
PLACES 2016, Eindhoven, Netherlands; 20160408

From Events to Reactions:
A Progress Report

Tony Garnock-Jones
tonyg@ccs.neu.edu

Northeastern University

Joint work with Matthias Felleisen and Sam Caldwell

A

C
B

D

 Networked
 Program

A

B

C

D with coordination
+ internal tasks

Interactivity ⇒ External Concurrency

A

C
B

D

 Networked
 Program

A

B

C

D with coordination
+ internal tasks

Interactivity ⇒ External Concurrency
Internal Organisation Reflects External Concurrency

A

C

E

B

D

 Networked
 Program

A

B

C

D

E

with coordination
+ internal tasks

Interactivity ⇒ External Concurrency
Component startup → interaction → shutdown/failure

A

C

E
D

 Networked
 Program

A

C

D

E

with coordination
+ internal tasks

Interactivity ⇒ External Concurrency
Component startup → interaction → shutdown/failure

Syndicate DSL by example

• Mapping events to components
• Managing conversational state
• Monitoring changes in shared state

SYNDICATE

event × state → [action] × state

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42Actor behaviour function

private state
unique internal ID

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

cf. Linda's
“Tuplespaces”Dataspace: assertions + provenance

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

“I, actor #17, assert that
 the current score is 3.”

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

“I, actor #42, assert that
 the space key is currently
 held down.”

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

Actions carry added
and removed assertions

actor → environment

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

Events carry added
and removed assertions

environment → actor

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

assert([sprite,player,51,100,]),

assert(?[keyDown,★])

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

assert([sprite,player,51,100,]),

assert(?[keyDown,★])

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

“I, actor #94, am interested in keeping track
 of assertions of the form [keyDown,★].”

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

assert([keyDown,space])

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

retract([keyDown,space])

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

retract([keyDown,space])

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

retract([keyDown,space])

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94 ← x

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94 ← x

← ⇃x

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94 ← x

← ⇃x
← ⇃⇃x

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94 ← x

← ⇃x
← ⇃⇃x
← ⇃⇃⇃x

Messages are transient assertions

< [incrementScoreBy,3] >

~

assert([incrementScoreBy,3])

followed by
retract([incrementScoreBy,3])

(See “Coordinated Concurrent Programming in Syndicate”
(ESOP 2016) for full detail of the semantics)

Syndicate Implementations

Racket macros &
support library

#lang syndicate

Ohm-based translation
to ECMAScript 5

Browser & node

Syndicate Implementations

Racket macros &
support library

#lang syndicate

Ohm-based translation
to ECMAScript 5

Browser & node

Syndicate DSL by example

• Mapping events to components
• Managing conversational state
• Monitoring changes in shared state

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Interest in START presses at next outer dataspace

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Interest in LEFT presses/releases at next dataspace

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Interest in clock ticks at next outer dataspace

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Sprite published to next outer dataspace

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Game-piece state published locally

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Subscription to game-piece states

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Interest in START presses at local dataspace

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Interest in LEFT presses/releases at local dataspace

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Interest in clock ticks at local dataspace

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Assertion of sprite position at local dataspace

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Pressing the START key should
terminate the game

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

< (controller-event 'start #t) >

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

< (controller-event 'start #t) >

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

< ⇃(controller-event 'start #t) >

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

quit-dataspace!

Mapping events to components

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → game
?(controller-event 'left ★) → game

?(clock-tick) → game
(sprite 5 'player) → game

Mapping events to components

controller
driver

?(controller-event 'start #t) game
?(controller-event 'left ★) game

?(clock-tick) game
(sprite 5 'player) game

Mapping events to components

controller
driver

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)
...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

 (void)
 (sub (controller-event 'start #t)

#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)
...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

 (void)
 (sub (controller-event 'start #t)

#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)
...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

 (void)
 (sub (controller-event 'start #t)

#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)
...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

 (void)
 (sub (controller-event 'start #t)

#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)
...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

 (void)
 (sub (controller-event 'start #t)

#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)
...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

 (void)
 (sub (controller-event 'start #t)

#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)
...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

(void)
(sub (controller-event 'start #t)

#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)
...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

(void)
(sub (controller-event 'start #t)

#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)
...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

(void)
(sub (controller-event 'start #t)

#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
 (spawn-player)
 (spawn-collision-detection)
 ...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

(void)
(sub (controller-event 'start #t)

#:meta-level 1)))

Dataspace lifetime not syntactically apparent

(spawn-dataspace (spawn-start-button-monitor)
 (spawn-player)
 (spawn-collision-detection)
 ...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

(void)
(sub (controller-event 'start #t)

#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
 (spawn-player)
 (spawn-collision-detection)
 ...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

(void)
(sub (controller-event 'start #t)

#:meta-level 1)))

2× repetition of pattern

(spawn-dataspace (spawn-start-button-monitor)
 (spawn-player)
 (spawn-collision-detection)
 ...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

(void)
(sub (controller-event 'start #t)

#:meta-level 1)))

(spawn-dataspace (spawn-start-button-monitor)
(spawn-player)
(spawn-collision-detection)
...)

