PLACES 2016, Eindhoven, Netherlands; 20160408

From Events to Reactions:

A Progress Report

Tony Garnock-Jones

tonyg@ccs.neu.edu
Northeastern University

Joint work with Matthias Felleisen and Sam Caldwell

Networked

<
@ Program
‘<,////////;_<:>\whhcoonﬁnaﬂon

@@
b

+ Internal tasks

Interactivity = External Concurrency

Networked

<
@ Program
‘<,////////;_<:>\whhcoonﬁnaﬂon

@@
b

+ Internal tasks

Interactivity = External Concurrency
Internal Organisation Reflects External Concurrency

Networked

Program

with coordination
+ Internal tasks

@@@Q@
W

Interactivity = External Concurrency
Component startup — interaction - shutdown/failure

Networked

Program

with coordination
+ Internal tasks

@\ >@2

Interactivity = External Concurrency
Component startup — interaction - shutdown/failure

Syndicate DSL by example

» Mapping events to components
» Managing conversational state
» Monitoring changes in shared state

Score; 3

SYNDICATE

event x state -» [action] x state

event x state -» [action] x state

PP

[currentScore,3] — actor #17
[keyDown, space] — actor #42

event x state -» [action] x state

actor actor
#H42 #94

[cu” entScore,3] — actor #17

Actor behaviour function — actor #42
private state
unique internal ID

H

event x state -» [action] x state

actor actor
#H42 #94

L 1 1

[currentScore,3] — actor #17
[keyDown, space] — actor #42

il

Dataspace: assertions + provenance cf. Linda's

“Tuplespaces’

event x state -» [action] x state

[currentScore,3] — actor #17
[keyDown, space] — actor #42

‘|, actor #17, assert that
the current score is 3. H

event x state -» [action] x state

actor actor
#H42 #94

[currentScore,3] — actor #17
[keyDown, space] — actor #42

the space key Is currently

‘|, actor #42, assert that H
held down.'

event x stat- ‘e

Actions carry added
and removed assertions
actor = environment

’&R/
N

[currentScore,3] — actor #17
[keyDown, space] — actor #42

\

Events carry added
and removed assertions
environment = actor

acto\ actor actor
#17 #A2 #94

“ion] x state

[currentScore,3] — actor #17
[keyDown, space] — actor #42

event assert([sprite,player,51,1®®,]),
assert(?[keyDown,x])

D

[currentScore,3] — actor #17
[keyDown, space] — actor #42

event . osert([sprite,player,51»1®@»3)

assert(?[keyDown,x])

2ok
L

[currentScore,3] — aCUDr#17

[keyDown, space] — actor #42
[sprite,player,51,100, ‘: — actor #94
?[keyDown,x] — actor #94

|

event x state -» [action] x state

N N N

‘|, actor #94, am interested in keeping track
of assertions of the form [keyDown, x].

I I

[cul rentScore,3] — actor #17

[ke yDown, space] — actor #42
[sprite,player 51,100, : — actor #94
?[keyDown,x] — actor #94

|

event x state -» [action] x state

assert([keyDown, space])

PTE

[currentScore,3] — actor #17

[keyDown, space] — actor #42
[sprite,player,51,100, .: — actor #94
?[keyDown,x] — actor #94

|

event x state -» [action] x state

PP

[currentScore,3] — actor #17

[keyDown, space] — actor #42
[sprite,player,51,100, : — actor #94
?[keyDown,x] — actor #94

|

event x state -» [action] x state

retract([keyDown, space])

actor actor
#H42 #94

-

[currentScore,3] — actor #17

[keyDown, space] — actor #42
[sprite,player,51,100, : — actor #94
?[keyDown,x] — actor #94

|

event x state -» [action] x state

retract([keyDown, space])

PR

[currentScore,3] — actor #17

tkeybowrm,spacel actor#42

[sprite,player,51,100,] — actor #94
?[keyDown,x] — actor #94

|

event x state -» [action] x state

PP

[currentScore,3] — actor #17

[sprite,player,51,100,] — actor #94
?[keyDown,x] — actor #94

|

event x state -» [action] x state

retract([keyDown, space])

PTE

[currentScore,3] — actor #17

[sprite,player,51,100,] — actor #94
?[keyDown,x] — actor #94

|

event x state -» [action] x state

PP

[currentScore,3] — actor #17

[sprite,player,51,100,] — actor #94
?[keyDown,x] — actor #94

|

event x state -» [action] x state

currentScore,3] — actor #17

[sprite,player,51,100,] — actor #94
?[keyDown,x] — actor #94

H |

event x state -» [action] x state

acto acto
#42 #94

[rrentS core 3] — actor #17

[sprite,player,51,100, @] — actor #94
?[keyDown,x] — actor #94

event x state -» [action] x state

FFFFFFFFFFFFFFFFFFFFF

<H> <H> T L <H> <H> <H>

N —TY

event x state -» [action] x state

event x state -» [action] x state

[currentScore,3] = actor #17

[sprite,player,51,100,@] - actor #94
?[keyDown, %] = actor #94 @ X

event x state -» [action] x state

[currentScore,3] = actor #17

[sprite,player,51,100,@] - actor #94
?[keyDown, %] = actor #94 @ X

event x state -» [action] x state

Y5 A

event x state -» [action] x state

L 1

Messages are transient assertions

< [incrementScoreBy,3] >

~

assert([incrementScoreBy, 3])
followed by

retract([incrementScoreBy,3])

