ESOP 2016, Eindhoven, Netherlands; 20160405

Coordinated Concurrent Programming in

SYNDICATE

Tony Garnock-Jones ™ Matthias Felleisen

tonyg@ccs.neu.edu matthias@ccs.neu.edu
Northeastern University Northeastern University

How can we organise

our interactive programs?

How can we organise

our interactive programs?

With a programming language!

How can we organise

our interactive programs?

SYNDICATE

User

Program

Interactive System

< » | Program

User

External Concurrency

Program

\"; e [
= J[][J I
E__I L)

Lots of External Concurrency

OProgram

Lots of External Concurrency
Internal Organisation Reflects External Concurrency

OProgram

with coordination
+ Internal tasks

Lots of External Concurrency
Internal Organisation Reflects External Concurrency

@@
b

Networked

<
@ Program
‘<,////////;_<:>\whhcoonﬁnaﬂon

+ Internal tasks

Lots of External Concurrency
Internal Organisation Reflects External Concurrency

Networked

Program

|| with coordination
+ Internal tasks

@@@@@
W

Lots of Dynamic, External Concurrency
Component startup = interaction = shutdown/failure

Networked

Program

with coordination
+ Internal tasks

@@@@@
W

Lots of Dynamic, External Concurrency
Component startup = interaction = shutdown/failure

Networked

Program

with coordination
+ Internal tasks

@@@@@
W

Lots of Dynamic, External Concurrency
Component startup = interaction = shutdown/failure

Networked

Program

with coordination
+ Internal tasks

@\ %

Lots of Dynamic, External Concurrency
Component startup = interaction = shutdown/failure

@‘\ ®
Networked

@‘ © Program
(_@J(/ @ with coordination

@ + Internal tasks

Lots of Dynamic, External Concurrency
Component startup = interaction = shutdown/failure

Score; 3

SYNDICATE

event x state — [action] x state

event x state — [action] x state

[currentScore,3] — actor #17
[keyDown, space] — actor #42

event x state — [action] x state

[cu ‘entScore,3] — actor #17

Actor behaviour function — actor #42
private state
unique internal ID

[

event x state — [action] x state

actor actor
#H42 #94

[currentScore,3] — actor #17
[keyDown, space] — actor #42

1

Dataspace: assertions + provenance cf. Linda's

“Tuplespaces’

event x state — [action] x state

[currentScore,3] — actor #17
[keyDown, space] — actor #42

‘|, actor #17, assert that

the current score is 3. H

event x state — [action] x state

[currentScore,3] — actor #17
[keyDown, space] — actor #42

'l, actor #42, assert that
the space key is currently H
held down.’

r 1 " 1

Actions carry assertions
actor = environment

event x sta*

[currentScore,3] — actor #17
[keyDown, space] — actor #42

__tion] x state
Events carry assertions

environment = actor

actor actor actor
#17 #42 #904

[currentScore,3] — actor #17
[keyDown, space] — actor #42

event x slc { [sprite,player,51,100,]»

?[keyDown,x] }

actor actOI
#42 #94

[currentScore,B] — actor #17
[keyDown, space] — actor #42

event x slc { [sprite,player,51,100,]»

?[keyDown,x] }

actor actOI
#H42 #94

[currentScore,B_ — actor #17

[keyDown, space] — actor #42
[sprite,player,51,100, : — actor #94
?[keyDown,x] — actor #94

|

event x state — [action] x state

"|, actor #94, am interested in keeping track
of assertions of the form [keyDown, x].

[N

[ct “rentScore,3] — actor #17

[k 2yDown, space] — actor #42
[sprite,player,51,100, : — actor #94
?[keyDown,x] — actor #94

|

event x state — [action] x state

{ [keyDown,space] }

|-

|

[currentScore, 3
[keyDown, space
[sprite,player,51,100,

?[keyDown,

I 1 1

actor #17
actor #42

actor #94
actor #94

|

event x state — [action] x state

[currentScore, 3]
[keyDown, space
[sprite,player,51,100,

?[keyDown,

-
N
-
-

actor #17
actor #42

actor #94
actor #94

|

event x state — [action] x state

[currentScore, 3]
[keyDown, space
[sprite,player,51,100,

?[keyDown,

-
N
-
-

actor #17
actor #42

actor #94
actor #94

|

event x state — [action] x state

[currentScore,3] — actor #17

tkeybowr;spaced actor#42
[sprite,player,51,100, ‘] — actor #94
?[keyDown,x] — actor #94

