
ESOP 2016, Eindhoven, Netherlands; 20160405

Coordinated Concurrent Programming in

SYNDICATE

Tony Garnock-Jones ✉ Matthias Felleisen
tonyg@ccs.neu.edu matthias@ccs.neu.edu

Northeastern University Northeastern University

How can we organise
our interactive programs?

How can we organise
our interactive programs?

With a programming language!

How can we organise
our interactive programs?

SYNDICATE

User

Program

Interactive System

User

Program

External Concurrency

User

Program

Lots of External Concurrency

User

Program

Lots of External Concurrency
Internal Organisation Reflects External Concurrency

User

with coordination
+ internal tasks

Program

Lots of External Concurrency
Internal Organisation Reflects External Concurrency

A

C
B

D

 Networked
 Program

A

B

C

D with coordination
+ internal tasks

Lots of External Concurrency
Internal Organisation Reflects External Concurrency

A

C

E

B

D

 Networked
 Program

A

B

C

D with coordination
+ internal tasks

Lots of Dynamic, External Concurrency
Component startup → interaction → shutdown/failure

A

C

E

B

D

 Networked
 Program

A

B

C

D

E

with coordination
+ internal tasks

Lots of Dynamic, External Concurrency
Component startup → interaction → shutdown/failure

A

C

E

B

D

 Networked
 Program

A

B

C

D

E

with coordination
+ internal tasks

Lots of Dynamic, External Concurrency
Component startup → interaction → shutdown/failure

A

C

E
D

 Networked
 Program

A

B

C

D

E

with coordination
+ internal tasks

Lots of Dynamic, External Concurrency
Component startup → interaction → shutdown/failure

A

C

E
D

 Networked
 Program

A

C

D

E

with coordination
+ internal tasks

Lots of Dynamic, External Concurrency
Component startup → interaction → shutdown/failure

SYNDICATE

event × state → [action] × state

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42Actor behaviour function

private state
unique internal ID

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

Dataspace: assertions + provenance cf. Linda's
“Tuplespaces”

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

“I, actor #17, assert that
 the current score is 3.”

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

“I, actor #42, assert that
 the space key is currently
 held down.”

event × state → [action] × state

actor
#17

actor
#42

Actions carry assertions
actor → environment

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

event × state → [action] × state

actor
#17

actor
#42

Events carry assertions
environment → actor

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

event × state → [action] × state

actor
#17

actor
#42

actor
#94

{ [sprite,player,51,100,],

 ?[keyDown,★] }

[currentScore,3] → actor #17
[keyDown,space] → actor #42

event × state → [action] × state

actor
#17

actor
#42

actor
#94

{ [sprite,player,51,100,],

 ?[keyDown,★] }

[currentScore,3] → actor #17
[keyDown,space] → actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

“I, actor #94, am interested in keeping track
 of assertions of the form [keyDown,★].”

event × state → [action] × state

actor
#17

actor
#42

actor
#94

{ [keyDown,space] }

[currentScore,3] → actor #17
[keyDown,space] → actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

{ }

actor
#94

[currentScore,3] → actor #17
[keyDown,space] → actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

{ }

actor
#94

[currentScore,3] → actor #17
[keyDown,space] actor #42

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

{ }

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

event × state → [action] × state

actor
#17

actor
#42

actor
#94

[currentScore,3] → actor #17

[sprite,player,51,100,] → actor #94
?[keyDown,★] → actor #94

actor
#42

actor
#1

⟵ actor
#99

[keyDown,space] → actor #42

actor
#42

actor
#1

{ ?⇃[keyDown,★],
 ⇃?[keyDown,★] }

⟵ actor
#99

[keyDown,space] → actor #42

actor
#42

actor
#1

{ ?⇃[keyDown,★],
 ⇃?[keyDown,★] }

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⟵ actor
#99

[keyDown,space] → actor #42

actor
#42

actor
#1

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⟵ actor
#99

[keyDown,space] → actor #42
“I, actor #1, assert that I am
 interested in all key-down assertions
 at the next level out.”

actor
#42

actor
#1

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⟵ actor
#99

[keyDown,space] → actor #42“I, actor #1, request my dataspace to
 assert ‘interest in all key-down assertions’
 on my behalf at the next level out.”

