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PART I: The Problem
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Functional I/0 Distributed Systems

Scaling up big-bang from Implementing RabbitMQ
domain-specific to general and using it to build
functional 1/0 distributed systems

Apps in a functional I/O style: Investigated other paradigms:

* echo server * OO languages
* multi-user chat * Network architecture
* DNS server * CORBA services

* SSH server * Erlang applications
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Naming service

Uniform Linguistic Solution
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Recipe for Actor Languages
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Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce it someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

HpERE




PART II: Why Publish/Subscribe? How?
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Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce if someone's listening

Alert when a producer crashes/exits
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(log,*) || (log,*) | | (log,*)

See Eugster's 2003 pub/sub survey
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Logging: Requirements Scorecard

Route log entries from producers to consumers # pub/sub
Consumers filter log messages # pub/sub
Decouple producers from consumers W pub/sub
Avoid shared-state explosion # pub/sub
Discovery of logging service = no need!
Only produce if someone's listening [
Alert when a producer crashes/exits L[]
Uniform treatment of I/O & pub/sub
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Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce it someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0
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Shared Conversational Interest

Interests Subscription Advertisement

= (@ | (@

(p) m (@) =0
(@) m (@) =0
(p) M (q) = (PN q)
(@) m (p) = (PN q)

Any pattern language will do — if it supports n
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Routing Events for Crash Detection

cf. Erlang's links /monitors [Armstrong 2003]
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Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce if someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0
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One Layer = One Protocol
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One Layer = One Protocol

TCP header

Encrypted payload

SSH comman d
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UDP header

One Layer = One Protocol

DNS header
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UDP header

One Layer = One Protocol

DNS header

Question|Answer| Answer]...

Snoops via pub/sub to populate cache!
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Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages
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Logging: Requirements Scorecard

Route log entries from producers to consumers # pub/sub
Consumers filter log messages # pub/sub
Decouple producers from consumers # pub/sub
Avoid shared-state explosion # pub/sub
Discovery of logging service W routing events
Only produce if someone's listening W routing events
Alert when a producer crashes/exits  routing events
Uniform treatment of I/O W layering
+ great additional benefits from layering W
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Chat server
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Websocket driver

Generic msg broker
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Websocket driver
DOM driver
jQuery driver
Chat + roster

GUI composition



Marketplace Minimart JS-Marketplace

Typed Racket Racket Javascript
DNS server (UDP) Websocket driver Websocket driver
SSH server (TCP) Generic msg broker DOM driver

Chat server jQuery driver
Echo server Chat 4 roster

GUI composition

Details and experience report in the paper!






Thank you!

Network Calculus

PI——
Actor Calculus
Actor Programming Language (see paper)
+ Publish /Subscribe

+ Routing Events

+ Hierarchical Layering
Experience reports

(see paper)

http://www.ccs.neu.edu/home /tonyg/marketplace/