|

event x state — [action] x state

[currentScore,3] — actor #17

[sprite,player,51,1@®,] — actor #94
?[keyDown,x] — actor #94

|

event x state — [action] x state

PN

[currentScore,3] — actor #17

[sprite,player,51,1®®,] — actor #94
?[keyDown,x] — actor #94

|

event x state — [action] x state

[currentScore,3] — actor #17

[sprite,player,51,1@®,] — actor #94
?[keyDown,x] — actor #94

|

actor
#42 actor

| [~

[keyDown, space] — actor #42

H

{ ?1[keyDown,x],
1 ?[keyDown,x] }

actor
#42 actor

| — ~

[keyDown, space] — actor #42

H

{ ?1[keyDown,x],
1 ?[keyDown,»] }

?1[keyDown,*x] — actor #1

actor 1 ?[keyDown, %] — actor #1

#42

| — "

[keyDown, space] — actor #42

H

?1[keyDown,x] — actor #1

1 ?[keyDown, %] — actor #1
actor

[keyD«

#99

'l, actor #1, assert that [am
interested In all key-down assertions
at the next level out.”

|

?1[keyDown,*x] — actor #1
1 ?[keyDown, %] — actor #1

"l, actor #1, request my dataspace to
assert ‘interest in all key-down assertions’
on my behalf at the next level out”

|

actor
#42

H

?1[keyDown,*x] — actor #1
1 ?[keyDown, %] — actor #1

[keyDown, space] — actor #42

H

|
|
|
: W T e
|
|
|
|

?1[keyDown,*x] — actor #1

actor 1 ?[keyDown, %] — actor #1

#42 actor

| T i

[keyDown, space] — actor #42

H

|
|
|
|
| W { ?[keyDown,x] }
: ?1 [keyDown,x] — actor #1 |
actor | 1 ?[keyDown, %] — actor #1 |
#H42 | actor

[[

[keyDown, space] — actor #42
?[keyDown,x] — actor #99

H

actor
#42

H

?1[keyDown,*x] — actor #1
1 ?[keyDown, %] — actor #1

[keyDown, space] — actor #42
?[keyDown,x] — actor #99

H

y

{ [keyDown, space] }

?1[keyDown,*x] — actor #1

1 ?[keyDown,] — actor #1
actor

******** "

[keyDown, space] — actor #42
?[keyDown,x] — actor #99

H

y

{ [keyDown, space] }

: ?1[keyDown,x] — actor #1 |
actor | 1 ?[keyDown,] — actor #1 |
#42 | { [keyDown, space] - J . actor

[[

[keyDown, space] — actor #42
?[keyDown,x] — actor #99

H

- R

| |

| |

| |

| |

| |

| ?1[keyDown,*x] — actor #1 '

actor : 1 ?[keyDown, %] — actor #1 :
#42 | I [keyDown, space] = | | actor
i [— "

[keyD~~ -7+ 22t fe0 |

?]

“The next level out has informed us
that the space key Is being held down.’

|

actor
#42

H

?1[keyDown,*x] — actor #1 |
1 ?[keyDown, %] — actor #1 |
| [keyDown, space] — | actor

[keyDown, space] — actor #42
?[keyDown,x] — actor #99

H

{ 1[keyDown, space] }

actor
#42

H

wtor
#1

1

?1[keyDown,*x] — actor #1 |
1 ?[keyDown, %] — actor #1 |
| [keyDown, space] — | actor

[keyDown, space] — actor #42
?[keyDown,x] — actor #99

H

actor
#42

H

?1[keyDown,*x] — actor #1 |
1 ?[keyDown, %] — actor #1 |
| [keyDown, space] — | actor

[keyDown, space] — actor #42
?[keyDown,x] — actor #99

H

Messages are transient assertions

< [incrementScoreBy, 3] >

~

{ [incrementScoreBy,3] }
followed by

{]

General challenges of interactivity

» Mapping events to components
» Building a shared understanding
- Partial failure

» Scoped conversational state

General challenges of interactivity

» Mapping events to components
» Building a shared understanding
- Partial failure

» Scoped conversational state

Mapping events to components: OO

public class ControllerListener {
private Level currentlLevel;
private Player player;
. /* repeat for each target! x/

public void handleControllerEvent(ControllerEvent e) {
switch (e.getCode()) {
case ControllerEvent.VK_START:
currentlLevel .abandon(); return;
case ControllerEvent.VK_LEFT:
player.movelLeft(); return;
. /* repeat for each key! *x/

by

public void changelLevel(Level newlLevel) {
this.currentlLevel = newlLevel;
3

— e) e)))) —))

OoOCJOOUTR~A,WN—/CO0OJOOUOITRA~WLWN —

N — — —
OO OUOTLWN /LSOO OTP,~WN —

Mapping events to components: Actors

-module(eventmapplng).
-behaviour(gen_server).

