#lang racket/base ;; Patches to sets of interests (provide (struct-out patch) (struct-out observe) observe-parenthesis patch-empty patch-empty? patch-non-empty? patch/added? patch/removed? label-patch patch-relabel limit-patch patch-step patch-step* compute-aggregate-patch apply-patch update-interests unapply-patch compose-patch patch-seq patch-seq* compute-patch biased-intersection view-patch patch-union patch-project patch-project/set patch-project/set/single pretty-print-patch patch->pretty-string extract-patch-pids patch->jsexpr jsexpr->patch) (require racket/set) (require racket/match) (require (only-in racket/string string-trim)) (require "trie.rkt") (require "tset.rkt") (require "pretty.rkt") (module+ test (require rackunit)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Patches (struct patch (added removed) #:transparent #:methods gen:syndicate-pretty-printable [(define (syndicate-pretty-print d [p (current-output-port)]) (pretty-print-patch d p))]) ;; Interests (struct observe (claim) #:prefab) (define patch-empty (patch trie-empty trie-empty)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (define observe-parenthesis (open-parenthesis 1 struct:observe)) (define (patch-empty? p) (and (patch? p) (trie-empty? (patch-added p)) (trie-empty? (patch-removed p)))) (define (patch-non-empty? p) (and (patch? p) (or (trie-non-empty? (patch-added p)) (trie-non-empty? (patch-removed p))))) (define (patch/added? p) (and (patch? p) (trie-non-empty? (patch-added p)))) (define (patch/removed? p) (and (patch? p) (trie-non-empty? (patch-removed p)))) (define (label-interests g label) (trie-relabel g (lambda (v) label))) (define (label-patch p label) (patch (label-interests (patch-added p) label) (label-interests (patch-removed p) label))) (define (patch-relabel p f) (patch (trie-relabel (patch-added p) f) (trie-relabel (patch-removed p) f))) ;; When given a set-labelled p and bound, assumes that the label sets ;; only ever contain one element, thereby acting as if given a ;; #t-labelled p and bound. ;; ;; Doesn't work in general with a mix of set- and #t-labelled ;; arguments. (define (limit-patch p bound) (match-define (patch in out) p) (patch (trie-subtract in bound #:combiner (lambda (v1 v2) trie-empty)) (trie-intersect out bound #:combiner (lambda (v1 v2) (trie-success v1))))) ;; Like limit-patch, but for use when the precise bound for p's label ;; isn't known (such as when a process terminates with remaining ;; queued actions), so we have to examine the whole area of the ;; routing table touched by p. ;; ;; Unlike limit-patch, expects set-labelled patch and bound, with ;; label sets allowed to contain arbitrary elements. (define (limit-patch/routing-table p bound) (match-define (patch in out) p) (patch (trie-subtract in bound) (trie-intersect out bound #:combiner (lambda (v1 v2) (empty-tset-guard (tset-intersect v1 v2)))))) ;; ;; Completely ignores success-values in t. ;; (define (patch-pruned-by p t) ;; (match-define (patch added removed) p) ;; (patch (trie-subtract #:combiner (lambda (v1 v2) trie-empty) added t) ;; (trie-subtract #:combiner (lambda (v1 v2) trie-empty) removed t))) ;; Steps both added and removes sets (define (patch-step p key) (match-define (patch added removed) p) (patch (trie-step added key) (trie-step removed key))) (define (patch-step* p keys) (foldl (lambda (key p) (patch-step