actor
#42

actor
#1

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⟵ actor
#99

[keyDown,space] → actor #42

actor
#42

actor
#1

{ ?[keyDown,★] }

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⟵ actor
#99

[keyDown,space] → actor #42

actor
#42

actor
#1

{ ?[keyDown,★] }

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⟵ actor
#99

[keyDown,space] → actor #42
?[keyDown,★] → actor #99

actor
#42

actor
#1

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⟵ actor
#99

[keyDown,space] → actor #42
?[keyDown,★] → actor #99

actor
#42

actor
#1

{ [keyDown,space] }

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⟵ actor
#99

[keyDown,space] → actor #42
?[keyDown,★] → actor #99

actor
#42

actor
#1

{ [keyDown,space] }

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⇃[keyDown,space] → ⇃ ⟵ actor
#99

[keyDown,space] → actor #42
?[keyDown,★] → actor #99

actor
#42

actor
#1

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⇃[keyDown,space] → ⇃ ⟵ actor
#99

[keyDown,space] → actor #42
?[keyDown,★] → actor #99“The next level out has informed us

 that the space key is being held down.”

actor
#42

actor
#1

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⇃[keyDown,space] → ⇃ ⟵ actor
#99

[keyDown,space] → actor #42
?[keyDown,★] → actor #99

actor
#42

actor
#1

{ ⇃[keyDown,space] }

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⇃[keyDown,space] → ⇃ ⟵ actor
#99

[keyDown,space] → actor #42
?[keyDown,★] → actor #99

actor
#42

actor
#1

?⇃[keyDown,★] → actor #1
⇃?[keyDown,★] → actor #1

⇃[keyDown,space] → ⇃ ⟵ actor
#99

[keyDown,space] → actor #42
?[keyDown,★] → actor #99

Messages are transient assertions

< [incrementScoreBy,3] >

~

{ [incrementScoreBy,3] }

followed by
{ }

General challenges of interactivity

• Mapping events to components
• Building a shared understanding
• Partial failure
• Scoped conversational state

General challenges of interactivity

• Mapping events to components
• Building a shared understanding
• Partial failure
• Scoped conversational state

Mapping events to components: OO

Mapping events to components: Actors

Mapping events to components: Syndicate

General challenges of interactivity

✓ Mapping events to components
• Building a shared understanding
• Partial failure
• Scoped conversational state

Building a shared understanding: OO

Building a shared understanding: OO

Building a shared understanding: OO

Building a shared understanding: OO

Building a shared understanding: Actors

Building a shared understanding: Syndicate

General challenges of interactivity

✓ Mapping events to components
✓ Building a shared understanding
• Partial failure
• Scoped conversational state

Partial Failure: OO & Actors

Partial Failure: OO & Actors

Partial Failure: OO & Actors

GamePiece GamePiece Store Physics Collision

add_piece(P1)

add_sub(L1)

add_piece(P1)

add_piece(P2)

add_piece(P2)

add_sub(L2)

add_piece(P1)

add_piece(P2)

Partial Failure: OO & Actors

GamePiece GamePiece Store Physics Collision

add_piece(P1)

add_sub(L1)

add_piece(P1)

add_piece(P2)

add_piece(P2)

add_sub(L2)

add_piece(P1)

add_piece(P2)

Partial Failure: OO & Actors

GamePiece GamePiece Store Physics Collision

add_piece(P1)

add_sub(L1)

add_piece(P1)

add_piece(P2)

add_piece(P2)

add_sub(L2)

add_piece(P1)

add_piece(P2)

Partial Failure: Actors (Erlang)

GamePiece GamePiece Store Physics Collision

add_piece(P1)

add_sub(L1)

add_piece(P1)

add_piece(P2)

add_piece(P2)

EXIT

del_piece(P1)

Partial Failure: Syndicate

enemy collision

(game-piece-state ...) → enemy
?(game-piece-state ★) → collision

Partial Failure: Syndicate

! collision

(game-piece-state ...) → enemy
?(game-piece-state ★) → collision

Partial Failure: Syndicate

! collision

(game-piece-state ...) enemy
?(game-piece-state ★) → collision

Partial Failure: Syndicate

collision

{ }

?(game-piece-state ★) → collision

Partial Failure: Syndicate

collision

?(game-piece-state ★) → collision

General challenges of interactivity

✓ Mapping events to components
✓ Building a shared understanding
✓ Partial failure
• Scoped conversational state

