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Dataspace: assertions + provenance cf. Linda's
“Tuplespaces”
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Messages are transient assertions

< [incrementScoreBy,3] >

~

{ [incrementScoreBy,3] }

followed by
{ }
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Scoped Conversational State: Syndicate
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syn·di·cate
a language for interactive programs

Actors + Dataspaces + Assertions + Nesting

Paper: − Formal semantics & basic properties
− Incremental SCN protocol & equivalence thm
− Tries for efficient dataspace implementation
− Performance model & measurements
− Case studies: TCP/IP stack, GUI widget

http://syndicate-lang.org/


