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Scaling up  big-bang from
domain-specific to general
functional I/O

Implementing  RabbitMQ
and using it to build
distributed systems

Apps in a functional I/O style:
• echo server
• multi-user chat
• DNS server
• SSH server

Investigated other paradigms:
• OO languages
• Network architecture
• CORBA services
• Erlang applications
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Uniform Linguistic Solution



Recipe for Actor Languages

 Base language actor

 "Network"



Consumers filter by subsystem, severity
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Logging: Requirements Scorecard

Route log entries from producers to consumers ✔"Router" actor
Consumers filter log messages ✔"Router" actor
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Discovery of logging service

Only produce if someone's listening
Alert when a producer crashes/exits

Uniform treatment of I/O







See Eugster's 2003 pub/sub survey
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Logging: Requirements Scorecard

Route log entries from producers to consumers ✔pub/sub
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Logging: Requirements Scorecard

Route log entries from producers to consumers ✔
Consumers filter log messages ✔

Decouple producers from consumers ✔
Avoid shared-state explosion ✔
Discovery of logging service

Only produce if someone's listening
Alert when a producer crashes/exits

Uniform treatment of I/O ✔
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Any pattern language will do — if it supports ∩
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What is a Routing Event?

causes

From Actor to Network From Network to Actor
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Logging: Requirements Scorecard

Route log entries from producers to consumers ✔
Consumers filter log messages ✔

Decouple producers from consumers ✔
Avoid shared-state explosion ✔
Discovery of logging service ✔

Only produce if someone's listening ✔
Alert when a producer crashes/exits ✔

Uniform treatment of I/O not finished!



Layers make I/O Uniform

Logging

pager

magi
c!



Layers make I/O Uniform

Logging

pager

magi
c!

  ordinary
  actions

Logging pager

Pager communication



Layers make I/O Uniform

Logging

pager

magi
c!

  ordinary
  actions

Logging pager

Pager communication



Layers Scope Conversations



Layers Scope Conversations



Layers Scope Conversations



Layers Compose

... ...



Layers Compose

... ...



Layers Compose

... ...



One Layer = One Protocol

...

...

...

...



One Layer = One Protocol

...

...

...

...

TCP header

Encrypted payload

SSH command

App message



One Layer = One Protocol

...

...

UDP header

DNS header

Question Answer Answer ...



One Layer = One Protocol

Snoops via pub/sub to populate cache!

...

...

UDP header

DNS header

Question Answer Answer ...









...



...



Logging: Requirements Scorecard

Route log entries from producers to consumers ✔pub/sub
Consumers filter log messages ✔pub/sub

Decouple producers from consumers ✔pub/sub
Avoid shared-state explosion ✔pub/sub
Discovery of logging service ✔routing events

Only produce if someone's listening ✔routing events
Alert when a producer crashes/exits ✔routing events

Uniform treatment of I/O ✔layering
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Route log entries from producers to consumers ✔pub/sub
Consumers filter log messages ✔pub/sub

Decouple producers from consumers ✔pub/sub
Avoid shared-state explosion ✔pub/sub
Discovery of logging service ✔routing events

Only produce if someone's listening ✔routing events
Alert when a producer crashes/exits ✔routing events

Uniform treatment of I/O ✔layering
+ great additional benefits from layering ✔
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DNS server (UDP)
SSH server (TCP)

Chat server
Echo server

Websocket driver
Generic msg broker

Websocket driver
DOM driver
jQuery driver
Chat + roster

GUI composition

Details and experience report in the paper!
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(see paper)

Experience reports
(see paper)

http://www.ccs.neu.edu/home/tonyg/marketplace/


