet(
true, facet_id, |t| t.with_block(block_id, &mut block));
self.state.blocks.insert(block_id, (facet_id, block));
result?;
}
}
}
}
if pass_number > 0 {
tracing::trace!(passes = ?pass_number, "repair_dataflow complete");
}
Ok(pass_number > 0)
}
fn _restore_invariants(&mut self) -> ActorResult {
loop {
loop {
let actions = std::mem::take(&mut self.pending.for_myself);
if actions.is_empty() { break; }
for action in actions.into_iter() { action(self)? }
}
if !self.repair_dataflow()? {
break;
}
}
Ok(())
}
fn restore_invariants(&mut self, d: RunDisposition) -> RunDisposition {
let d = match d {
RunDisposition::Continue =>
self._restore_invariants().into(),
RunDisposition::Terminate(Ok(())) =>
RunDisposition::Terminate(self._restore_invariants()),
RunDisposition::Terminate(Err(_)) =>
d,
};
// If we would otherwise continue, check the root facet: is it still alive?
// If not, then the whole actor should terminate now.
if let RunDisposition::Continue = d {
if let None = self.state.get_facet(self.state.root) {
tracing::trace!("terminating actor because root facet no longer exists");
return RunDisposition::Terminate(Ok(()));
}
}
d
}
}
impl EventBuffer {
fn new(account: Arc<Account>) -> Self {
EventBuffer {
account,
queues: HashMap::new(),
for_myself: Vec::new(),
}
}
fn execute_cleanup_action(&mut self, d: CleanupAction) {
match d {
CleanupAction::ForAnother(mailbox, action) =>
self.queue_for_mailbox(&mailbox).push(action),
CleanupAction::ForMyself(action) =>
self.for_myself.push(action),
}
}
fn queue_for<M>(&mut self, r: &Arc<Ref<M>>) -> &mut PendingEventQueue {
self.queue_for_mailbox(&r.mailbox)
}
fn queue_for_mailbox(&mut self, mailbox: &Arc<Mailbox>) -> &mut PendingEventQueue {
&mut self.queues.entry(mailbox.actor_id)
.or_insert((mailbox.tx.clone(), Vec::new())).1
}
fn clear(&mut self) {
self.queues = HashMap::new();
self.for_myself = PendingEventQueue::new();
}
fn deliver(&mut self) {
tracing::trace!("EventBuffer::deliver");
if !self.for_myself.is_empty() {
panic!("Unprocessed for_myself events remain at deliver() time");
}
for (_actor_id, (tx, turn)) in std::mem::take(&mut self.queues).into_iter() {
// Deliberately ignore send errors here: they indicate that the recipient is no
// longer alive. But we don't care about that case, since we have to be robust to
// crashes anyway. (When we were printing errors we saw here, an example of the
// problems it caused was a relay output_loop that received EPIPE causing the relay
// to crash, just as it was receiving thousands of messages a second, leading to
// many, many log reports of failed send_actions from the following line.)
let _ = send_actions(&tx, &self.account, turn);
}
}
}
impl Drop for EventBuffer {
fn drop(&mut self) {
self.deliver()
}
}
impl Account {
/// Construct a new `Account`, storing `name` within it for
/// debugging use.
pub fn new(name: tracing::Span) -> Arc<Self> {
let id = NEXT_ACCOUNT_ID.fetch_add(1, Ordering::Relaxed);
let debt = Arc::new(AtomicI64::new(0));
ACCOUNTS.write().insert(id, (name, Arc::clone(&debt)));
Arc::new(Account {
id,
debt,
notify: Notify::new(),
})
}
/// Retrieve the current account balance: the number of
/// currently-outstanding work items.
pub fn balance(&self) -> i64 {
self.debt.load(Ordering::Relaxed)
}
/// Borrow `token_count` work items against this account.
pub fn borrow(&self, token_count: usize) {
let token_count: i64 = token_count.try_into().expect("manageable token count");
self.debt.fetch_add(token_count, Ordering::Relaxed);
}
/// Repay `token_count` work items previously borrowed against this account.
pub fn repay(&self, token_count: usize) {
let token_count: i64 = token_count.try_into().expect("manageable token count");
let _old_debt = self.debt.fetch_sub(token_count, Ordering::Relaxed);
if _old_debt - token_count <= *SYNDICATE_CREDIT {
self.notify.notify_one();
}
}
/// Suspend execution until enough "clear funds" exist in this
/// account for some subsequent activity to be permissible.
