
ESOP 2014, Grenoble, France; 20140410

The Network as a Language Construct

Tony Garnock-Jones Sam Tobin-Hochstadt Matthias Felleisen

Actor Programming Languages
Erlang/OTP, Scala/Akka, ...

? ? ?
Actor Programming Languages

Erlang/OTP, Scala/Akka, ...

Routing
Events

Hierarchical
Layering

Publish/Subscribe for Actors

Actor Programming Languages
Erlang/OTP, Scala/Akka, ...

This Talk

Routing
Events

Hierarchical
Layering

Publish/Subscribe for Actors

Actor Programming Languages
Erlang/OTP, Scala/Akka, ...

See Paper

Network
Calculus

Actor
Calculus

PART I: The Problem

Functional I/O

Scaling up big-bang from
domain-specific to general
functional I/O

Functional I/O

Scaling up big-bang from
domain-specific to general
functional I/O

Apps in a functional I/O style:
• echo server
• multi-user chat
• DNS server
• SSH server

Functional I/O Distributed Systems

Scaling up big-bang from
domain-specific to general
functional I/O

Implementing RabbitMQ
and using it to build
distributed systems

Apps in a functional I/O style:
• echo server
• multi-user chat
• DNS server
• SSH server

Functional I/O Distributed Systems

Scaling up big-bang from
domain-specific to general
functional I/O

Implementing RabbitMQ
and using it to build
distributed systems

Apps in a functional I/O style:
• echo server
• multi-user chat
• DNS server
• SSH server

Investigated other paradigms:
• OO languages
• Network architecture
• CORBA services
• Erlang applications

Ubiquitous Patterns and Problems
Event broadcasting
Naming service
Service discovery
Startup ordering
Crash/exit signalling
Conversation management

Ubiquitous Patterns and Problems
Event broadcasting
Naming service
Service discovery
Startup ordering
Crash/exit signalling
Conversation management

Uniform Linguistic Solution

Recipe for Actor Languages

 Base language actor

 "Network"

Consumers filter by subsystem, severity

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers
Avoid shared-state explosion
Discovery of logging service

Only produce if someone's listening
Alert when a producer crashes/exits

Uniform treatment of I/O

PART II: Why Publish/Subscribe? How?

Logging: Requirements Scorecard

Route log entries from producers to consumers ✔"Router" actor
Consumers filter log messages ✔"Router" actor

Decouple producers from consumers ✔"Router" actor
Avoid shared-state explosion ✔"Router" actor
Discovery of logging service

Only produce if someone's listening
Alert when a producer crashes/exits

Uniform treatment of I/O

See Eugster's 2003 pub/sub survey

Route by address

Messages

Route by address Route by content

Messages

Patterns
Interests

Route by address Route by content

or

or

or

Logging: Requirements Scorecard

Route log entries from producers to consumers ✔pub/sub
Consumers filter log messages ✔pub/sub

Decouple producers from consumers ✔pub/sub
Avoid shared-state explosion ✔pub/sub
Discovery of logging service no need!

Only produce if someone's listening
Alert when a producer crashes/exits

Uniform treatment of I/O ✔pub/sub

PART III: Why Routing Events? How?

Logging: Requirements Scorecard

Route log entries from producers to consumers ✔
Consumers filter log messages ✔

Decouple producers from consumers ✔
Avoid shared-state explosion ✔
Discovery of logging service

Only produce if someone's listening
Alert when a producer crashes/exits

Uniform treatment of I/O ✔

Shared Conversational Interest

Shared Conversational Interest

Shared Conversational Interest

Shared Conversational Interest

Shared Conversational Interest

Any pattern language will do — if it supports ∩

What is a Routing Event?

What is a Routing Event?

From Actor to Network

What is a Routing Event?

From Actor to Network

What is a Routing Event?

causes

From Actor to Network From Network to Actor

Routing Events for Service Discovery

Routing Events for Service Discovery

Routing Events for Service Discovery

Routing Events for Service Discovery

Routing Events for Service Discovery

Routing Events for Service Discovery

Routing Events for Service Discovery

Routing Events for Service Discovery

Routing Events for Service Discovery

Routing Events for Presence Detection

Routing Events for Presence Detection

Routing Events for Presence Detection

Routing Events for Presence Detection

Routing Events for Presence Detection

Routing Events for Presence Detection

Routing Events for Presence Detection

Routing Events for Presence Detection

Routing Events for Presence Detection

Routing Events for Presence Detection

Routing Events for Crash Detection

cf. Erlang's links/monitors [Armstrong 2003]