(define (spawn-start-button-monitor)
 (spawn (lambda (evt state)

 (match-event evt
 [(message (at-meta

(controller-event 'start #t)))
(transition state (quit-dataspace))]))

(void)
(sub (controller-event 'start #t)

#:meta-level 1)))

2× repetition of metalevel, in two styles

(dataspace (spawn-player)
(spawn-collision-detection)
...
(until (message (controller-event 'start #t)

#:meta-level 1)))

(dataspace (spawn-player)
(spawn-collision-detection)
...
(until (message (controller-event 'start #t)

#:meta-level 1)))

dataspace termination near dataspace startup

(dataspace (spawn-player)
(spawn-collision-detection)
...
(until (message (controller-event 'start #t)

#:meta-level 1)))

subscription/message pattern written once

(dataspace (spawn-player)
(spawn-collision-detection)
...
(until (message (controller-event 'start #t)

#:meta-level 1)))

metalevel number written once, in one style

Syndicate DSL by example

✓ Mapping events to components
• Managing conversational state
• Monitoring changes in shared state

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃(sprite 5 'player) → player
(game-piece-state 'player 5) → player

?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃(sprite 5 'player) → player
(game-piece-state 'player 5) → player

?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

Three jobs:
 − watch state of left-arrow
 − listen to clock-tick while arrow pressed
 − maintain sprite & game-piece-state

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃(sprite 5 'player) → player
(game-piece-state 'player 5) → player

?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

< (controller-event 'left #t) >

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃(sprite 5 'player) → player
(game-piece-state 'player 5) → player

?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

< (controller-event 'left #t) >

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃(sprite 5 'player) → player
(game-piece-state 'player 5) → player

?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

< ⇃(controller-event 'left #t) >

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃(sprite 5 'player) → player
(game-piece-state 'player 5) → player

?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

assert(⇃?(clock-tick))

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

assert(⇃?(clock-tick))

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

assert(?(clock-tick))

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

assert(?(clock-tick))

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

< (controller-event 'left #f) >

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

< (controller-event 'left #f) >

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

< ⇃(controller-event 'left #f) >

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

retract(⇃?(clock-tick))

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃(sprite 5 'player) → player
(game-piece-state 'player 5) → player

?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

retract(?(clock-tick))

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃(sprite 5 'player) → player
(game-piece-state 'player 5) → player

?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) level

Managing conversational state

controller
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃(sprite 5 'player) → player
(game-piece-state 'player 5) → player

?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

(struct player-state (position left-down?))

(define (spawn-player)
 (define initial-pos 5)
 (define initial-state (player-state initial-pos #f))
 (spawn (lambda (evt state)

(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state

[left-down? pressed?])
'())]

[(message (at-meta (clock-tick)))
(define new-state
 (if (player-state-left-down? state)

(struct-copy player-state state
[position (- (player-state-position state) 1)])

state))
(define new-pos (player-state-position new-state))
(transition new-state

(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos))))]

initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)

(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

(struct player-state (position left-down?))

(define (spawn-player)
 (define initial-pos 5)
 (define initial-state (player-state initial-pos #f))
 (spawn (lambda (evt state)

(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state

[left-down? pressed?])
'())]

[(message (at-meta (clock-tick)))
(define new-state
 (if (player-state-left-down? state)

(struct-copy player-state state
[position (- (player-state-position state) 1)])

state))
(define new-pos (player-state-position new-state))
(transition new-state

(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos))))]

initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)

(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

(struct player-state (position left-down?))

(define (spawn-player)
 (define initial-pos 5)
 (define initial-state (player-state initial-pos #f))
 (spawn (lambda (evt state)

(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state

[left-down? pressed?])
'())]

[(message (at-meta (clock-tick)))
(define new-state
 (if (player-state-left-down? state)

(struct-copy player-state state
[position (- (player-state-position state) 1)])

state))
(define new-pos (player-state-position new-state))
(transition new-state

(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos))))]

initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)

(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

(struct player-state (position left-down?))