pub async fn ensure_clear_funds(&self) {
let limit = *SYNDICATE_CREDIT;
// tokio::task::yield_now().await;
while self.balance() > limit {
// tokio::task::yield_now().await;
self.notify.notified().await;
}
}
}
impl Drop for Account {
fn drop(&mut self) {
ACCOUNTS.write().remove(&self.id);
}
}
impl<T> LoanedItem<T> {
/// Construct a new `LoanedItem<T>` containing `item`, recording
/// `cost` work items against `account`.
pub fn new(account: &Arc<Account>, cost: usize, item: T) -> Self {
account.borrow(cost);
LoanedItem { account: Arc::clone(account), cost, item }
}
}
impl<T> Drop for LoanedItem<T> {
fn drop(&mut self) {
self.account.repay(self.cost);
}
}
#[must_use]
fn send_actions(
tx: &UnboundedSender<SystemMessage>,
account: &Arc<Account>,
t: PendingEventQueue,
) -> ActorResult {
let token_count = t.len();
tx.send(SystemMessage::Turn(LoanedItem::new(account, token_count, t)))
.map_err(|_| error("Target actor not running", AnyValue::new(false)))
}
impl std::fmt::Debug for Mailbox {
fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
write!(f, "#<Mailbox {}>", self.actor_id)
}
}
impl std::hash::Hash for Mailbox {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.actor_id.hash(state)
}
}
impl Eq for Mailbox {}
impl PartialEq for Mailbox {
fn eq(&self, other: &Mailbox) -> bool {
self.actor_id == other.actor_id
}
}
impl Ord for Mailbox {
fn cmp(&self, other: &Mailbox) -> std::cmp::Ordering {
return self.actor_id.cmp(&other.actor_id)
}
}
impl PartialOrd for Mailbox {
fn partial_cmp(&self, other: &Mailbox) -> Option<std::cmp::Ordering> {
return Some(self.cmp(&other))
}
}
impl Drop for Mailbox {
fn drop(&mut self) {
tracing::debug!("Last reference to mailbox of actor id {:?} was dropped", self.actor_id);
let _ = self.tx.send(SystemMessage::Release);
()
}
}
impl Actor {
/// Create a new actor. It still needs to be [`boot`ed][Self::boot].
pub fn new(parent_actor_id: Option<ActorId>) -> Self {
let (tx, rx) = unbounded_channel();
let actor_id = next_actor_id();
let root = Facet::new(None);
tracing::debug!(?actor_id, ?parent_actor_id, root_facet_id = ?root.facet_id, "Actor::new");
let mut st = RunningActor {
actor_id,
tx,
mailbox: Weak::new(),
dataflow: Graph::new(),
fields: HashMap::new(),
blocks: HashMap::new(),
exit_hooks: Vec::new(),
cleanup_actions: Map::new(),
facet_nodes: Map::new(),
facet_children: Map::new(),
root: root.facet_id,
};
st.facet_nodes.insert(root.facet_id, root);
let ac_ref = ActorRef { actor_id, state: Arc::new(Mutex::new(ActorState::Running(st))) };
Actor { rx, ac_ref }
}
fn link(self, t_parent: &mut Activation) -> Result<Self, Error> {
if t_parent.active_facet().is_none() {
panic!("No active facet when calling spawn_link");
}
self.ac_ref.root_facet_ref().activate(Account::new(crate::name!("link")), |t_child| {
t_parent.half_link(t_child);
t_child.half_link(t_parent);
Ok(())
}).as_result()?;
Ok(self)
}
/// Start the actor's mainloop. Takes ownership of `self`. The
/// `name` is used as context for any log messages emitted by the
/// actor. The `boot` function is called in the actor's context,
/// and then the mainloop is entered.
