ESOP 2014, Grenoble, France; 20140410

The Network as a Language Construct

Tony Garnock-Jones Sam Tobin-Hochstadt Matthias Felleisen

Actor Programming Languages
Erlang/OTP, Scala/Akka, ...

[

Actor Programming Languages
Erlang/OTP, Scala/Akka, ...

Routing | Hierarchical

Events | Layering

Publish /Subscribe for Actors

Actor Programming Languages
Erlang/OTP, Scala/Akka, ...

This Talk

Routing | Hierarchical

Events | Layering

Publish /Subscribe for Actors

See Paper

Network

Calculus

Actor Programming Languages
Erlang/OTP, Scala/Akka, ...

Actor

Calculus

PART I: The Problem

Functional I/0

Scaling up big-bang from
domain-specific to general
functional 1/0

Functional I/0

Scaling up big-bang from
domain-specific to general
functional 1/0

Apps in a functional I/O style:
* echo server

* multi-user chat

* DNS server
+ SSH server

Functional I/0 Distributed Systems

Scaling up big-bang from Implementing RabbitMQ
domain-specific to general and using it to build
functional 1/0 distributed systems

[] | Transport
] Gateway
B [client
] Adapter

Apps in a functional I/O style:
* echo server

* multi-user chat

* DNS server
+ SSH server

Functional I/0 Distributed Systems

Scaling up big-bang from Implementing RabbitMQ
domain-specific to general and using it to build
functional 1/0 distributed systems

Apps in a functional I/O style: Investigated other paradigms:

* echo server * OO languages
* multi-user chat * Network architecture
* DNS server * CORBA services

* SSH server * Erlang applications

Ubiquitous Patterns and Problems

Event broadcasting
Naming service
Service discovery
Startup ordering
Crash/exit signalling

Conversation management

Ubiquitous Patterns and Problems

Event broadcasting

Naming service

Uniform Linguistic Solution

Crash/exit signalling

Conversation management

Recipe for Actor Languages

(Base language actor

) floyu) = (@)

i _ a = event, a = action
H A
% 1%

"Network"

log messages
Log producers — ~ Log consumers

(log, [subsystem, severity, datal)

Consumers filter by subsystem, severity

m
(@)

) ()

ol

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce it someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

HpERE

PART II: Why Publish/Subscribe? How?

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce if someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

v "Router’
v "Router’
v "Router’
v 'Router”

actor
actor
actor

actor

C3

C2

C1

R

Pl P2

(log,*) || (log,*) | | (log,*)

See Eugster's 2003 pub/sub survey

(log, *)

(log, *)

(log, *)

Route by address

Messages 1M = <ZE,?}>
1 x € Addresses

(log,*) || (log,*) | | (log,*)

Route by address Route by content

essages 1M — m = <U>

v=u | v,
/‘ Patterns P = U | D, D | *
Interests 7 — (p)

(log,*) || (log,*) | | (log,*)

Route by address Route by content
(log,)
(C1, %) o1

(log, [, error, x|)

(log, [Porl,*, x|)

or

Logging: Requirements Scorecard

Route log entries from producers to consumers # pub/sub
Consumers filter log messages # pub/sub
Decouple producers from consumers W pub/sub
Avoid shared-state explosion # pub/sub
Discovery of logging service = no need!
Only produce if someone's listening [
Alert when a producer crashes/exits L[]
Uniform treatment of I/O & pub/sub

PART III: Why Routing Events? How?

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce it someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

N NN N

N\

Shared Conversational Interest

Shared Conversational Interest

Interests Subscription

T = (p)

Shared Conversational Interest

Interests Subscription Advertisement

= (@ | (@

Shared Conversational Interest

Interests Subscription Advertisement

= (@ | (@

(p) m (@) =0
(@) m (@) =0
(p) M (q) = (PN q)
(@) m (p) = (PN q)

Shared Conversational Interest

Interests Subscription Advertisement

= (@ | (@

(p) m (@) =0
(@) m (@) =0
(p) M (q) = (PN q)
(@) m (p) = (PN q)

Any pattern language will do — if it supports n

What is a Routing Event?

T}

What is a Routing Event?

T}

() _

1 (Foew)

Told

From Actor to Network

What is a Routing Event?

T}

N0

%{%new} 1

Told Tnew

From Actor to Network

What is a Routing Event?

—

%{%new} 1

Told Tnew

From Actor to Network

T}

causes

é

()]

From Network to Actor

Routing Events for Service Discovery

Client

I

Routing Events for Service Discovery

Client

1 L {(srv,)}

4

Routing Events for Service Discovery

Client

I

(sr\}, *)

Routing Events for Service Discovery

Client

{}4/

(sr\}, *)

Routing Events for Service Discovery

Client Server

! I

(sr\}, *)

Routing Events for Service Discovery

Client Server

/‘ /‘ i {(srv,x)}

(sr\}, *)

Routing Events for Service Discovery

Client Server

! l

(sr\}, *) (sr\}, *)

Routing Events for Service Discovery

Client Server

{<srv,*>}% , {(srv. %)} 1 3
(srv,) (srv, %)

Routing Events for Service Discovery

Client Server

! l

(sr\}, x) p——> (sr\}, *)

Routing Events for Presence Detection

(»1)

A

(log, [P1, %, *|)

Routing Events for Presence Detection

Routing Events for Presence Detection

(»1)

A

(log, [P1, %, *|)

Routing Events for Presence Detection

(»1)

A A

(log, [P1, %, x]|) (log, [x, error, x|)

Routing Events for Presence Detection

(log, [P1, %, x]|) (log, [x, error, x|)

log, [P1,x,%x] N log, [*,error,x] = log,|[P1,error, x|

Routing Events for Presence Detection

(»1)