(See "Coordinated Concurrent Programming in Syndicate”
(ESOP 2016) for full detail of the semantics)

Syndicate Implementations

Racket macros & Ohm-based translation
support library to ECMAScript 5

#lang syndicate Browser & node

Syndicate Implementations

Racket macros & Ohm-based translation
support library to ECMAScript 5

#lang syndicate Browser & node

Syndicate DSL by example

» Mapping events to components
» Managing conversational state
» Monitoring changes in shared state

Mapping events to components

collision
detector

‘start’
checker

1?(controller-event 'start #t) ‘start” checker
1?(controller-event 'left x) player
1?(clock-tick) player
controller I(sprite 5 'player) player
driver (game-piece-state 'player 5) player

?(game-piece-state x x) collision detector

R R AR

w Tgame
?(controller-event 'start #t) — game
?(controller-event 'left x) — game
?(clock-tick) — game
q

(sprite 5 'player) game

Mapping events to components

collision
detector

‘start’
checker

1?(controller-event 'start #t) — ‘start” checker
1?(controller -event 'left x) — player

- N 7 . |

U - ‘ar

Cc Interest in START presses at next outer dataspace r
Qiive

\gdllle~plecLe-s>tLdLe pldyer 9) —7 puayer
‘ ?(game-piece-state x %) — collision detector

Tgame

?(controller-event ’'start #t) game
?(controller-event 'left x) game
?(clock-tick) game

A N

(sprite 5 'player) game

Mapping events to components

collision
detector

‘start’
checker

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
| ?(clock-tick) — player

- 7

COY\"‘V{'\I If\V

Interest in LEFT presses/releases at next dataspace
| f\gdliie—plLece—>Ldie x x) — CuLlusion detector

Tgame

?(controller-event 'start #t) — game
?(controller-event 'left x) — game
?(clock-tick) — game

(sprite 5 'player) — game

Mapping events to components

‘start’
checker

|

collision
detector

1?(controller-event 'start #t)
1?7(controller-event 'left %)
1?(clock-tick)

controller I (sprite 5 '»layer)

driver

|

N
5
5
5

|

‘start” checker
player
player
player

Interest in clock ticks at next outer dataspace actor

Tgame

?(controller-event ’'start #t)
?(controller-event 'left %)
?(clock-tick)

(sprite 5 'player)

game
game
game
game

Mapping events to components

controller

driver

‘start’
checker

|

collision
detector

1?(controller-event 'start #t)
1?(controller-event 'left x)
1?(clock-tick)

l(sprite 5 'player)
(game-piece-state player 5)

Sprite published to next outer dataspace

‘start” checker
player

player

player

player

- '"an detector

Ll il

Tgame

?(controller-event ’'start #t)
?(controller-event 'left %)
?(clock-tick)

(sprite 5 'player)

- game
- game
- game
- game

Mapping events to components

controller

driver

‘start’
checker

|

collision
detector

1?(controller-event 'start #t)
1?(controller-event 'left x)
1?(clock-tick)

l(sprite 5 'player)
(game-piece-state ’'player 5)
?(game-pi ce-state x x)

Ll d Ll

‘start” checker
player

player

player

player

collision detector

Game-piece state published locally

-

Tgame

?(controller-event ’'start #t)
?(controller-event 'left %)
?(clock-tick)

(sprite 5 'player)

-

-_
-
-_

game
game
game
game

Mapping events to components

collision
detector

‘start’
checker

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
1?(clock-tick) — player
controller I(sprite 5 'player) - player
driver (game-piece-state 'player 5) — player
?(game-piece-state x %) — collision detector
1| T game

Subscription to game-piece states

?(controller-event 'start #t) — game
?(controller-event 'left x) — game
?(clock-tick) — game

(sprite 5 'player) — game

Mapping events to components

collision
detector

‘start’
checker

|

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
1?(clock-tick) — player
controller I(sprite 5 'player) - player
driver (game-piece-state 'player 5) — player
?(game-piece-state x %) — collision detector

_ Tgame
Interest in START presses at local dataspace

I I

?(controller-event 'start #t) — game
?(controller-event 'left x) — game
?(clock-tick) — game

(sprite 5 'player) — game

Mapping events to components

collision
detector

‘start’
checker

|

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
1?(clock-tick) — player
controller I(sprite 5 'player) - player
driver (game-piece-state 'player 5) — player
?(game-piece-state x %) — collision detector
1] 1] T game

Interest in LEFT presses/releases at local dataspace

?(controller-ev.nt 'start #t) — game
?(controller-event 'left x) — game
?(clock-tick) — game

(sprite 5 'player) — game

Mapping events to components

collision
detector

‘start’
checker

|

Tgame

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
1?(clock-tick) — player
controller I(sprite 5 'player) - player
driver (game-piece-state 'player 5) — player
?(game-piece-state x %) — collision detector

|

Interest in clock ticks at local dataspace
?(Coiicicane, Cvenie S e

?(controller-event '_eft x) — game
?(clock-tick) — game
(sprite 5 'player) — game

Mapping events to components

collision
detector

‘start’
checker

|

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
1?(clock-tick) — player
controller I(sprite 5 'player) - player
driver (game-piece-state 'player 5) — player
?(game-piece-state x %) — collision detector

L™

Assertion of sprite position at local dataspace

CNtviitr vaaer e mer e ey gane
?(ciiock-tick) — game
(sprite 5 'player) — game

Mapping events to components

collision
detector

‘start’
checker

1?(controller-event 'start #t) ‘start” checker
1?(controller-event 'left x) player
1?(clock-tick) player
controller I(sprite 5 'player) player
driver (game-piece-state 'player 5) player