pub fn boot<F: 'static + Send + FnOnce(&mut Activation) -> ActorResult>(
mut self,
name: tracing::Span,
boot: F,
) -> ActorHandle {
ACTORS.write().insert(self.ac_ref.actor_id, (name.clone(), self.ac_ref.clone()));
name.record("actor_id", &self.ac_ref.actor_id);
tokio::spawn(async move {
tracing::trace!("start");
self.run(|t| {
t.facet(boot)?;
Ok(())
}).await;
let result = self.ac_ref.exit_status().expect("terminated");
match &result {
Ok(()) => tracing::trace!("normal stop"),
Err(e) => tracing::error!("error stop: {}", e),
}
result
}.instrument(name))
}
async fn run<F: 'static + Send + FnOnce(&mut Activation) -> ActorResult>(
&mut self,
boot: F,
) -> () {
let root_facet_ref = self.ac_ref.root_facet_ref();
let terminate = |result: ActorResult| {
let _ = root_facet_ref.activate_exit(Account::new(crate::name!("shutdown")),
|_| RunDisposition::Terminate(result));
};
if !root_facet_ref.activate(Account::new(crate::name!("boot")), boot).is_success() {
return;
}
loop {
tracing::trace!(actor_id = ?self.ac_ref.actor_id, "mainloop top");
match self.rx.recv().await {
None => {
return terminate(Err(error("Unexpected channel close", AnyValue::new(false))));
}
Some(m) => match m {
SystemMessage::Release => {
tracing::trace!(actor_id = ?self.ac_ref.actor_id, "SystemMessage::Release");
return terminate(Ok(()));
}
SystemMessage::ReleaseField(field_id) => {
tracing::trace!(actor_id = ?self.ac_ref.actor_id,
"SystemMessage::ReleaseField({})", field_id);
self.ac_ref.access(|s| if let ActorState::Running(ra) = s {
ra.fields.remove(&field_id);
})
}
SystemMessage::Turn(mut loaned_item) => {
tracing::trace!(actor_id = ?self.ac_ref.actor_id, "SystemMessage::Turn");
let actions = std::mem::take(&mut loaned_item.item);
let r = root_facet_ref.activate(Arc::clone(&loaned_item.account), |t| {
for action in actions.into_iter() { action(t)? }
Ok(())
});
if !r.is_success() { return; }
}
SystemMessage::Crash(e) => {
tracing::trace!(actor_id = ?self.ac_ref.actor_id,
"SystemMessage::Crash({:?})", &e);
return terminate(Err(e));
}
}
}
}
}
}
impl Facet {
fn new(parent_facet_id: Option<FacetId>) -> Self {
Facet {
facet_id: next_facet_id(),
parent_facet_id,
outbound_handles: Set::new(),
stop_actions: Vec::new(),
linked_tasks: Map::new(),
inert_check_preventers: Arc::new(AtomicU64::new(0)),
}
}
fn prevent_inert_check(&mut self) -> impl FnOnce() {
let inert_check_preventers = Arc::clone(&self.inert_check_preventers);
let armed = AtomicU64::new(1);
inert_check_preventers.fetch_add(1, Ordering::Relaxed);
move || {
match armed.compare_exchange(1, 0, Ordering::SeqCst, Ordering::SeqCst) {
Ok(_) => {
inert_check_preventers.fetch_sub(1, Ordering::Relaxed);
()
}
Err(_) => (),
}
}
}
fn retract_outbound(&mut self, t: &mut Activation) {
for handle in std::mem::take(&mut self.outbound_handles).into_iter() {
tracing::trace!(h = ?handle, "retract on termination");
t.retract(handle);
}
}
}
impl ActorRef {
/// Uses an internal mutex to access the internal state: takes the
/// lock, calls `f` with the internal state, releases the lock,
/// and returns the result of `f`.
pub fn access<R, F: FnOnce(&mut ActorState) -> R>(&self, f: F) -> R {
f(&mut *self.state.lock())
}
/// Retrieves the exit status of the denoted actor. If it is still
/// running, yields `None`; otherwise, yields `Some(Ok(()))` if it
/// exited normally, or `Some(Err(_))` if it terminated
/// abnormally.
pub fn exit_status(&self) -> Option<ActorResult> {
self.access(|state| match state {
ActorState::Running(_) => None,
ActorState::Terminated { exit_status } => Some((**exit_status).clone()),
})
}
fn facet_ref(&self, facet_id: FacetId) -> FacetRef {
FacetRef {
actor: self.clone(),
facet_id,
}
}
fn root_facet_id(&self) -> FacetId {
self.access(|s| match s {
ActorState::Terminated { .. } => panic!("Actor unexpectedly in terminated state"),
ActorState::Running(ra) => ra.root, // what a lot of work to get this one number
})
}
fn root_facet_ref(&self) -> FacetRef {
self.facet_ref(self.root_facet_id())
}
}
impl std::fmt::Debug for ActorRef {
fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
write!(f, "#<ActorRef {}>", self.actor_id)
}
}
impl RunningActor {
/// Requests a shutdown of the actor. The shutdown request is
/// handled by the actor's main loop, causing it to terminate with
/// exit status `Ok(())`.