Routing Events for Crash Detection

cf. Erlang's links/monitors [Armstrong 2003]

Routing Events for Crash Detection

cf. Erlang's links/monitors [Armstrong 2003]

Routing Events for Crash Detection

!

cf. Erlang's links/monitors [Armstrong 2003]

Routing Events for Crash Detection

!

cf. Erlang's links/monitors [Armstrong 2003]

Routing Events for Crash Detection

!

cf. Erlang's links/monitors [Armstrong 2003]

Routing Events for Crash Detection

!

pager

cf. Erlang's links/monitors [Armstrong 2003]

Logging: Requirements Scorecard

Route log entries from producers to consumers ✔pub/sub
Consumers filter log messages ✔pub/sub

Decouple producers from consumers ✔pub/sub
Avoid shared-state explosion ✔pub/sub
Discovery of logging service ✔routing events

Only produce if someone's listening ✔routing events
Alert when a producer crashes/exits ✔routing events

Uniform treatment of I/O ✔pub/sub

Logging: Requirements Scorecard

Route log entries from producers to consumers ✔pub/sub
Consumers filter log messages ✔pub/sub

Decouple producers from consumers ✔pub/sub
Avoid shared-state explosion ✔pub/sub
Discovery of logging service ✔routing events

Only produce if someone's listening ✔routing events
Alert when a producer crashes/exits ✔routing events

Uniform treatment of I/O not finished!

PART IV: Why Hierarchical Layering? How?

Logging: Requirements Scorecard

Route log entries from producers to consumers ✔
Consumers filter log messages ✔

Decouple producers from consumers ✔
Avoid shared-state explosion ✔
Discovery of logging service ✔

Only produce if someone's listening ✔
Alert when a producer crashes/exits ✔

Uniform treatment of I/O not finished!

Layers make I/O Uniform

Logging

pager

magi
c!

Layers make I/O Uniform

Logging

pager

magi
c!

 ordinary
 actions

Logging pager

Pager communication

Layers make I/O Uniform

Logging

pager

magi
c!

 ordinary
 actions

Logging pager

Pager communication

Layers Scope Conversations

Layers Scope Conversations

Layers Scope Conversations

Layers Compose

... ...

Layers Compose

... ...

Layers Compose

... ...

One Layer = One Protocol

...

...

...

...

One Layer = One Protocol

...

...

...

...

TCP header

Encrypted payload

SSH command

App message

One Layer = One Protocol

...

...

UDP header

DNS header

Question Answer Answer ...

One Layer = One Protocol

Snoops via pub/sub to populate cache!

...

...

UDP header

DNS header

Question Answer Answer ...

...

...

Logging: Requirements Scorecard

Route log entries from producers to consumers ✔pub/sub
Consumers filter log messages ✔pub/sub

Decouple producers from consumers ✔pub/sub
Avoid shared-state explosion ✔pub/sub
Discovery of logging service ✔routing events

Only produce if someone's listening ✔routing events
Alert when a producer crashes/exits ✔routing events

Uniform treatment of I/O ✔layering

Logging: Requirements Scorecard

Route log entries from producers to consumers ✔pub/sub
Consumers filter log messages ✔pub/sub

Decouple producers from consumers ✔pub/sub
Avoid shared-state explosion ✔pub/sub
Discovery of logging service ✔routing events

Only produce if someone's listening ✔routing events
Alert when a producer crashes/exits ✔routing events

Uniform treatment of I/O ✔layering
+ great additional benefits from layering ✔

PART V: Conclusions

Marketplace Minimart JS-Marketplace
Typed Racket Racket Javascript

Marketplace Minimart JS-Marketplace
Typed Racket Racket Javascript

DNS server (UDP)
SSH server (TCP)

Chat server
Echo server

Websocket driver
Generic msg broker

Websocket driver
DOM driver
jQuery driver
Chat + roster

GUI composition

Marketplace Minimart JS-Marketplace
Typed Racket Racket Javascript

DNS server (UDP)
SSH server (TCP)

Chat server
Echo server

Websocket driver
Generic msg broker

Websocket driver
DOM driver
jQuery driver
Chat + roster

GUI composition

Details and experience report in the paper!

Actor Programming Language
+ Publish/Subscribe
+ Routing Events
+ Hierarchical Layering

Network Calculus
Actor Calculus

(see paper)

Experience reports
(see paper)

Actor Programming Language
+ Publish/Subscribe
+ Routing Events
+ Hierarchical Layering

Thank you!
Network Calculus
Actor Calculus

(see paper)

Experience reports
(see paper)

http://www.ccs.neu.edu/home/tonyg/marketplace/