?(game-piece-state x x) collision detector

R R AR

w Tgame
?(controller-event 'start #t) — game
?(controller-event 'left x) — game
?(clock-tick) — game
q

(sprite 5 'player) game

Mapping events to components

collision
detector

|

‘start’
checker

|

|

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
1?(clock-tick) — player
controller I(sprite 5 'player) - player
driver (game-piece-state 'player 5) — player
?(game-piece-state x %) — collision detector

Tgame

W

H Pressing the START key should
terminate the game

(sprite 5 'player) - Qame ‘

k‘ - a AVea ENaTwrIraliaAaanmaiwaTssaryasiaal avaua N\ V

< (controller-event 'start #t) >

collision
detector

1?(c atroller-event 'start #t) ‘start” checker
1" (controller-event 'left x) player
1?(clock-tick) player
controller I(sprite 5 'player) player
driver (game-piece-state 'player 5) player

?(game-piece-state x x) collision detector

R R AR

W Tgame
?(controller-event 'start #t) — game
?(controller-event 'left x) — game
?(clock-tick) — game
q

(sprite 5 'player) game

k‘ - a aAave BNaN\WwraliaanwaBwavw avavuaaliliavaldavwau'a

< (controller-event 'start #t) >

collision
detector

‘start’
checker

1?(controller-event 'start t) ‘start” checker

1?(controller-event 'left «) player
1?(clock-tic«) player

controller I(sprite 5 'playe ") player
driver (game-piece-state 'player .) player

?(game-piece-state x %) collision detector

R R AR

W Tgame
?(controller-event 'start #t) — game
?(controller-event 'left x) — game
?(clock-tick) — game
q

(sprite 5 'player) game

< l(controller-event 'start #t) >

collision
detector

sttt
che _ker

‘1

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
1?(clock-tick) — player
controller I(sprite 5 'player) - player
driver (game-piece-state 'player 5) — player
?(game-piece-state x %) — collision detector
H T game
?(controller-event 'start #t) — game
?(controller-event 'left x) — game
?(clock-tick) — game
(sprite 5 'player) — game

(

quit-dataspace!

collision
detector

‘start’
checker

i

1?(controller-event 'start #t)

‘start” checker

1?(controller-event 'left x) player
1?(clock-tick) player

controller I(sprite 5 'player) player
driver (game-piece-state 'player 5) player

?(game-piece-state x x) collision detector

R R AR

W Tgame
?(controller-event 'start #t) — game
?(controller-event 'left x) — game
?(clock-tick) — game
q

(sprite 5 'player) game

Mapping events to components

collision
detector

‘start’

ker

‘start” checker
player
player
layer

controller
driver

N detector

R R S AR

*‘ T game
?(controller-event 'start #t) — game
?(controller-event 'left x) — game
?(clock-tick) — game
q

(sprite 5 'player) game

Mapping events to components

controller
driver

Mapping events to components

controller
driver

|

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))
(void)
(sub (controller-event 'start #t)
#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

..)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))
(void)
(sub (controller-event 'start #t)
#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))
(void)
(sub (controller-event 'start #t)
#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))
(void)
(sub (controller-event 'start #t)
#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))
(void)
(sub (controller-event 'start #t)
#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))
(void)
(sub (controller-event ’'start #t)
#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))
(void)
(sub (controller-event 'start #t)
#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))
(void)
(sub (controller-event 'start #t)
#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))
(void)
(sub (controller-event 'start #t)
#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))

(void)
(sub (controller-event ’'start #t)
#:meta-level 1)))

Dataspace lifetime not syntactically apparent

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))
(void)
(sub (controller-event 'start #t)
#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))

(void)
(sub (controller-event 'start #t)
#:meta-level 1)))

2x repetition of pattern

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))
(void)
(sub (controller-event 'start #t)
#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)

.2)

(define (spawn-start-button-monitor)
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta
(controller-event ’'start #t)))
(transition state (quit-dataspace))]))

(void)
(sub (controller-event ’'start #t)
#:meta-level 1)))

2x repetition of metalevel, in two styles

(dataspace (spawn-player)
(spawn-collision-detection)

(until (message (controller-event 'start #t)
#:meta-level 1)))

dataspace termination near dataspace startup

(dataspace (spawn-riayer)
(spawn-collision-detection)

(until (message (controller-event 'start #t)
#:meta-level 1)))

(dataspace (spawn-player)
(spawn-collision-detection)

(until (message (controller-event 'start #t)
t:meta-level 1)))

subscription/message pattern written once

(dataspace (spawn-player)
(spawn-collision-detection)

(until (message (controller-event 'start #t)
#:meta-level 1)))

metalevel number written once, in one style

Syndicate DSL by example

v Mapping events to components
- Managing conversational state
» Monitoring changes in shared state

Managing conversational state

‘start” collision
checker detector

L 1

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
controller I (sprite 5 ’'player) player

player
collision detector

é
é
9
W L T game

driver (game-piece-state 'player 5)
?(game-piece-state x x)

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level

Managing conversational state

‘start” collision
checker player detector /| ==
1] 1] 1]

Three jobs:
- watch state of left-arrow
- listen to clock-tick while arrow pressed
- maintain sprite & game-piece-state

L

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level

< (controller-event 'left #t) >

‘star collision
che er detector

|

1?(c ntroller-event ’'start #t) ‘start” checker
1" (controller-event 'left x) player