pub fn shutdown(&self) {
let _ = self.tx.send(SystemMessage::Release);
}
fn mailbox(&mut self) -> Arc<Mailbox> {
match self.mailbox.upgrade() {
None => {
let new_mailbox = Arc::new(Mailbox {
actor_id: self.actor_id,
tx: self.tx.clone(),
});
self.mailbox = Arc::downgrade(&new_mailbox);
new_mailbox
}
Some(m) => m
}
}
/// Registers the entity `r` in the list of exit hooks for this actor. When the actor
/// terminates, `r`'s [`exit_hook`][Entity::exit_hook] will be called in the context of the
/// actor's root facet.
pub fn add_exit_hook<M: 'static + Send>(&mut self, r: &Arc<Ref<M>>) {
let r = Arc::clone(r);
self.exit_hooks.push(Box::new(
move |t, exit_status| r.internal_with_entity(|e| e.exit_hook(t, &exit_status))))
}
fn get_facet(&mut self, facet_id: FacetId) -> Option<&mut Facet> {
self.facet_nodes.get_mut(&facet_id)
}
/// See the definition of an [inert facet][Facet#inert-facets].
fn facet_exists_and_is_inert(&mut self, facet_id: FacetId) -> bool {
let no_kids = self.facet_children.get(&facet_id).map(|cs| cs.is_empty()).unwrap_or(true);
if let Some(f) = self.get_facet(facet_id) {
// The only outbound handle the root facet of an actor may have is a link
// assertion, from [Activation::link]. This is not to be considered a "real"
// assertion for purposes of keeping the facet alive!
let no_outbound_handles = f.outbound_handles.is_empty();
let is_root_facet = f.parent_facet_id.is_none();
let no_linked_tasks = f.linked_tasks.is_empty();
let no_inert_check_preventers = f.inert_check_preventers.load(Ordering::Relaxed) == 0;
tracing::trace!(?facet_id, ?no_kids, ?no_outbound_handles, ?is_root_facet, ?no_linked_tasks, ?no_inert_check_preventers);
no_kids && (no_outbound_handles || is_root_facet) && no_linked_tasks && no_inert_check_preventers
} else {
tracing::trace!(?facet_id, exists = ?false);
false
}
}
fn insert_retract_cleanup_action<M: 'static + Send>(
&mut self,
r: &Arc<Ref<M>>,
handle: Handle,
) {
let r = Arc::clone(r);
self.cleanup_actions.insert(
handle,
CleanupAction::ForAnother(Arc::clone(&r.mailbox), Box::new(
move |t| t.with_entity(&r, |t, e| {
tracing::trace!(?handle, "retracted");
if let Some(f) = t.active_facet() {
f.outbound_handles.remove(&handle);
}
e.retract(t, handle)
}))));
}
fn cleanup(&mut self, ac_ref: &ActorRef, exit_status: &Arc<ActorResult>) {
let mut t = Activation::make(&ac_ref.facet_ref(self.root),
Account::new(crate::name!("cleanup")),
self);
if let Err(err) = t._terminate_facet(t.state.root, exit_status.is_ok()) {
// This can only occur as the result of an internal error in this file's code.
tracing::error!(?err, "unexpected error from terminate_facet");
panic!("Unexpected error result from terminate_facet");
}
// TODO: The linked_tasks are being cancelled above ^ when their Facets drop.
// TODO: We don't want that: we want (? do we?) exit hooks to run before linked_tasks are cancelled.