(define (spawn-player)
 (define initial-pos 5)
 (define initial-state (player-state initial-pos #f))
 (spawn (lambda (evt state)

(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state

[left-down? pressed?])
'())]

[(message (at-meta (clock-tick)))
(define new-state
 (if (player-state-left-down? state)

(struct-copy player-state state
[position (- (player-state-position state) 1)])

state))
(define new-pos (player-state-position new-state))
(transition new-state

(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos))))]

initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)

(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

(struct player-state (position left-down?))

(define (spawn-player)
 (define initial-pos 5)
 (define initial-state (player-state initial-pos #f))
 (spawn (lambda (evt state)

(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state

[left-down? pressed?])
'())]

[(message (at-meta (clock-tick)))
(define new-state
 (if (player-state-left-down? state)

(struct-copy player-state state
[position (- (player-state-position state) 1)])

state))
(define new-pos (player-state-position new-state))
(transition new-state

(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos))))]

initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)

(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

(struct player-state (position left-down?))

(define (spawn-player)
 (define initial-pos 5)
 (define initial-state (player-state initial-pos #f))
 (spawn (lambda (evt state)

(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state

[left-down? pressed?])
'())]

[(message (at-meta (clock-tick)))
(define new-state
 (if (player-state-left-down? state)

(struct-copy player-state state
[position (- (player-state-position state) 1)])

state))
(define new-pos (player-state-position new-state))
(transition new-state

(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos))))]

initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)

(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

(struct player-state (position left-down?))

(define (spawn-player)
 (define initial-pos 5)
 (define initial-state (player-state initial-pos #f))
 (spawn (lambda (evt state)

(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state

[left-down? pressed?])
'())]

[(message (at-meta (clock-tick)))
(define new-state
 (if (player-state-left-down? state)

(struct-copy player-state state
[position (- (player-state-position state) 1)])

state))
(define new-pos (player-state-position new-state))
(transition new-state

(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos))))]

initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)

(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

(struct player-state (position left-down?))

(define (spawn-player)
 (define initial-pos 5)
 (define initial-state (player-state initial-pos #f))
 (spawn (lambda (evt state)

(match-event evt
[(message (at-meta (controller-event 'left pressed?)))
(transition (struct-copy player-state state

[left-down? pressed?])
'())]

[(message (at-meta (clock-tick)))
(define new-state
 (if (player-state-left-down? state)

(struct-copy player-state state
[position (- (player-state-position state) 1)])

state))
(define new-pos (player-state-position new-state))
(transition new-state

(patch-seq (retract (sprite ? ?) #:meta-level 1)
(assert (sprite new-pos 'player) #:meta-level 1)
(retract (game-piece-state ? ?))
(assert (game-piece-state 'player new-pos))))]

initial-state
(patch-seq (sub (controller-event 'left ?) #:meta-level 1)

(sub (clock-tick) #:meta-level 1)
(assert (sprite initial-pos 'player) #:meta-level 1)
(assert (game-piece-state 'player initial-pos)))))

(define (spawn-player)
 (define move-left (gensym))
 (actor (forever #:collect [(position 5)]

 (assert (sprite position 'player) #:meta-level 1)
 (assert (game-piece-state 'player position))
 (on (message (controller-event 'left #t)

#:meta-level 1)
(until (message (controller-event 'left #f)

#:meta-level 1)
 (on (message (clock-tick) #:meta-level 1)

(send! move-left))))
 (on (message move-left)

(- position 1)))))

(define (spawn-player)
 (define move-left (gensym))
 (actor (forever #:collect [(position 5)]

 (assert (sprite position 'player) #:meta-level 1)
 (assert (game-piece-state 'player position))
 (on (message (controller-event 'left #t)

#:meta-level 1)
(until (message (controller-event 'left #f)

#:meta-level 1)
 (on (message (clock-tick) #:meta-level 1)

(send! move-left))))
 (on (message move-left)

(- position 1)))))

(define (spawn-player)
 (define move-left (gensym))
 (actor (forever #:collect [(position 5)]

 (assert (sprite position 'player) #:meta-level 1)
 (assert (game-piece-state 'player position))
 (on (message (controller-event 'left #t)

#:meta-level 1)
(until (message (controller-event 'left #f)

#:meta-level 1)
 (on (message (clock-tick) #:meta-level 1)

(send! move-left))))
 (on (message move-left)

(- position 1)))))