-record(state, {current_level, player}).

init([PlayerPid]) ->
ok = controller:subscribe(self()),
{ok, #state{current_level = undefined,
player = PlayerPid}}.

handle_cast({controller_event, start}, State) ->
gen_server:cast(State#state.current_level, abandon),
{noreply, State};

handle_cast({controller_event, left}, State) ->
gen_server:cast(State#state.player, move_left),
{noreply, State}.

handle_call({change_level, LevelPid}, _From, State) ->
{reply, ok, State#state{current_level = LevelPid}}.

Mapping events to components: Syndicate

»» Level actor:

(actor

(until (message (controller-event ’'start))
5 ... event handlers ...
))

:+» Player actor:

(actor

(until (message 'kill-player)
#:collect [(state (initial-player-state))]
(on (message (controller-event 'left))
(update-position state -1 0))
5 ... other event handlers ...
))

ASALON—"CQOOO~JOOTR~WN —

—) e) —))

General challenges of interactivity

v Mapping events to components
» Building a shared understanding
- Partial failure

- Scoped conversational state

Building a shared understanding: OO

N = et e el e e e)
Cwoo~NOCTUTRWNN—LOOWOWOLO~NOOWULIEE WN —

NN
N —

public class GamePieces {
private Set<GamePiece> pieces = new HashSet<>();

public void addGamePiece(GamePiece p) {
pieces.add(p);

b

public void removeGamePiece(GamePiece p) {
pieces.remove(p);

Building a shared understanding: OO

—_—
CQwWoo~NOoOULIEAWN =

NN N NNNNN = e e e e e e
N~NouphWwN—LOoO0WooO~NOOTUTIRARWN —

new HashSet<>();

public class GamePieces {
private Set<GamePiece> pieces = new HashSet<>();
private Set<GamePiecelistener> subscribers =
public void addGamePiece(GamePiece p) {
pieces.add(p);
for (GamePiecelistener 1 : subscribers)
1.gamePieceAdded(p);
b
public void removeGamePiece(GamePiece p) {
pieces.remove(p);
for (GamePiecelListener 1 : subscribers)
1.gamePieceRemoved(p);
b
public void subscribe(GamePiecelListener 1) {
subscribers.add(1l);
b
b
public interface GamePiecelListener {

void gamePieceAdded(GamePiece p);
void gamePieceRemoved(GamePiece p);

Building a shared understanding: OO

—_—
CQwWoo~NOoOULIEAWN =

NN N NNNNN = e e e e e e
N~NouphWwN—LOoO0WooO~NOOTUTIRARWN —

new HashSet<>();

public class GamePieces {
private Set<GamePiece> pieces = new HashSet<>();
private Set<GamePiecelistener> subscribers =
public void addGamePiece(GamePiece p) {
pieces.add(p);
for (GamePiecelistener 1 : subscribers)
1.gamePieceAdded(p);
3
public void removeGamePiece(GamePiece p) {
pieces.remove(p);
for (GamePiecelListener 1 : subscribers)
1.gamePieceRemoved(p);
3
public void subscribe(GamePiecelListener 1) {
subscribers.add(1l);
for (GamePiece p : pieces)
1.gamePieceAdded(p);
3
3
public interface GamePiecelListener {

void gamePieceAdded(GamePiece p);
void gamePieceRemoved(GamePiece p);