// TODO: Example: send an error message in an exit_hook that is processed and delivered by a linked_task.
for action in std::mem::take(&mut t.state.exit_hooks) {
if let Err(err) = action(&mut t, &exit_status) {
tracing::error!(?err, "error in exit hook");
}
}
}
}
impl<T: Any + Send> std::fmt::Debug for Field<T> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
write!(f, "#<Field {:?} {}>", self.name, self.field_id)
}
}
impl<T: Any + Send> Eq for Field<T> {}
impl<T: Any + Send> PartialEq for Field<T> {
fn eq(&self, other: &Field<T>) -> bool {
self.field_id == other.field_id
}
}
impl<T: Any + Send> Drop for Field<T> {
fn drop(&mut self) {
let _ = self.tx.send(SystemMessage::ReleaseField(self.field_id));
()
}
}
impl Drop for Actor {
fn drop(&mut self) {
self.rx.close();
let _name = ACTORS.write().remove(&self.ac_ref.actor_id)
.map_or_else(|| crate::name!(parent: None, "DROPPED", actor_id=?self.ac_ref.actor_id),
|(span, _ac_ref)| span);
let _scope = _name.enter();
let mut g = self.ac_ref.state.lock();
if let ActorState::Running(ref mut state) = *g {
tracing::warn!(actor_id = ?self.ac_ref.actor_id, "Force-terminated by Actor::drop");
let exit_status =
Arc::new(Err(error("Force-terminated by Actor::drop", AnyValue::new(false))));
state.cleanup(&self.ac_ref, &exit_status);
*g = ActorState::Terminated { exit_status };
}
tracing::debug!(actor_id = ?self.ac_ref.actor_id, "Actor::drop");
}
}
impl Drop for Facet {
fn drop(&mut self) {
for (_task_id, token) in std::mem::take(&mut self.linked_tasks).into_iter() {
token.cancel();
}
if !self.outbound_handles.is_empty() {
panic!("Internal error: outbound_handles not empty at drop time");
}
tracing::trace!(facet_id = ?self.facet_id, "Facet::drop");
}
}
/// Directly injects `action` into `mailbox`, billing subsequent activity against `account`.
///
/// Primarily for use by [linked tasks][Activation::linked_task].
#[must_use]
pub fn external_event(mailbox: &Arc<Mailbox>, account: &Arc<Account>, action: Action) -> ActorResult {
send_actions(&mailbox.tx, account, vec![action])
}
/// Directly injects `actions` into `mailbox`, billing subsequent activity against `account`.
///
/// Primarily for use by [linked tasks][Activation::linked_task].
#[must_use]
pub fn external_events(mailbox: &Arc<Mailbox>, account: &Arc<Account>, actions: PendingEventQueue) -> ActorResult {
send_actions(&mailbox.tx, account, actions)
}
impl<M> Ref<M> {
/// Supplies the behaviour (`e`) for a `Ref` created via
/// [`create_inert`][Activation::create_inert].
///
/// # Panics
///
/// Panics if this `Ref` has already been given a behaviour.
pub fn become_entity<E: 'static + Entity<M>>(&self, e: E) {
let mut g = self.target.lock();
if g.is_some() {
panic!("Double initialization of Ref");
}
*g = Some(Box::new(e));
}
fn internal_with_entity<R, F: FnOnce(&mut dyn Entity<M>) -> R>(&self, f: F) -> R {
let mut g = self.target.lock();
f(g.as_mut().expect("initialized").as_mut())
}
}
impl<M> Ref<M> {
/// Retrieves a process-unique identifier for the `Ref`; `Ref`s
/// are compared by this identifier.
pub fn oid(&self) -> usize {
std::ptr::addr_of!(*self) as usize
}
}
impl<M> PartialEq for Ref<M> {
fn eq(&self, other: &Self) -> bool {
self.oid() == other.oid()
}
}
impl<M> Eq for Ref<M> {}
impl<M> std::hash::Hash for Ref<M> {
fn hash<H>(&self, hash: &mut H) where H: std::hash::Hasher {
self.oid().hash(hash)
}
}
impl<M> PartialOrd for Ref<M> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<M> Ord for Ref<M> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.oid().cmp(&other.oid())
}
}
impl<M> std::fmt::Debug for Ref<M> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
write!(f, "⌜{}/{}:{:016x}⌝", self.mailbox.actor_id, self.facet_id, self.oid())
}
}
impl Cap {
/// Given a `Ref<M>`, where `M` is interconvertible with
/// `AnyValue`, yields a `Cap` for the referenced entity. The
/// `Cap` automatically decodes presented `AnyValue`s into
/// instances of `M`.
pub fn guard<L: 'static + Sync + Send, M: 'static + Send>(
literals: Arc<L>,
underlying: Arc<Ref<M>>,
) -> Arc<Self>
where
M: for<'a> Unparse<&'a L, AnyValue>,
M: for<'a> Parse<&'a L, AnyValue>,
{
Self::new(&Arc::new(Ref {
mailbox: Arc::clone(&underlying.mailbox),
facet_id: underlying.facet_id,
target: Mutex::new(Some(Box::new(Guard { underlying: underlying, literals }))),
}))
}
/// Directly constructs a `Cap` for `underlying`.