I

controller I (sprite 5 'player)
driver (game-piece-state 'player 5)
?(game-piece-state x x)

player
player
collision detector

é
é
9
W L T game

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level

controller
driver

‘start” collision
checker detector

| 1

\)

1?(controller-event 'start t)
1?(controller-event 'left)

\)

I (sprite 5 'playe)
(game-piece-state 'player .)
?(game-piece-state x)

‘start” checker
player

player
player
collision detector

[

Tgame

?(controller-event ’'start #t) -
?(controller-event 'left %) -

level
level

- < {(controller-event 'left #t) > I

‘start” collision

ple er

checker detector

]

\)

‘start” checker
player

1?(controller-event 'start #t)
1?(controller-event 'left x)

\)

controller I (sprite 5 'player)
driver (game-piece-state 'player 5)
?(game-piece-state x x)

player
player
collision detector

é
é
9
W L T game

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level

__ Man: assert({?(clock-tick)) _

‘start” collision

player

checker detector

L Iy |

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
controller I (sprite 5 ’'player) player

player
collision detector

é
é
9
W L T game

driver (game-piece-state 'player 5)
?(game-piece-state x x)

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level

__ Man: assert({?(clock-tick)) _

‘start” collision

player

checker detector

.

1?(controller-event ’'start #t) ‘start” checker
1?(controller-event 'left x) player
1?(clock-tick) player
controller I (sprite 5 ’'player) player
driver (game-piece-state 'player 5) player

?(game-piece-state x %) collision detector

Tgame

14 i il

|

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level

assert(?(clock-tick))

-ollision
checker K etector

1?(controller-event 'start #t) » ‘start” checker
1?(controller-event 'left x) - player
1?(clock-tick) - player
controller I (sprite 5 ’'player) player
driver (game-piece-state 'player 5) player
?(game-piece-state x %) collision detector

q
9
W L T game

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level

assert(?(clock-tick))

-ollision
checker K etector

1?(controller-event 'start #t) » ‘start” checker
1?(controller-event 'left x) - player
1?(clock-tick) - player
controller I (sprite 5 ’'player) player
driver (game-piece-state 'player 5) player
?(game-piece-state x %) collision detector

q
9
W L T game

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) — level

Managing conversational state

controller
driver

‘start” collision
checker detector

|

|

1?(controller-event 'start #t)
1?(controller-event 'left x)
1?(clock-tick)

I(sprite 5 'player)
(game-piece-state 'player 5)
?(game-piece-state x x)

‘start” checker
player

player

player

player

collision detector

14 i il

|

Tgame

?(controller-event ’'start #t) - level
level
level

?(controller-event 'left %) -
?(clock-tick) -

< (controller event 'left #f) >

‘star collision
che er detector

|

1?(c ntroller-event ’'start #t) ‘start” checker

1" (controller-event 'left x) player
1?(clock-tick) player

controller I (sprite 5 'player) player
driver (game-piece-state 'player 5) player

?(game-piece-state x %) collision detector

Tgame

14 i il

|

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) — level

< (controller-event left #f) >

checker detector

LY]

‘start” > collision
playe

1?(controller-event ’'start t) ‘start” checker

1?(controller-event 'left) player

1?(clock-tic <) player

controller I (sprite 5 'playe ") player
driver (game-piece-state 'player .) player

?(game-piece-state x) collision detector

Tgame

14 i il

|

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) — level

- < {(controller-event 'left #f) > I

‘start” collision

ple er

checker detector

]

1?(controller-event ’'start #t) ‘start” checker

1?(controller-event 'left x) player
1?(clock-tick) player

controller I (sprite 5 'player) player
driver (game-piece-state 'player 5) player

?(game-piece-state x %) collision detector

Tgame

14 i il

|

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) — level

-!ﬁ' retract(1?(clock-tick)) .

‘start” collision

player

checker detector

L Iy |

1?(controller-event ’'start #t) ‘start” checker
1?(controller-event 'left x) player
1?(clock-tick) player
controller I (sprite 5 ’'player) player
driver (game-piece-state 'player 5) player

?(game-piece-state x %) collision detector

Tgame

14 i il

|

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) — level

Managing conversational state

controller
driver

‘start” collision
checker detector

-

\)

1?(controller-event 'start #t)
1?(controller-event 'left x)
tctock—treky

I(sprite 5 'player)
(game-piece-state 'player 5)
?(game-piece-state x x)

\)

‘start” checker
player

ptayer

player

player

collision detector

[

Tgame

?(controller-event ’'start #t) -
?(controller-event 'left %) -
?(clock-tick) -

level
level
level

retract(7(clock tick))

-ollision
checker K etector

1?(controller-event 'start #t) » ‘start” checker
1?(controller-event 'left x) - player
controller I(sprite 5 'player) - player
driver (game-piece-state 'player 5) — player
?(game-piece-state x x) — collision detector

4

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) = level

Managing conversational state

controller
driver

‘start”
checker

|

collision

detector

|

1?(controller-event ’'start #t)
1?(controller-event 'left x)

I(sprite 5 'player)
(game-piece-state 'player 5)
?(game-piece-state x x)

I

‘start” checker
player

player
player
collision detector

[

Tgame

?(controller-event ’'start #t) -
?(controller-event 'left %) -

ko WA | k L -
T\CLUT LJ.\,H

level
level
tevet

Managing conversational state

‘start” collision
checker detector

L 1

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
controller I (sprite 5 ’'player) player

player
collision detector

é
é
9
W L T game

driver (game-piece-state 'player 5)
?(game-piece-state x x)

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level

(struct player-state (position left-down?))