(define (spawn-player)
 (define move-left (gensym))
 (actor (forever #:collect [(position 5)]

 (assert (sprite position 'player) #:meta-level 1)
 (assert (game-piece-state 'player position))
 (on (message (controller-event 'left #t)

#:meta-level 1)
(until (message (controller-event 'left #f)

#:meta-level 1)
 (on (message (clock-tick) #:meta-level 1)

(send! move-left))))
 (on (message move-left)

(- position 1)))))

Substate continues to apply until
termination event triggered

(define (spawn-player)
 (define move-left (gensym))
 (actor (forever #:collect [(position 5)]

 (assert (sprite position 'player) #:meta-level 1)
 (assert (game-piece-state 'player position))
 (on (message (controller-event 'left #t)

#:meta-level 1)
(until (message (controller-event 'left #f)

#:meta-level 1)
 (on (message (clock-tick) #:meta-level 1)

(send! move-left))))
 (on (message move-left)

(- position 1)))))

Substate continues to apply until
termination event triggered

(define (spawn-player)
 (define move-left (gensym))
 (actor (forever #:collect [(position 5)]

 (assert (sprite position 'player) #:meta-level 1)
 (assert (game-piece-state 'player position))
 (on (message (controller-event 'left #t)

#:meta-level 1)
(until (message (controller-event 'left #f)

#:meta-level 1)
 (on (message (clock-tick) #:meta-level 1)

(send! move-left))))
 (on (message move-left)

(- position 1)))))

Substate continues to apply until
termination event triggered

(define (spawn-player)
 (define move-left (gensym))
 (actor (forever #:collect [(position 5)]

 (assert (sprite position 'player) #:meta-level 1)
 (assert (game-piece-state 'player position))
 (on (message (controller-event 'left #t)

#:meta-level 1)
(until (message (controller-event 'left #f)

#:meta-level 1)
 (on (message (clock-tick) #:meta-level 1)

(send! move-left))))
 (on (message move-left)

(- position 1)))))

Substate continues to apply until
termination event triggered

(define (spawn-player)
 (define move-left (gensym))
 (actor (forever #:collect [(position 5)]

 (assert (sprite position 'player) #:meta-level 1)
 (assert (game-piece-state 'player position))
 (on (message (controller-event 'left #t)

#:meta-level 1)
(until (message (controller-event 'left #f)

#:meta-level 1)
 (on (message (clock-tick) #:meta-level 1)

(send! move-left))))
 (on (message move-left)

(- position 1)))))

(define (spawn-player)
 (define move-left (gensym))
 (actor (forever #:collect [(position 5)]

 (assert (sprite position 'player) #:meta-level 1)
 (assert (game-piece-state 'player position))
 (on (message (controller-event 'left #t)

#:meta-level 1)
(until (message (controller-event 'left #f)

#:meta-level 1)
 (on (message (clock-tick) #:meta-level 1)

(send! move-left))))
 (on (message move-left)

(- position 1)))))

(define (spawn-player)
 (define position 5)
 (actor (forever

 (assert (sprite position 'player) #:meta-level 1)
 (assert (game-piece-state 'player position))
 (on (message (controller-event 'left #t)

#:meta-level 1)
(until (message (controller-event 'left #f)

#:meta-level 1)
 (on (message (clock-tick) #:meta-level 1)

(set! position (- position 1))))))))

(define (spawn-player)
 (define position 5)
 (actor (forever

 (assert (sprite position 'player) #:meta-level 1)
 (assert (game-piece-state 'player position))
 (on (message (controller-event 'left #t)

#:meta-level 1)
(until (message (controller-event 'left #f)

#:meta-level 1)
 (on (message (clock-tick) #:meta-level 1)

(set! position (- position 1))))))))

Syndicate DSL by example

✓ Mapping events to components
✓ Managing conversational state
• Monitoring changes in shared state

Monitoring changes in shared state

clock
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

Monitoring changes in shared state

clock
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

Must maintain an index over
game-piece-state records
asserted by other actors

Monitoring changes in shared state

clock
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

< (clock-tick) >

Monitoring changes in shared state

clock
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

< (clock-tick) >

Monitoring changes in shared state

clock
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

< ⇃(clock-tick) >

Monitoring changes in shared state

clock
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 5 'player) → player

(game-piece-state 'player 5) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

retract((sprite ★ ★)),
assert((sprite 4 'player)),
retract((game-piece-state ★ ★)),
assert((game-piece-state 'player 4))

Monitoring changes in shared state

clock
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 4 'player) → player

(game-piece-state 'player 4) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

retract((sprite ★ ★)),
assert((sprite 4 'player)),
retract((game-piece-state ★ ★)),
assert((game-piece-state 'player 4))

Monitoring changes in shared state

clock
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 4 'player) → player

(game-piece-state 'player 4) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

retract((sprite 5 'player))
assert((sprite 4 'player))

Monitoring changes in shared state

clock
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 4 'player) → player

(game-piece-state 'player 4) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

retract((game-piece-state 'player 5)),
assert((game-piece-state 'player 4))

Monitoring changes in shared state

clock
driver

“start”
checker player

collision
detector ...