pub fn new(underlying: &Arc<Ref<AnyValue>>) -> Arc<Self> {
Arc::new(Cap {
underlying: Arc::clone(underlying),
attenuation: Vec::new(),
})
}
/// Yields a fresh `Cap` for `self`'s `underlying`, copying the
/// existing attenuation of `self` to the new `Cap` and adding
/// `attenuation` to it.
pub fn attenuate(&self, attenuation: &sturdy::Attenuation) -> Result<Arc<Self>, CaveatError> {
let mut r = Cap { attenuation: self.attenuation.clone(), .. self.clone() };
r.attenuation.extend(attenuation.check()?);
Ok(Arc::new(r))
}
/// Applies the contained attenuation to `a`, yielding `None` if
/// `a` is filtered out, or `Some(_)` if it is accepted (and
/// possibly transformed).
pub fn rewrite(&self, mut a: AnyValue) -> Option<AnyValue> {
for c in &self.attenuation {
match c.rewrite(&a) {
Some(v) => a = v,
None => return None,
}
}
Some(a)
}
/// Translates `m` into an `AnyValue`, passes it through
/// [`rewrite`][Self::rewrite], and then
/// [`assert`s][Activation::assert] it using the activation `t`.
pub fn assert<L, M: Unparse<L, AnyValue>>(&self, t: &mut Activation, literals: L, m: &M) -> Option<Handle>
{
self.rewrite(m.unparse(literals)).map(|m| t.assert(&self.underlying, m))
}
/// `update` is to [`assert`] as [`Activation::update`] is to [`Activation::assert`].
pub fn update<L, M: Unparse<L, AnyValue>>(
&self,
t: &mut Activation,
handle: &mut Option<Handle>,
literals: L,
m: Option<&M>,
) {
t.update(handle, &self.underlying, m.and_then(|m| self.rewrite(m.unparse(literals))))
}
/// Translates `m` into an `AnyValue`, passes it through
/// [`rewrite`][Self::rewrite], and then sends it via method
/// [`message`][Activation::message] on the activation `t`.
pub fn message<L, M: Unparse<L, AnyValue>>(&self, t: &mut Activation, literals: L, m: &M)
{
if let Some(m) = self.rewrite(m.unparse(literals)) {
t.message(&self.underlying, m)
}
}
/// Synchronizes with the reference underlying the cap.
pub fn sync(&self, t: &mut Activation, peer: Arc<Ref<Synced>>) {
t.sync(&self.underlying, peer)
}
}
impl std::fmt::Debug for Cap {
fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
if self.attenuation.is_empty() {
self.underlying.fmt(f)
} else {
write!(f, "⌜{}/{}:{:016x}\\{:?}⌝",
self.underlying.mailbox.actor_id,
self.underlying.facet_id,
self.underlying.oid(),
self.attenuation)
}
}
}
impl Domain for Cap {}
impl std::convert::TryFrom<&IOValue> for Cap {
type Error = preserves_schema::support::ParseError;
fn try_from(_v: &IOValue) -> Result<Self, Self::Error> {
panic!("Attempted to serialize Cap via IOValue");
}
}
impl std::convert::From<&Cap> for IOValue {
fn from(_v: &Cap) -> IOValue {
panic!("Attempted to deserialize Ref via IOValue");
}
}
impl<L: Sync + Send, M> Entity<AnyValue> for Guard<L, M>
where
M: for<'a> Unparse<&'a L, AnyValue>,
M: for<'a> Parse<&'a L, AnyValue>,
{
fn assert(&mut self, t: &mut Activation, a: AnyValue, h: Handle) -> ActorResult {
match M::parse(&*self.literals, &a) {
Ok(a) => t.with_entity(&self.underlying, |t, e| e.assert(t, a, h)),
Err(_) => Ok(()),
}
}
fn retract(&mut self, t: &mut Activation, h: Handle) -> ActorResult {
t.with_entity(&self.underlying, |t, e| e.retract(t, h))
}
fn message(&mut self, t: &mut Activation, m: AnyValue) -> ActorResult {
match M::parse(&*self.literals, &m) {
Ok(m) => t.with_entity(&self.underlying, |t, e| e.message(t, m)),
Err(_) => Ok(()),
}
}
fn sync(&mut self, t: &mut Activation, peer: Arc<Ref<Synced>>) -> ActorResult {
t.with_entity(&self.underlying, |t, e| e.sync(t, peer))