(define (spawn-player)
(define initial-pos 5)
(define initial-state (player-state initial-pos #f))
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state
[left-down? pressed?])
(]
[(message (at-meta (clock-tick)))
(define new-state
(if (player-state-left-down? state)
(struct-copy player-state state
[position (- (player-state-position state) 1)1)
state))
(define new-pos (player-state-position new-state))
(transition new-state
(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos)))
initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)
(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

).

(struct player-state (position left-down?))

(define (spawn-player)
(define initial-pos 5)
(define initial-state (player-state initial-pos #f))
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state
[left-down? pressed?])
(]
[(message (at-meta (clock-tick)))
(define new-state
(if (player-state-left-down? state)
(struct-copy player-state state
[position (- (player-state-position state) 1)1)
state))
(define new-pos (player-state-position new-state))
(transition new-state
(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos)))
initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)
(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

).

(struct player-state (position left-down?))

(define (spawn-player)
(define initial-pos 5)
(define initial-state (player-state initial-pos #f))
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state
[left-down? pressed?])
(]
[(message (at-meta (clock-tick)))
(define new-state
(if (player-state-left-down? state)
(struct-copy player-state state
[position (- (player-state-position state) 1)1)
state))
(define new-pos (player-state-position new-state))
(transition new-state
(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos)))
initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)
(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

).

(struct player-state (position left-down?))

(define (spawn-player)
(define initial-pos 5)
(define initial-state (player-state initial-pos #f))
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state
[left-down? pressed?])
(]
[(message (at-meta (clock-tick)))
(define new-state
(if (player-state-left-down? state)
(struct-copy player-state state
[position (- (player-state-position state) 1)1)
state))
(define new-pos (player-state-position new-state))
(transition new-state
(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos)))
initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)
(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

).

(struct player-state (position left-down?))

(define (spawn-player)
(define initial-pos 5)
(define initial-state (player-state initial-pos #f))
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state
[left-down? pressed?])
(]
[(message (at-meta (clock-tick)))
(define new-state
(if (player-state-left-down? state)
(struct-copy player-state state
[position (- (player-state-position state) 1)1)
state))
(define new-pos (player-state-position new-state))
(transition new-state
(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos)))
initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)
(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

).

(struct player-state (position left-down?))

(define (spawn-player)
(define initial-pos 5)
(define initial-state (player-state initial-pos #f))
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state
[left-down? pressed?])
(]
[(message (at-meta (clock-tick)))
(define new-state
(if (player-state-left-down? state)
(struct-copy player-state state
[position (- (player-state-position state) 1)1)
state))
(define new-pos (player-state-position new-state))
(transition new-state
(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos)))
initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)
(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

).

(struct player-state (position left-down?))

(define (spawn-player)
(define initial-pos 5)
(define initial-state (player-state initial-pos #f))
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state
[left-down? pressed?])
(]
[(message (at-meta (clock-tick)))
(define new-state
(if (player-state-left-down? state)
(struct-copy player-state state
[position (- (player-state-position state) 1)1)
state))
(define new-pos (player-state-position new-state))
(transition new-state
(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos)))
initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)
(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

).

(struct player-state (position left-down?))

(define (spawn-player)
(define initial-pos 5)
(define initial-state (player-state initial-pos #f))
(spawn (lambda (evt state)
(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state
[left-down? pressed?])
(]
[(message (at-meta (clock-tick)))
(define new-state
(if (player-state-left-down? state)
(struct-copy player-state state
[position (- (player-state-position state) 1)1)
state))
(define new-pos (player-state-position new-state))
(transition new-state
(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos)))
initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)
(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

).

(define (spawn-player)
(define move-left (gensym))
(actor (forever #:collect [(position 5)]
(assert (sprite position 'player) #:meta-level 1)
(assert (game-piece-state 'player position))
(on (message (controller-event 'left #t)
#:meta-level 1)
(until (message (controller-event 'left #f)
#:meta-level 1)
(on (message (clock-tick) #:meta-level 1)
(send! move-left))))
(on (message move-left)

(- position 1)))

(define (spawn-player)
(define move-left (gensym))
(actor (forever #:collect [(position 5)]
(assert (sprite position 'player) #:meta-level 1)
(assert (game-piece-state 'player position))
(on (message (controller-event 'left #t)
#:meta-level 1)
(until (message (controller-event 'left #f)
#:meta-level 1)
(on (message (clock-tick) #:meta-level 1)
(send! move-left))))
(on (message move-left)

(- position 1)))

(define (spawn-player)
(define move-left (gensym))
(actor (forever #:collect [(position 5)]
(assert (sprite position 'player) #:meta-level 1)
(assert (game-piece-state 'player position))
(on (message (controller-event 'left #t)
#:meta-level 1)
(until (message (controller-event 'left #f)
#:meta-level 1)
(on (message (clock-tick) #:meta-level 1)
(send! move-left))))
(on (message move-left)

(- position 1)))

Substate continues to apply until
termination event triggered

(define (spawn-player)
(define move-left (gensym))
(actor (forever #:collect [(r.sition 5)]
(assert (sprite rusition 'player) #:meta-level 1)
(assert (game-plece-state 'player position))
(on (message (controller-event 'left #t)
#:meta-level 1)
(until (message (controller-event 'left #f)
#:meta-level 1)
(on (message (clock-tick) #:meta-level 1)
(send! move-left))))
(on (message move-left)