p key)) p keys)) ;; Entries labelled with `label` may already exist in `base`; the ;; patch `p` MUST already have been limited to add only where no ;; `label`-labelled portions of `base` exist, and to remove only where ;; `label`-labelled portions of `base` exist. `base` must, then, be a ;; "pre-modification" routing table. Use `limit-patch` to compute a ;; suitable `p`, where the bound is known; otherwise, use ;; `limit-patch/routing-table`. ;; ;; The goal here is to say "here is the effect of `p` on the overall ;; coverage established by the non-`label` participants in the ;; interest-set `base`". While `p` might add quite a bit of coverage ;; to `label`'s interests, it might overlap with coverage previously ;; established by others, in which case those portions would ;; experience /no effect/ from p. Likewise, `p` may remove interests ;; from `label`'s own interests, but where interest remains from other ;; peers, the overall effect will be nil. ;; ;; PRECONDITION: `p` is (set label)-labelled ;; PRECONDITION: `base` is (set ...)-labelled (define (compute-aggregate-patch p label base) (define (add-combiner v1 v2) ;; Keep only points where `p` would add, where no `label` interest ;; is present*, and where no non-`label` interest is present. That ;; is, keep only points where no existing interest is present at ;; all. Since add-combiner is called only for points where v2 is ;; non-empty, meaning that some existing interest is present (and ;; furthermore, we know that a previous patch-limiting operation ;; has established that no `label` interest is present at these ;; points), we can always discard such points by returning a ;; constant trie-empty. trie-empty) (define (rem-combiner v1 v2) ;; Keep only points where `p` would remove, where `label` interest ;; is present, and where no non-`label` interest is present. We ;; know that a previous patch-limiting operation has ensured that ;; `label` interest is present, so we only need to check whether ;; any other interest exists at each point. (if (= (tset-count v2) 1) (trie-success v1) ;; only `label` interest (previously established) exists here. trie-empty)) (patch (trie-subtract (patch-added p) base #:combiner add-combiner) (trie-subtract (patch-removed p) base #:combiner rem-combiner))) ;; For use by Tries leading to (Setof Label). (define (apply-patch base p) (match-define (patch in out) p) (trie-union (trie-subtract base out) in)) ;; Like apply-patch, but for use by Tries leading to True. (define (update-interests base p) (match-define (patch in out) p) (trie-union (trie-subtract base out #:combiner (lambda (v1 v2) trie-empty)) in #:combiner (lambda (v1 v2) (trie-success ')))) (define (unapply-patch base p) (match-define (patch in out) p) (trie-union (trie-subtract base in) out)) (define (compose-patch p2 p1) ;; p2 after p1 ;; Can be defined as (patch (apply-patch in1 p2) (unapply-patch out1 p2)), ;; except for problems arising from use of set-subtract by default in {un,}apply-patch (match-define (patch in1 out1) p1) (match-define (patch in2 out2) p2) (patch (update-interests in1 p2) (trie-union (trie-subtract out1 in2 #:combiner (lambda (v1 v2) trie-empty)) out2 #:combiner (lambda (v1 v2) (trie-success '))))) (define (patch-seq . patches) (patch-seq* patches)) (define (patch-seq* patches) (match patches ['() patch-empty] [(cons p