⇃?(controller-event 'start #t) → “start” checker
⇃?(controller-event 'left ★) → player

⇃?(clock-tick) → player
⇃(sprite 4 'player) → player

(game-piece-state 'player 4) → player
?(game-piece-state ★ ★) → collision detector

↑game

?(controller-event 'start #t) → level
?(controller-event 'left ★) → level

?(clock-tick) → level

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
 (spawn (lambda (evt state)

 (match-event evt
 [(? patch? p)

(define p0 (collision-detection-state-pieces state))
(define p1 (for-trie/fold

 [(pieces p0)]
 [((game-piece-state $id _) (patch-removed p))]
 (hash-remove pieces id)))

(define p2 (for-trie/fold [(pieces p1)]
 [(($ piece (game-piece-state _ _)) (patch-added p))]
 (hash-set pieces (game-piece-state-id piece) piece)))

(transition (struct-copy collision-detection-state state
[pieces p2])

'())]))
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
 (spawn (lambda (evt state)

 (match-event evt
 [(? patch? p)

(define p0 (collision-detection-state-pieces state))
(define p1 (for-trie/fold

 [(pieces p0)]
 [((game-piece-state $id _) (patch-removed p))]
 (hash-remove pieces id)))

(define p2 (for-trie/fold [(pieces p1)]
 [(($ piece (game-piece-state _ _)) (patch-added p))]
 (hash-set pieces (game-piece-state-id piece) piece)))

(transition (struct-copy collision-detection-state state
[pieces p2])

'())]))
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
 (spawn (lambda (evt state)

 (match-event evt
 [(? patch? p)

(define p0 (collision-detection-state-pieces state))
(define p1 (for-trie/fold

 [(pieces p0)]
 [((game-piece-state $id _) (patch-removed p))]
 (hash-remove pieces id)))

(define p2 (for-trie/fold [(pieces p1)]
 [(($ piece (game-piece-state _ _)) (patch-added p))]
 (hash-set pieces (game-piece-state-id piece) piece)))

(transition (struct-copy collision-detection-state state
[pieces p2])

'())]))
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
 (spawn (lambda (evt state)

 (match-event evt
 [(? patch? p)

(define p0 (collision-detection-state-pieces state))
(define p1 (for-trie/fold

 [(pieces p0)]
 [((game-piece-state $id _) (patch-removed p))]
 (hash-remove pieces id)))

(define p2 (for-trie/fold [(pieces p1)]
 [(($ piece (game-piece-state _ _)) (patch-added p))]
 (hash-set pieces (game-piece-state-id piece) piece)))

(transition (struct-copy collision-detection-state state
[pieces p2])

'())]))
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

Patch events describe whole sets
of added and removed assertions,
but programmers think about
single assertions.

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
 (spawn (lambda (evt state)

 (match-event evt
 [(? patch? p)

(define p0 (collision-detection-state-pieces state))
(define p1 (for-trie/fold

 [(pieces p0)]
 [((game-piece-state $id _) (patch-removed p))]
 (hash-remove pieces id)))

(define p2 (for-trie/fold [(pieces p1)]
 [(($ piece (game-piece-state _ _)) (patch-added p))]
 (hash-set pieces (game-piece-state-id piece) piece)))

(transition (struct-copy collision-detection-state state
[pieces p2])

'())]))
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
 (spawn (lambda (evt state)

 (match-event evt
 [(? patch? p)

(define p0 (collision-detection-state-pieces state))
(define p1 (for-trie/fold

 [(pieces p0)]
 [((game-piece-state $id _) (patch-removed p))]
 (hash-remove pieces id)))

(define p2 (for-trie/fold [(pieces p1)]
 [(($ piece (game-piece-state _ _)) (patch-added p))]
 (hash-set pieces (game-piece-state-id piece) piece)))

(transition (struct-copy collision-detection-state state
[pieces p2])

'())]))
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
 (spawn (lambda (evt state)