(- position 1)))

Substate continues to apply until
termination event triggered

(define (spawn-player)
(define move-left (gensym))
(actor (forever #:collect [(r.sition 5)]
(assert (sprite rusition 'player) #:meta-level 1)
(assert (game-plece-state 'player position))
(on (message (controller-event 'left #t)
#:meta-level 1)
(until (message (controller-event 'left #f)
#:meta-level 1)
(on (message (clock-tick) #:meta-level 1)
(send! move-left))))
(on (message move-left)

(- position 1)))

Substate continues to apply until
termination event triggered

(define (spawn-player)
(define move-left (gensym))
(actor (forever #:collect [(r.sition 5)]
(assert (sprite rusition 'player) #:meta-level 1)
(assert (game-plece-state 'player position))
(on (message (controller-event 'left #t)
#:meta-level 1)
(until (message (controller-event 'left #f)
#:meta-level 1)
(on (message (clock-tick) #:meta-level 1)
(send! move-left))))
(on (message move-left)

(- position 1)))

Substate continues to apply until
termination event triggered

(define (spawn-player)
(define move-left (gensym))
(actor (forever #:collect [(r.sition 5)]
(assert (sprite rusition 'player) #:meta-level 1)
(assert (game-plece-state 'player position))
(on (message (controller-event 'left #t)
#:meta-level 1)
(until (message (controller-event 'left #f)
#:meta-level 1)
(on (message (clock-tick) #:meta-level 1)
(send! move-left))))
(on (message move-left)

(- position 1)))

(define (spawn-player)
(define move-left (gensym))
(actor (forever #:collect [(position 5)]
(assert (sprite position 'player) #:meta-level 1)
(assert (game-piece-state 'player position))
(on (message (controller-event 'left #t)
#:meta-level 1)
(until (message (controller-event 'left #f)
#:meta-level 1)
(on (message (clock-tick) #:meta-level 1)
(send! move-left))))
(on (message move-left)

(- position 1)))

(define (spawn-player)
(define move-left (gensym))
(actor (forever #:collect [(position 5)]
(assert (sprite position 'player) #:meta-level 1)
(assert (game-piece-state 'player position))
(on (message (controller-event 'left #t)
#:meta-level 1)
(until (message (controller-event 'left #f)
#:meta-level 1)
(on (message (clock-tick) #:meta-level 1)
(send! move-left))))
(on (message move-left)

(- position 1)))

(define (spawn-player)
(define position 5)
(actor (forever
(assert (sprite position 'player) #:meta-level 1)
(assert (game-piece-state 'player position))
(on (message (controller-event 'left #t)
#:meta-level 1)
(until (message (controller-event 'left #f)
#:meta-level 1)
(on (message (clock-tick) #:meta-level 1)
(set! position (- position 1))))))))

(define (spawn-player)
(define position 5)
(actor (forever
(assert (sprite position 'player) #:meta-level 1)
(assert (game-piece-state 'player position))
(on (message (controller-event 'left #t)
#:meta-level 1)
(until (message (controller-event 'left #f)
#:meta-level 1)
(on (message (clock-tick) #:meta-level 1)
(set! position (- position 1))))))))

Syndicate DSL by example

v Mapping events to components
v/ Managing conversational state
» Monitoring changes in shared state

Monitoring changes in shared state

‘start” collision
checker detector

L 1 1

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
1?(clock-tick) — player
I(sprite 5 'player) — player
(game-piece-state 'player 5) — player
?(game-piece-state x x) — collision detector

| I

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) = level

Monitoring changes in shared state

‘start” collision
checker detector

1] 1| 1|

Must maintain an index over
game-piece-state records
asserted by other actors

(gdile—-plece-state plLayer 2) — puayel
?(game-piece-state x x) — collision detector

[™

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) = level

ed state

collision
detector

|

1?(ce troller-event 'start #t) — ‘start” checker
1? controller-event 'left x) — player
1?(clock-tick) — player
I(sprite 5 'player) — player
(game-piece-state 'player 5) — player
— collision detector

| ?(game-piece-state x x)

| L™

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) = level

\Yilelalite]glale MalaF-Yalal=
< (clock-tick) >

checker detector

A

‘start” > collision
playe

1?(controller-event 'start t) — ‘start” checker
1?(controller-event 'left «) — player
1?(clock-tic<) — player
I(sprite 5 'playe-) — player
(game-piece-state 'player) — player
?(game-piece-state x +) — collision detector

| L™

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) = level

‘start”
ple er

checker

< {(clock-tick) > i

collision

detector

1?(controller-event 'start #t)
1?(controller-event 'left x)
1?(clock-tick)

l(sprite 5 'player)
(game-piece-state 'player 5)
?(game-piece-state x x)

AR

‘start” checker
player

player

player

player

collision detector

Tgame

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) = level

retract((sprite = %)),

assert((sprite 4 'player)),

retract((game-piece-state x %)),
assert((game-piece-state 'player 4))

L

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
1?(clock-tick) — player
I(sprite 5 'player) — player
(game-piece-state 'player 5) — player
?(game-piece-state x x) — collision detector

| L™

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) = level

retract((sprite = %)),

assert((sprite 4 'player)),

retract((game-piece-state x %)),
assert((game-piece-state 'player 4))

L

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
1?(clock-tick) — player
I (sprite 4 'player) — player
(game-piece-state 'player 4) — player
?(game-piece-state x x) — collision detector

| L™

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) = level

retract((sprite 5 'player))
assert((sprite 4 'player))

/
‘start” l collision
checker player

detector

L 1\l

1?(controller-event 'start #t) - ‘start” checker
1?(controller-event 'left x) » player
1?(clock-tick) » player
I(sprite 4 'player) - player
(game-piece-state 'player 4) - player
?(game-piece-state x x) = collision detector

| !