rest) (compose-patch (patch-seq* rest) p)])) (define (compute-patch old-base new-base) (patch (trie-subtract new-base old-base #:combiner (lambda (v1 v2) trie-empty)) (trie-subtract old-base new-base #:combiner (lambda (v1 v2) trie-empty)))) (define (biased-intersection object subject) (trie-intersect object (trie-step subject observe-parenthesis) #:combiner (lambda (v1 v2) (trie-success v1)))) (define (view-patch p interests) (patch (biased-intersection (patch-added p) interests) (biased-intersection (patch-removed p) interests))) (define (patch-union p1 p2) (patch (trie-union (patch-added p1) (patch-added p2)) (trie-union (patch-removed p1) (patch-removed p2)))) (define (patch-project p spec) (match-define (patch in out) p) (patch (trie-project in spec) (trie-project out spec))) (define (patch-project/set p spec #:take take-count) (match-define (patch in out) p) (values (trie-project/set #:take take-count in spec) (trie-project/set #:take take-count out spec))) (define (patch-project/set/single p spec) (match-define (patch in out) p) (values (trie-project/set/single in spec) (trie-project/set/single out spec))) (define (pretty-print-patch p [port (current-output-port)]) (display (patch->pretty-string p) port)) (define (patch->pretty-string p) (match-define (patch in out) p) (format "-~a\n+~a\n" (string-trim #:left? #f (trie->pretty-string out #:indent "-")) (string-trim #:left? #f (trie->pretty-string in #:indent "+")))) (define (extract-patch-pids p) (match-define (patch in out) p) (trie-value-fold tset/set-union (trie-value-fold tset/set-union (set) in) out)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (define (patch->jsexpr p success->jsexpr #:serialize-atom [serialize-atom values]) (match-define (patch in out) p) (list (trie->jsexpr in success->jsexpr #:serialize-atom serialize-atom) (trie->jsexpr out success->jsexpr #:serialize-atom serialize-atom))) (define (jsexpr->patch pj jsexpr->success [lookup-struct-type (lambda (arity t) #f)] #:deserialize-atom [deserialize-atom values]) (match-define (list ij oj) pj) (patch (jsexpr->trie ij jsexpr->success lookup-struct-type #:deserialize-atom deserialize-atom) (jsexpr->trie oj jsexpr->success lookup-struct-type #:deserialize-atom deserialize-atom))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (module+ test (define (set->trie label xs) (for/fold [(acc trie-empty)] [(x (in-set xs))] (trie-union acc (pattern->trie label x)))) ;; Retains only entries in R labelled with any subset of the labels in label-set. (define (project-routing-table R label-set) (trie-intersect R (pattern->trie label-set ?) #:combiner (lambda (v1 v2) (empty-tset-guard (tset-intersect v1 v2))))) (define (strip-interests g) (trie-relabel g (lambda (v) '))) (define (strip-patch p) (patch (strip-interests (patch-added p)) (strip-interests (patch-removed p)))) (define tset datum-tset) (define (sanity-check-examples) (define SP (tset 'P)) (define m0 trie-empty) (define ma (pattern->trie SP 'a)) (define mb (pattern->trie SP 'b)) (define mc (pattern->trie SP 'c)) (define mab (trie-union ma mb)) (define mbc (trie-union mb mc)) (define m* (pattern->trie SP ?)) (printf "\nmab:\n") (void (pretty-print-trie mab)) (printf "\ncompute-patch ma mb:\n") (void (pretty-print-patch (compute-patch ma mb))) (printf "\nlimit-patch m*/m0 mab:\n") (void (pretty-print-patch (limit-patch (patch