—_—
CQwWoo~NOoOULIEAWN =

NN N NNNNN = e e e e e e
N~NouphWwN—LOoO0WooO~NOOTUTIRARWN —

Building a shared understanding: OO

public class GamePieces {
private Set<GamePiece> pieces = new HashSet<>();
private Set<GamePiecelListener> subscribers = new HashSet<>();
public void addGamePiece(GamePiece p) {
pieces.add(p);
for (GamePiecelListener 1 : new HashSet<GamePiecelistener>(subscribers))
1.gamePieceAdded(p);
b
public void removeGamePiece(GamePiece p) {
pieces.remove(p);
for (GamePiecelListener 1 : new HashSet<GamePiecelistener>(subscribers))
1.gamePieceRemoved(p);
b
public void subscribe(GamePiecelistener 1) {
subscribers.add(1l);
for (GamePiece p : new HashSet<GamePiece>(pieces))
1.gamePieceAdded(p);
b
b
public interface GamePiecelListener {

void gamePieceAdded(GamePiece p);
void gamePieceRemoved(GamePiece p);

oo~ WN —

N = e e ed el ed el d d
CwWoo~NOCTULTRRWMN—O

Building a shared understanding: Actors

-record(state, [pieces, subscribers]).

handle_call({add_piece, P}, _From, State) ->
Subscribers = sets:to_list(State#state.subscribers),
[gen_server:cast(S, {add_piece, P}) || S <- Subscribers],
NewState = State#state{pieces = sets:add_element(P, Statefistate.pieces)},
{reply, ok, NewState};

handle_call({del_piece, P}, _From, State) ->
Subscribers = sets:to_list(State#state.subscribers),
[gen_server:cast(S, {del_piece, P}) || S <- Subscribers],
NewState = State#state{pieces = sets:del_element(P, Statefistate.pieces)},
{reply, ok, NewState};

handle_call({add_sub, S}, _From, State) ->
Pieces = sets:to_list(Stateiistate.pieces),
[gen_server:cast(S, {add_piece, P}) || P <- Pieces],
NewState = Statef#state{subscribers =
sets:add_element(S, State#state.subscribers)},
{reply, ok, NewState}.

Building a shared understanding: Syndicate

(on (retracted (game-pilece-state $old-state))
. remove old state from records ...

7 7

)

(on (asserted (game-plece-state $new-state))
. add new state to records ...

11;; Each game pilece:

2 (actor

3| (forever #:collect [(state (initial-game-piece-state))]
4. (assert (game-plece-state state))

5 . other event handlers change 'state’,

6| ;; and ‘assert' automatically re-publishes it
).

8

91;; Each subscribing party:

0 (actor

1| (forever

2

3

4

5

6

7

IS (N NESSN [[WS — gape— |

53y

General challenges of interactivity

v Mapping events to components
v Building a shared understanding
- Partial failure

- Scoped conversational state

Partial Failure: OO & Actors

Score; 3

Partial Failure: OO & Actors

Score; 3

Partial Failure: OO & Actors

GamePiece

GamePiece

Store

Physics

add_piece(P1)

add_piece (P2

a

ad

>

ad

dd_sub (L1
<

d_piece(P
4

)
d_piece(P
>

add_s

Collision

)
1)

2)
ub(L2)

<

add_pi

ece(P1)

add_p1

ece(P2)

Partial Failure: OO & Actors

GamePiece

GamePiece

Store

Physics

add_piece(P1)

add_piece (P2

a

ad

>

ad

dd_sub (L1
<

d_piece(P
4

)
d_piece(P
>

add_s

Collision

)
1)

2)
ub(L2)

<

add_pi

ece(P1)

add_p1

ece(P2)

Partial Failure: OO & Actors

GamePiece

GamePiece| [Store

Physics| |Collision

add_piece(P1)

a

ad

add_piece (P2
>

ad

<

dd_sub (L1

)

d_piece(P
4

d_piece(P
>

add_s

)
1)

2)
ub(L2)

<

add_pi

ece(P1)

add_p1

ece(P2)

Partial Failure: Actors (Erlang)

GamePiece

GamePiece

Store

Physics

Collision

add_piec

e(P1)

a

ad

dd_sub (L1
<

d_piece(P
4

dd_piece(P2

EXI

>
ad

)

»

de

d_piece(P
>

1_piece(P
>

)
1)

2)

1

Partial Failure: Syndicate

|

(game-piece-state ...) = enemy
?(game-piece-state x) — collision

Partial Failure: Syndicate

|

(game-piece-state ...) = enemy
?(game-piece-state x) — collision

Partial Failure: Syndicate

17

?(game-piece-state %) — collision

Partial Failure: Syndicate

{]