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) = level

retract((game-piece-state 'player 5)),
assert((game-piece-state 'player 4))

‘start”) collision
checker pla, >r detector | =--

|

1?(controller-event 'start #t)

1?(controller-event 'left x)

1?(clock-tick)

l(sprite 4 'player)
(game-piece-state 'player 4) player

?(game-piece-state x x) collision detector

| L™

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) = level

‘start” checker
player
player
player

f

Monitoring changes in shared state

‘start” collision
checker detector

L 1 1

1?(controller-event 'start #t) — ‘start” checker
1?(controller-event 'left x) — player
1?(clock-tick) — player
I(sprite 4 'player) — player
(game-piece-state 'player 4) — player
?(game-piece-state x x) — collision detector

| I

?(controller-event ’'start #t) - level
?(controller-event 'left %) — level
?(clock-tick) = level

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
(spawn (lambda (evt state)
(match-event evt
[(? patch? p)
(define p@ (collision-detection-state-pieces state))
(define p1 (for-trie/fold
[(pieces p@)]
[((game-piece-state $id _) (patch-removed p))]
(hash-remove pieces id)))
(define p2 (for-trie/fold [(pieces p1)]
[(($ piece (game-piece-state _ _)) (patch-added p))]
(hash-set pieces (game-piece-state-id piece) piece)))
(transition (struct-copy collision-detection-state state
[pieces p2])
1)
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
(spawn (lambda (evt state)
(match-event evt
[(? patch? p)
(define p@ (collision-detection-state-pieces state))
(define p1 (for-trie/fold
[(pieces p@)]
[((game-piece-state $id _) (patch-removed p))]
(hash-remove pieces id)))
(define p2 (for-trie/fold [(pieces p1)]
[(($ piece (game-piece-state _ _)) (patch-added p))]
(hash-set pieces (game-piece-state-id piece) piece)))
(transition (struct-copy collision-detection-state state
[pieces p2])
1)
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
(spawn (lambda (evt state)
(match-event evt
[(? patch? p)
(define p@ (collision-detection-state-pieces state))
(define p1 (for-trie/fold
[(pieces p@)]
[((game-piece-state $id _) (patch-removed p))]
(hash-remove pieces id)))
(define p2 (for-trie/fold [(pieces p1)]
[(($ piece (game-piece-state _ _)) (patch-added p))]
(hash-set pieces (game-piece-state-id piece) piece)))
(transition (struct-copy collision-detection-state state
[pieces p2])
1)
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
(spawn (lambda (evt state)
(match-event evt
[(? patch? p)
(define p@ (collisicn-detection-state-pieces state))
(Adafine N1 (far-trie/faln

Patch events describe whole sets

of added and removed assertions,
but programmers think about 5
single assertions.

(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
(spawn (lambda (evt state)
(match-event evt
[(? patch? p)
(define p@ (collision-detection-state-pieces state))
(define p1 (for-trie/fold
[(pieces p@)]
[((game-piece-state $id _) (patch-removed p))]
(hash-remove pieces id)))
(define p2 (for-trie/fold [(pieces p1)]
[(($ piece (game-piece-state _ _)) (patch-added p))]
(hash-set pieces (game-piece-state-id piece) piece)))
(transition (struct-copy collision-detection-state state
[pieces p2])
1)
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
(spawn (lambda (evt state)
(match-event evt
[(? patch? p)
(define p@ (collision-detection-state-pieces state))
(define p1 (for-trie/fold
[(pieces p@)]
[((game-piece-state $id _) (patch-removed p))]
(hash-remove pieces id)))
(define p2 (for-trie/fold [(pieces p1)]
[(($ piece (game-piece-state _ _)) (patch-added p))]
(hash-set pieces (game-piece-state-id piece) piece)))
(transition (struct-copy collision-detection-state state
[pieces p2])
1)
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
(spawn (lambda (evt state)
(match-event evt
[(? patch? p)
(define p@ (collision-detection-state-pieces state))
(define p1 (for-trie/fold
[(pieces p@)]
[((game-piece-state $id _) (patch-removed p))]
(hash-remove pieces id)))
(define p2 (for-trie/fold [(pieces p1)]
[(($ piece (game-piece-state _ _)) (patch-added p))]
(hash-set pieces (game-piece-state-id piece) piece)))
(transition (struct-copy collision-detection-state state
[pieces p2])
1)
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
(spawn (lambda (evt state)
(match-event evt
[(? patch? p)
(define p@ (collision-detection-state-pieces state))
(define p1 (for-trie/fold
[(pieces p@)]
[((game-piece-state $id _) (patch-removed p))]
(hash-remove pieces id)))
(define p2 (for-trie/fold [(pieces p1)]
[(($ piece (game-piece-state _ _)) (patch-added p))]
(hash-set pieces (game-piece-state-id piece) piece)))
(transition (struct-copy collision-detection-state state
[pieces p2])
1)
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
(spawn (lambda (evt state)
(match-event evt
[(? patch? p)
(define p@ (collision-detection-state-pieces state))
(define p1 (for-trie/fold
[(pieces p@)]
[((game-piece-state $id _) (patch-removed p))]
(hash-remove pieces id)))
(define p2 (for-trie/fold [(pieces p1)]
[(($ piece (game-piece-state _ _)) (patch-added p))]
(hash-set pieces (game-piece-state-id piece) piece)))
(transition (struct-copy collision-detection-state state
[pieces p2])
1)
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