m* m0) mab))) (printf "\nlimit-patch m0/m* mab:\n") (void (pretty-print-patch (limit-patch (patch m0 m*) mab))) (printf "\napply mb (limit m*/m0 mab):\n") (void (pretty-print-trie (apply-patch mb (limit-patch (patch m* m0) mab)))) (printf "\nlimit mbc/ma ma:\n") (void (pretty-print-patch (limit-patch (patch mbc ma) ma))) (printf "\nlimit mab/mc ma:\n") (void (pretty-print-patch (limit-patch (patch mab mc) ma))) (printf "\nlimit mc/mab ma:\n") (void (pretty-print-patch (limit-patch (patch mc mab) ma))) (printf "\ncompute-aggregate-patch m*/m0 Q mab:\n") (void (pretty-print-patch (compute-aggregate-patch (patch m* m0) 'Q mab))) (printf "\ncompute-aggregate-patch m0/m* Q mab:\n") (void (pretty-print-patch (compute-aggregate-patch (patch m0 m*) 'Q mab))) (printf "\ncompute-aggregate-patch m*/m0 P mab:\n") (void (pretty-print-patch (compute-aggregate-patch (patch m* m0) 'P mab))) (printf "\ncompute-aggregate-patch m0/m* P mab:\n") (void (pretty-print-patch (compute-aggregate-patch (patch m0 m*) 'P mab))) (printf "\ncompute-aggregate-patch m*/m0 Q m*:\n") (void (pretty-print-patch (compute-aggregate-patch (patch m* m0) 'Q m*))) (printf "\ncompute-aggregate-patch m0/m* Q m*:\n") (void (pretty-print-patch (compute-aggregate-patch (patch m0 m*) 'Q m*))) (printf "\ncompute-aggregate-patch m*/m0 P m*:\n") (void (pretty-print-patch (compute-aggregate-patch (patch m* m0) 'P m*))) (printf "\ncompute-aggregate-patch m0/m* P m*:\n") (void (pretty-print-patch (compute-aggregate-patch (patch m0 m*) 'P m*))) (printf "\ncompose mbc/m0 after mc/mab:\n") (void (pretty-print-patch (compose-patch (patch mbc m0) (patch mc mab)))) (printf "\ncompose mc/mab after mbc/m0:\n") (void (pretty-print-patch (compose-patch (patch mc mab) (patch mbc m0)))) (printf "\ncompose mc/m* (not disjoint) after mbc/m0:\n") (void (pretty-print-patch (compose-patch (patch mc m*) (patch mbc m0)))) (printf "\ncompose mbc/m0 after mc/m* (not disjoint):\n") (void (pretty-print-patch (compose-patch (patch mbc m0) (patch mc m*)))) (printf "\nstripped compose mc/m* (not disjoint) after mbc/m0:\n") (void (pretty-print-patch (compose-patch (strip-patch (patch mc m*)) (strip-patch (patch mbc m0))))) ) ;; (sanity-check-examples) (let* ((pre-patch-a-keys (set 1 3 5 7)) (pre-patch-b-keys (set 2 3 6 7)) (pre-patch-keys (set 1 2 3 5 6 7)) (ma (set->trie (tset 'a) pre-patch-a-keys)) (mb (set->trie (tset 'b) pre-patch-b-keys)) (R (trie-union ma mb)) (pa-raw (patch (set->trie (tset 'a) (set 0 1 2 3 )) (set->trie (tset 'a) (set 4 5 6 7)))) (pa1 (limit-patch pa-raw ma)) (pa2 (limit-patch/routing-table pa-raw R)) (post-patch-a-keys (set 0 1 2 3 )) (post-patch-b-keys pre-patch-b-keys) (post-patch-keys (set 0 1 2 3 6 7)) (aggregate-added (set 0 )) (aggregate-removed (set 5 )) (p-aggregate1 (compute-aggregate-patch pa1 'a R)) (p-aggregate2 (compute-aggregate-patch pa2 'a R)) (R1 (apply-patch R pa1)) (R2 (apply-patch R pa2)) (R-relabeled (trie-relabel R (lambda (v) (tset 'x)))) (R1-relabeled (apply-patch R-relabeled (label-patch (strip-patch p-aggregate1) (tset 'x)))) (R2-relabeled (apply-patch R-relabeled (label-patch (strip-patch p-aggregate2) (tset 'x))))) (check-equal? pa1 pa2) (check-equal? (trie-lookup R 0 (tset)) (tset)) (check-equal? (trie-lookup R 1 (tset)) (tset 'a)) (check-equal? (trie-lookup R 2 (tset)) (tset 'b)) (check-equal? (trie-lookup R 3 (tset)) (tset 'a 