Scoped Conversational State: OO & Actors

Scoped Conversational State: OO & Actors

Scoped Conversational State: OO & Actors

Scoped Conversational State: OO & Actors

Scoped Conversational State: OO

Scoped Conversational State: Actors (Erlang/OTP)

“One-for-all” Supervision

Supervisor Player Enemy Enemy Key

Scoped Conversational State: Actors (Erlang/OTP)

“One-for-all” Supervision

Supervisor Player Enemy Enemy Key

EXIT

Scoped Conversational State: Actors (Erlang/OTP)

“One-for-all” Supervision

Supervisor Player Enemy Enemy Key

EXIT

KILL

KILL

KILL

Scoped Conversational State: Actors (Erlang/OTP)

“One-for-all” Supervision

Supervisor Player Enemy Enemy Key

Scoped Conversational State: Actors (Erlang/OTP)

“One-for-all” Supervision

Supervisor Player Enemy Enemy Key

EXIT

Scoped Conversational State: Actors (Erlang/OTP)

“One-for-all” Supervision

Supervisor Player Enemy Enemy Key

EXIT

KILL

KILL

KILL

Scoped Conversational State: Syndicate

Grade table

O
O

/C
al

lb
ac

ks
/T

hr
ea

ds

A
ct

or
s

SY
N

D
IC

AT
E

Mapping events to components ZERO ZERO OK

Building a shared understanding ZERO OK− OK

Partial failure ZERO OK− OK

Scoped conversational state ZERO OK− OK

ZERO → OK− → OK → OK+

Grade table

O
O

/C
al

lb
ac

ks
/T

hr
ea

ds

A
ct

or
s

SY
N

D
IC

AT
E

Mapping events to components

Pattern-matching via assertions of interest

ZERO ZERO OK

Building a shared understanding ZERO OK− OK

Partial failure ZERO OK− OK

Scoped conversational state ZERO OK− OK

ZERO → OK− → OK → OK+

Grade table

O
O

/C
al

lb
ac

ks
/T

hr
ea

ds

A
ct

or
s

SY
N

D
IC

AT
E

Mapping events to components ZERO ZERO OK

Building a shared understanding

The dataspace is the shared understanding!

ZERO OK− OK

Partial failure ZERO OK− OK

Scoped conversational state ZERO OK− OK

ZERO → OK− → OK → OK+

Grade table

O
O

/C
al

lb
ac

ks
/T

hr
ea

ds

A
ct

or
s

SY
N

D
IC

AT
E

Mapping events to components ZERO ZERO OK

Building a shared understanding ZERO OK− OK

Partial failure

Automatic retraction of assertions

ZERO OK− OK

Scoped conversational state ZERO OK− OK

ZERO → OK− → OK → OK+

Grade table

O
O

/C
al

lb
ac

ks
/T

hr
ea

ds

A
ct

or
s

SY
N

D
IC

AT
E

Mapping events to components ZERO ZERO OK

Building a shared understanding ZERO OK− OK

Partial failure ZERO OK− OK

Scoped conversational state

Nested dataspaces + controlled
assertion flow between them

ZERO OK− OK

ZERO → OK− → OK → OK+

Grade table

O
O

/C
al

lb
ac

ks
/T

hr
ea

ds

A
ct

or
s

SY
N

D
IC

AT
E

Mapping events to components ZERO ZERO OK

Building a shared understanding ZERO OK− OK

Partial failure ZERO OK− OK

Scoped conversational state ZERO OK− OK

ZERO → OK− → OK → OK+

syn·di·cate
a language for interactive programs

Actors + Dataspaces + Assertions + Nesting

Paper: − Formal semantics & basic properties
− Incremental SCN protocol & equivalence thm
− Tries for efficient dataspace implementation
− Performance model & measurements
− Case studies: TCP/IP stack, GUI widget

http://syndicate-lang.org/