}
fn stop(&mut self, t: &mut Activation) -> ActorResult {
t.with_entity(&self.underlying, |t, e| e.stop(t))
}
fn exit_hook(&mut self, t: &mut Activation, exit_status: &Arc<ActorResult>) -> ActorResult {
self.underlying.internal_with_entity(|e| e.exit_hook(t, exit_status))
}
}
impl<M> Entity<M> for StopOnRetract {
fn retract(&mut self, t: &mut Activation, _h: Handle) -> ActorResult {
Ok(t.stop())
}
}
impl ActivationResult {
pub fn is_success(&self) -> bool {
self == &ActivationResult::Success
}
pub fn as_result(self) -> ActorResult {
self.into()
}
pub fn ignore_termination(self) -> ActorResult {
match self {
ActivationResult::AlreadyTerminated => Ok(()),
ActivationResult::Failure(e) => Err(e),
ActivationResult::Success => Ok(()),
}
}
pub fn is_already_terminated(&self) -> bool {
self == &ActivationResult::AlreadyTerminated
}
}
impl From<ActivationResult> for ActorResult {
fn from(r: ActivationResult) -> ActorResult {
match r {
ActivationResult::AlreadyTerminated =>
Err(error("New actor crashed unexpectedly in spawn_link", AnyValue::new(false))),
ActivationResult::Failure(e) =>
Err(e),
ActivationResult::Success =>
Ok(()),
}
}
}
impl<F: Send + FnMut(&mut Activation) -> ActorResult> Entity<Synced> for F {
fn message(&mut self, t: &mut Activation, _m: Synced) -> ActorResult {
self(t)
}
}
async fn wait_loop(wait_time: time::Duration) {
let deadline = time::Instant::now() + wait_time;
while time::Instant::now() < deadline {
let remaining_count = ACTORS.read().len();
if remaining_count == 0 {
break;
}
tracing::debug!("Waiting for {} remaining actors to stop", remaining_count);
tokio::time::sleep(time::Duration::from_millis(100)).await;
}
}
pub async fn wait_for_all_actors_to_stop(wait_time: time::Duration) {
wait_loop(wait_time).await;
let remaining = ACTORS.read().clone();
if remaining.len() > 0 {
tracing::warn!("Some actors remain after {:?}:", wait_time);
for (name, actor) in remaining.into_values() {
let _entry = name.enter();
tracing::warn!(?actor, "still running, requesting shutdown");
let g = actor.state.lock();
if let ActorState::Running(state) = &*g {
state.shutdown();
}
}
wait_loop(wait_time).await;
let remaining = ACTORS.read().clone();
if remaining.len() > 0 {
tracing::error!("Some actors failed to stop after being explicitly shut down:");
for (name, actor) in remaining.into_values() {
let _entry = name.enter();
tracing::error!(?actor, "failed to stop");
}
} else {
tracing::debug!("All remaining actors have stopped.");
}
} else {
tracing::debug!("All remaining actors have stopped.");
}
}
/// A convenient Syndicate-enhanced variation on
/// [`tracing::info_span`].
///
/// Includes fields `actor_id`, `task_id` and `oid`, so that they show
/// up in those circumstances where they happen to be defined as part
/// of the operation of the [`crate::actor`] module.
#[macro_export]
macro_rules! name {
() => {tracing::info_span!(actor_id = tracing::field::Empty,
task_id = tracing::field::Empty,
oid = tracing::field::Empty)};
($($item:tt)*) => {tracing::info_span!($($item)*,
actor_id = tracing::field::Empty,
task_id = tracing::field::Empty,
oid = tracing::field::Empty)}
}
/// A convenient way of cloning a bunch of state shared among [entities][Entity], actions,
/// linked tasks, etc.
///
/// Directly drawn from the discussion [here](https://github.com/rust-lang/rfcs/issues/2407).
///
#[macro_export]
macro_rules! enclose {
( ( $($name:ident),* ) $closure:expr ) => {
{
$(let $name = $name.clone();)*
$closure
}
}
}