'b)) (check-equal? (trie-lookup R 4 (tset)) (tset)) (check-equal? (trie-lookup R 5 (tset)) (tset 'a)) (check-equal? (trie-lookup R 6 (tset)) (tset 'b)) (check-equal? (trie-lookup R 7 (tset)) (tset 'a 'b)) (check-equal? (trie-key-set/single (project-routing-table R (tset 'a))) pre-patch-a-keys) (check-equal? (trie-key-set/single (project-routing-table R (tset 'b))) pre-patch-b-keys) (check-equal? (trie-key-set/single R) pre-patch-keys) (check-equal? (trie-key-set/single R-relabeled) pre-patch-keys) (define (post-checks R* R*-relabeled p-aggregate) (check-equal? (trie-key-set/single (project-routing-table R* (tset 'a))) post-patch-a-keys) (check-equal? (trie-key-set/single (project-routing-table R* (tset 'b))) post-patch-b-keys) (check-equal? (trie-key-set/single R*) post-patch-keys) (check-equal? (trie-key-set/single R*-relabeled) post-patch-keys) (check-equal? (trie-key-set/single (patch-added p-aggregate)) aggregate-added) (check-equal? (trie-key-set/single (patch-removed p-aggregate)) aggregate-removed)) (post-checks R1 R1-relabeled p-aggregate1) (post-checks R2 R2-relabeled p-aggregate2) ) (let* ((ma (set->trie (tset 'a) (set 1))) (mb (set->trie (tset 'b) (set 1))) (mmeta (set->trie (tset 'meta) (set 1))) (R0 trie-empty) (R1 mmeta) (R2 mb) (R3 (trie-union mb mmeta)) (R4 ma) (R5 (trie-union ma mmeta)) (R6 (trie-union ma mb)) (R7 (trie-union (trie-union ma mb) mmeta)) (p0 patch-empty) (p+ (patch (set->trie (tset 'a) (set 1)) trie-empty)) (p- (patch trie-empty (set->trie (tset 'a) (set 1))))) (check-equal? (compute-aggregate-patch p0 'a R0) p0) (check-equal? (compute-aggregate-patch p0 'a R1) p0) (check-equal? (compute-aggregate-patch p0 'a R2) p0) (check-equal? (compute-aggregate-patch p0 'a R3) p0) (check-equal? (compute-aggregate-patch p0 'a R4) p0) (check-equal? (compute-aggregate-patch p0 'a R5) p0) (check-equal? (compute-aggregate-patch p0 'a R6) p0) (check-equal? (compute-aggregate-patch p0 'a R7) p0) (check-equal? (compute-aggregate-patch p+ 'a R0) p+) (check-equal? (compute-aggregate-patch p+ 'a R1) p0) (check-equal? (compute-aggregate-patch p+ 'a R2) p0) (check-equal? (compute-aggregate-patch p+ 'a R3) p0) (check-equal? (compute-aggregate-patch p- 'a R4) p-) (check-equal? (compute-aggregate-patch p- 'a R5) p0) (check-equal? (compute-aggregate-patch p- 'a R6) p0) (check-equal? (compute-aggregate-patch p- 'a R7) p0) ) (let ((m1 (set->trie ' (set 1 2))) (m2 (set->trie (tset 'a) (set 1 2))) (p1 (patch (set->trie ' (set 2 3)) trie-empty)) (p2 (patch (set->trie (tset 'a) (set 2 3)) trie-empty))) (check-equal? (limit-patch p1 m1) (patch (set->trie ' (set 3)) trie-empty)) (check-equal? (limit-patch p1 m2) (patch (set->trie ' (set 3)) trie-empty)) (check-equal? (limit-patch p2 m1) (patch (set->trie (tset 'a) (set 3)) trie-empty)) (check-equal? (limit-patch p2 m2) (patch (set->trie (tset 'a) (set 3)) trie-empty)) ) (let ((m1 (set->trie ' (set 1 2))) (m2 (set->trie (tset 'a) (set 1 2))) (p1 (patch trie-empty (set->trie ' (set 2 3)))) (p2 (patch trie-empty (set->trie (tset 'a) (set 2 3))))) (check-equal? (limit-patch p1 m1) (patch trie-empty (set->trie ' (set 2)))) (check-equal? (limit-patch p1 m2) (patch trie-empty (set->trie ' (set 2)))) (check-equal? (limit-patch p2 m1) (patch trie-empty (set->trie (tset 'a) (set 2)))) (check-equal? (limit-patch p2 m2) (patch trie-empty (set->trie (tset 'a) (set 2)))) ) )