 (match-event evt
 [(? patch? p)

(define p0 (collision-detection-state-pieces state))
(define p1 (for-trie/fold

 [(pieces p0)]
 [((game-piece-state $id _) (patch-removed p))]
 (hash-remove pieces id)))

(define p2 (for-trie/fold [(pieces p1)]
 [(($ piece (game-piece-state _ _)) (patch-added p))]
 (hash-set pieces (game-piece-state-id piece) piece)))

(transition (struct-copy collision-detection-state state
[pieces p2])

'())]))
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
 (spawn (lambda (evt state)

 (match-event evt
 [(? patch? p)

(define p0 (collision-detection-state-pieces state))
(define p1 (for-trie/fold

 [(pieces p0)]
 [((game-piece-state $id _) (patch-removed p))]
 (hash-remove pieces id)))

(define p2 (for-trie/fold [(pieces p1)]
 [(($ piece (game-piece-state _ _)) (patch-added p))]
 (hash-set pieces (game-piece-state-id piece) piece)))

(transition (struct-copy collision-detection-state state
[pieces p2])

'())]))
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
 (spawn (lambda (evt state)

 (match-event evt
 [(? patch? p)

(define p0 (collision-detection-state-pieces state))
(define p1 (for-trie/fold

 [(pieces p0)]
 [((game-piece-state $id _) (patch-removed p))]
 (hash-remove pieces id)))

(define p2 (for-trie/fold [(pieces p1)]
 [(($ piece (game-piece-state _ _)) (patch-added p))]
 (hash-set pieces (game-piece-state-id piece) piece)))

(transition (struct-copy collision-detection-state state
[pieces p2])

'())]))
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

3× repetition of pattern

(struct collision-detection-state (pieces))

(define (spawn-collision-detection)
 (spawn (lambda (evt state)

 (match-event evt
 [(? patch? p)

(define p0 (collision-detection-state-pieces state))
(define p1 (for-trie/fold

 [(pieces p0)]
 [((game-piece-state $id _) (patch-removed p))]
 (hash-remove pieces id)))

(define p2 (for-trie/fold [(pieces p1)]
 [(($ piece (game-piece-state _ _)) (patch-added p))]
 (hash-set pieces (game-piece-state-id piece) piece)))

(transition (struct-copy collision-detection-state state
[pieces p2])

'())]))
(collision-detection-state (hash))
(sub (game-piece-state ? ?))))

(define (spawn-collision-detection)
 (actor

(forever #:collect [(pieces (hash))]
(on (retracted (game-piece-state $id _))

(hash-remove pieces id))
(on (asserted ($ piece (game-piece-state _ _)))

(hash-set pieces (game-piece-state-id piece) piece)))))

(define (spawn-collision-detection)
 (actor

(forever #:collect [(pieces (hash))]
(on (retracted (game-piece-state $id _))

(hash-remove pieces id))
(on (asserted ($ piece (game-piece-state _ _)))

(hash-set pieces (game-piece-state-id piece) piece)))))

(define (spawn-collision-detection)
 (actor

(forever #:collect [(pieces (hash))]
(on (retracted (game-piece-state $id _))

(hash-remove pieces id))
(on (asserted ($ piece (game-piece-state _ _)))

(hash-set pieces (game-piece-state-id piece) piece)))))

(define (spawn-collision-detection)
 (actor

(forever #:collect [(pieces (hash))]
(on (retracted (game-piece-state $id _))

(hash-remove pieces id))
(on (asserted ($ piece (game-piece-state _ _)))

(hash-set pieces (game-piece-state-id piece) piece)))))

(define (spawn-collision-detection)
 (actor

(forever #:collect [(pieces (hash))]
(on (retracted (game-piece-state $id _))

(hash-remove pieces id))
(on (asserted ($ piece (game-piece-state _ _)))

(hash-set pieces (game-piece-state-id piece) piece)))))

(actor
(forever
(query [pieces (hash id piece) ; “group-by”

($ piece (game-piece-state $id _))])
(on (changed pieces)

...)))

Syndicate DSL by example

✓ Mapping events to components
✓ Managing conversational state
✓ Monitoring changes in shared state

Status

Strong space savings in most places

syn·di·cate
a language for interactive programs

Progress Report on DSL Design

Repeated idioms ⟶ Language features

Future work: − Improved state sharing with substates
− “Queries” (e.g. “group-by”)
− Non-naive compilation strategy
− Better technique for naming metalevels
− More evaluations & case studies

http://syndicate-lang.org/