I

?(game-piece-state %) — collision

Partial Failure: Syndicate

?(game-piece-state %) — collision

General challenges of interactivity

v Mapping events to components
v Building a shared understanding
v Partial failure

- Scoped conversational state

Scoped Conversational State: OO & Actors

Score; 3

Scoped Conversational State: OO & Actors

Score; 3

Scoped Conversational State: OO & Actors

Score; 3

Scoped Conversational State: OO & Actors

Scoped Conversational State: OO

public class Levellnstance {
private PlayerAvatar avatar;
private Set<EnemyPiece> enemies;
private GoldenKey key;

private ScoreKeeper scoreKeeper; // needed to be able to add points

public void dispose() {
avatar.dispose();
for (EnemyPiece e : enemies) e.dispose();
key.dispose();
// don’t accidentally dispose scoreKeeper here!

—_—
QwWoo~NOTWLIAWN =

— e e e
o WwN =
-

-

Scoped Conversational State: Actors (Erlang/OTP)

"One-for-all” Supervision

Supervisor| |Player| |[Enemy| |Enemy| |Key

Scoped Conversational State: Actors (Erlang/OTP)

"One-for-all” Supervision

Supervisor| |Player| |[Enemy| |Enemy| |Key
EXIT

<

Scoped Conversational State: Actors (Erlang/OTP)

"One-for-all” Supervision

Supervisor| |Player| |[Enemy| |Enemy| |Key
EXIT

<

KILL

KILL

KILL

Scoped Conversational State: Actors (Erlang/OTP)

"One-for-all” Supervision

Supervisor| |Player| |[Enemy| |Enemy| |Key

Scoped Conversational State: Actors (Erlang/OTP)

"One-for-all” Supervision

Supervisor| |Player| |[Enemy| |Enemy| |Key
EXIT

<

Scoped Conversational State: Actors (Erlang/OTP)

"One-for-all” Supervision

Supervisor| |Player| |[Enemy| |Enemy| |Key
EXIT

<

KILL

»
KILL

KILL

Scoped Conversational State: Syndicate

(dataspace
(spawn-score-keeper)

:: The level:
(dataspace
(spawn-enemy1)
(spawn-enemy?2)
(spawn-golden-key)
(spawn-fixed-blocks)
(spawn-player) ;; asserts ’'player-alive

(until (retracted ’'player-alive)))

AP LWON—COOO~JOOTPR~WN —

_—) e e))

(until (asserted 'game-over)))

Grade table

Mapping events to components ZERO ZERO® OK
Building a shared understanding ZER® OK- OK
K
K

Partial failure ZER® OK- O
Scoped conversational state ZER® OK- O

ZERO - OK- —» OK - OK*

- Pattern-matching via assertions of interest

Mapping events to components ZERO ZERO O

Building a shared understanding ZER® (O

Partial failure ZER® ©

Scoped conversational state ZERO ©

(,,

K
K- OK
K- OK
K- OK

ZERO - OK- —» OK - OK*

Grade table

The dataspace is the shared understanding!

Mapping events t, components ZERO ZERO OK
Building a shared understanding ZER® OK- OK
K
K

Partial failure ZER® OK- O
Scoped conversational state ZER® OK- O

ZERO - OK- —» OK - OK*

Grade table

&

& $
@) Q
AN
\'q %

Mapping Automatic retraction of assertions) O

Partial failure ZER® OK- O

K

Building a shared understz 1ding ZER® OK- OK
K

Scoped conversational state [ZER® OK- OK

ZERO - OK- —» OK - OK*

Grade table

M Nested dataspaces + controlled © ZERG OK
g, assertion flow between them ® OK- oK
K
K

Partial failure ZER® OK- O
Scoped conversational state ZER® OK- O

ZERO - OK- —» OK - OK*

Grade table

Mapping events to components ZERO ZERO® OK
Building a shared understanding ZER® OK- OK
K
K

Partial failure ZER® OK- O
Scoped conversational state ZER® OK- O

ZERO - OK- —» OK - OK*

syn-di-cate

a language for int

eractive programs

Actors + Dataspaces

Paper. - Formal semantics

+ Assertions + Nesting

& basic properties

- Incremental SCN protocol & equivalence thm

- Tries for efficient ©

ataspace implementation

- Performance model & measurements
- Case studies: TCP/IP stack, GUI widget

http://syndicate-lang.org/