3x repetition of pattern

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
(spawn (lambda (evt state)
(match-event evt
[(? patch? p)
(define p@ (collision-detection-state-pieces state))
(define p1 (for-trie/fold
[(pieces p@)]
[((game-piece-state $id _) (patch-removed p))]
(hash-remove pieces id)))
(define p2 (for-trie/fold [(pieces p1)]
[(($ piece (game-piece-state _ _)) (patch-added p))]
(hash-set pieces (game-piece-state-id piece) piece)))
(transition (struct-copy collision-detection-state state
[pieces p2])
1)
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(define (spawn-collision-detection)
(actor
(forever #:collect [(pieces (hash))]
(on (retracted (game-piece-state $id _))
(hash-remove pieces id))
(on (asserted ($ piece (game-piece-state _ _)))
(hash-set pieces (game-piece-state-id piece) piece)))))

(define (spawn-collision-detection)
(actor
(forever #:collect [(pieces (hash))]
(on (retracted (game-piece-state $id _))
(hash-remove pieces id))
(on (asserted ($ piece (game-piece-state _ _)))
(hash-set pieces (game-piece-state-id piece) piece)))))

(define (spawn-collision-detection)
(actor
(forever #:collect [(pieces (hash))]
(on (retracted (game-piece-state $id _))
(hash-remove pieces id))
(on (asserted ($ piece (game-piece-state _ _)))
(hash-set pieces (game-piece-state-id piece) piece)))))

(define (spawn-collision-detection)
(actor
(forever #:collect [(pieces (hash))]
(on (retracted (game-piece-state $id _))
(hash-remove pieces id))
(on (asserted ($ piece (game-piece-state _ _)))
(hash-set pieces (game-piece-state-id piece) piece)))))

(define (spawn-collision-detection)
(actor
(forever #:collect [(pieces (hash))]
(on (retracted (game-piece-state $id _))
(hash-remove pieces id))
(on (asserted ($ piece (game-piece-state _ _)))
(hash-set pieces (game-piece-state-id piece) piece)))))

(actor
(forever
(query [pieces (hash id piece) ; “group-by”
($ piece (game-piece-state $id _))1)
(on (changed pieces)

o))

Syndicate DSL by example

v M
v M
v M

Q

oping events to components
naging conversational state
nitoring changes in shared state

Q

O

Status

) port platformer to ... x | 4

€) ® U @ GitHub, Inc. (US) | https://github.com/howell/prospect_experiments/commit/365460c66fc39d2828 ¢ ||C®Search B 3 T =
Fi[++]>v EJTOREAD~v [JFictionv [JSPRK~v PdDraft Bl Weather 02143 [JManualsv []Busesv @[ResearchThreads] jo¢here | @ foo @ KINDLE++ »
hen a (y-collision) is detected reset velocity to @ v+ when a (y-collision) is detected reset velocity to 0 B
(define (spawn-vertical-motion gravity jump-v max-v) (define (spawn-vertical-motion gravity jump-v max-v)
1 - (struct v-motion-state (jumping? motion clock) #:transparent) + (forever #:collect ([mot (motion 0 gravity)]
18 - (spawn + [clock 0])
1 - (lambda (e s) + (on (message (jump))
191 - (match-define (v-motion-state jumping? motion-old clock) s) + (values (motion jump-v (motion-a mot))
1 - (match e + (add1l clock)))
1 - [(message (jump)) + (on (message (timer-tick))
194 - (transition (v-motion-state #t + (send! (move-y 'player (motion-v mot) clock))
1 - (motion jump-v (motion-a motion-old)) + (values (motion (min max-v
il - (add1l clock)) + (+ (motion-v mot) (motion-a mot)))
197 = #f)] + (motion-a mot))
il - [(message (timer-tick)) + clock))
1 - (define motion-n + (on (message (y-collision 'player clock))
- (motion (min max-v (+ (motion-v motion-old) (motion-a motion-old))) + (values (motion @ (motion-a mot))
201 - (motion-a motion-old))) + clock))))

- (transition (v-motion-state jumping? motion-n clock)
2 - (message (move-y 'player (motion-v motion-old) clock)))]
4 - [(message (y-collision 'player col-clock))
- (and (equal? col-clock clock)
- (transition (v-motion-state #f
- (motion @ (motion-a motion-old))
- - clock) #f))]
- [_ #f]))
- (v-motion-state #f (motion 0 gravity) o)
- (list (sub (jump))
- (sub (timer-tick))
- (sub (y-collision 'player ?)))))

create a clock that sends (timer-tick) every period-ms ;, create a clock that sends (timer-tick) every period-m
(define (spawn-clock period-ms) (define (spawn-clock period-ms)
=

Strong space savings in most places

syn-di-cate

a language for interactive programs

Progress Report on DSL Design

Repeated

Future work: -

idioms — Language features

mproved state sharing with substates
Queries” (e.g. "group-by")

- Non-naive compilation strategy
- Better technique for naming metalevels
- More evaluations & case studies

http:

//syndicate-lang.org/