{(log, [P1, error, %])} 1 {{log, [P1, error, x])} ®
(log, [P1, %, *]) (log, [x, error, x])

log, [P1,x,%x] N log, [*,error,x] = log,|[P1,error, x|

Routing Events for Presence Detection

(log, [P1, %, x]|) (log, [x, error, x|)

log, [P1,x,%x] N log, [*,error,x] = log,|[P1,error, x|

Routing Events for Presence Detection

(»1)

A

(log, [P1, %, *|)

Routing Events for Presence Detection

Routing Events for Presence Detection

(»1)

A

(log, [P1, %, *|)

Routing Events for Crash Detection

cf. Erlang's links /monitors [Armstrong 2003]

Routing Events for Crash Detection

(»1)

{(log, [P1, error, %])} 1 {{log, [P1, error, x])} ®
(log, [P1, %, *]) (log, [x, error, x])

cf. Erlang's links /monitors [Armstrong 2003]

Routing Events for Crash Detection

(»1)

{(log, [P1,error,+])} |} {(log, [P1, error, +])} *
(log, [P1, %, *]) (log, [x, error, x])

cf. Erlang's links /monitors [Armstrong 2003]

Routing Events for Crash Detection

® D

(log, [P1

(log, [x, error, x|)

cf. Erlang's links /monitors [Armstrong 2003]

Routing Events for Crash Detection

® D

Cl

A A

y’ y’

e (log, [*, error, x|)

cf. Erlang's links /monitors [Armstrong 2003]

Routing Events for Crash Detection

(o)

A A

, l’

® D

e (log, [*, error, x|)

cf. Erlang's links /monitors [Armstrong 2003]

pager

Routing Events for Crash Detecti

® D

A A

. {} "

e (log, [*, error, x|)

cf. Erlang's links /monitors [Armstrong 2003]

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce if someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

v pub/sub
v pub/sub
v pub/sub
v pub/sub
v routing events
v routing events

v routing events

v pub/sub

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce if someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

v pub/sub
v pub/sub
v pub/sub
v pub/sub
v routing events
v routing events

v routing events
= not finished!

PART IV: Why Hierarchical Layering? How?

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce if someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

N

v
v
v
v
v
.
[]

not finished!

Layers make 1/O Uniform

Logging

Layers make 1/O Uniform

Logging

Cl1
/‘ -
—_— Logging pager
1| ordinary
actions
4 y’

Pager communication

Layers make 1/O Uniform

Logging

Logging pager

Pager communication

T

Layers Scope Conversations

@

y’

7TC1

T

Layers Scope Conversations

@

y’

7TC1

Layers Scope Conversations

e

Q - %CQ Q

I

A TB xe;

Layers Compose

Layers Compose

One Layer = One Protocol

?34? Speak L3 (&L2)

[o9

Speak Lo (&L4)

00 0

L Speak [

i 9.9

One Layer = One Protocol

TCP header

Encrypted payload

SSH comman d
ﬁ)ﬁ)ﬁ) App protocol (&SSH) e
I 79-9
App (REPL) Speak SSH (& TCP)
SSH commands Speak TCP

|

00 0

TCP

UDP header

One Layer = One Protocol

DNS header

Question|Answer| Answer]...

Request NetWOI‘k

subquer Cache
handler A\ mer) gheak DNS (&UDP)

T T T %9

DNS Speak UDP

i 9.9

UDP header

One Layer = One Protocol

DNS header

Question|Answer| Answer]...

Snoops via pub/sub to populate cache!

Network
subquery

Request

handler Speak DNS (&UDP)

A
' N\
A A A ? ? ?
/ / / LI B |

DNS Speak UDP

i 9.9

Interests Local sub Local adv

0 ®) | P

Messages Send locally
mo = (v)

Interests Local sub Local adv Outside interest

0 @ | & |

Messages Send locally Send outside
m = (v) | Im

Interests Local sub Local adv Outside interest

T = ® | @ | [
Messages Send locally Send outside
m = (v) | |m

Interests Local sub Local adv Outside interest

T = ® | @ | [
Messages Send locally Send outside
m = (v) | |m

OO

Interests Local sub Local adv Outside interest

T = ® | @ | [
Messages Send locally Send outside
m = (v) | |m

OO

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce if someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

v pub/sub
v pub/sub
v pub/sub
v pub/sub
v routing events
v routing events
v routing events
v layering

Logging: Requirements Scorecard

Route log entries from producers to consumers # pub/sub
Consumers filter log messages # pub/sub
Decouple producers from consumers # pub/sub
Avoid shared-state explosion # pub/sub
Discovery of logging service W routing events
Only produce if someone's listening W routing events
Alert when a producer crashes/exits routing events
Uniform treatment of I/O W layering
+ great additional benefits from layering W

PART V: Conclusions

Marketplace Minimart JS-Marketplace
Typed Racket Racket Javascript

Marketplace
Typed Racket

DNS server (UDP)
SSH server (TCP)
Chat server
Echo server

Minimart
Racket

Websocket driver

Generic msg broker

JS-Marketplace

Javascript

Websocket driver
DOM driver
jQuery driver
Chat + roster

GUI composition

Marketplace Minimart JS-Marketplace

Typed Racket Racket Javascript
DNS server (UDP) Websocket driver Websocket driver
SSH server (TCP) Generic msg broker DOM driver

Chat server jQuery driver
Echo server Chat 4 roster

GUI composition

Details and experience report in the paper!

Thank you!

Network Calculus

PI——
Actor Calculus
Actor Programming Language (see paper)
+ Publish /Subscribe

+ Routing Events

+ Hierarchical Layering
Experience reports

(see paper)

http://www.ccs.neu.edu/home /tonyg/marketplace/

