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Abstract

Concurrent computations resemble conversations. In a conversation, participants direct ut-
terances at others and, as the conversation evolves, exploit the known common context to
advance the conversation. Similarly, collaborating software components share knowledge with
each other in order to make progress as a group towards a common goal.

This dissertation studies concurrency from the perspective of cooperative knowledge-sharing,
taking the conversational exchange of knowledge as a central concern in the design of concur-
rent programming languages. In doing so, it makes five contributions:

1. It develops the idea of a common dataspace as a medium for knowledge exchange among
concurrent components, enabling a new approach to concurrent programming.

While dataspaces loosely resemble both “fact spaces” from the world of Linda-style lan-
guages and Erlang’s collaborative model, they significantly differ in many details.

2. It offers the first crisp formulation of cooperative, conversational knowledge-exchange as
a mathematical model.

3. It describes two faithful implementations of the model for two quite different languages.

4. It proposes a completely novel suite of linguistic constructs for organizing the internal
structure of individual actors in a conversational setting.

The combination of dataspaces with these constructs is dubbed Syndicate.

5. It presents and analyzes evidence suggesting that the proposed techniques and constructs
combine to simplify concurrent programming.

The dataspace concept stands alone in its focus on representation and manipulation of con-
versational frames and conversational state and in its integral use of explicit epistemic knowl-
edge. The design is particularly suited to integration of general-purpose I/O with otherwise-
functional languages, but also applies to actor-like settings more generally.
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B A C K G R O U N D





1
Introduction

Concurrency and its constant companions, communication and coordination, are ubiquitous
in computing. From warehouse-sized datacenters through multi-processor operating systems
to interactive or multi-threaded programs, coroutines, and even the humble function, every
computation exists in some context and must exchange information with that context in a
prescribed manner at a prescribed time. Functions receive inputs from and transmit outputs
to their callers; impure functions may access or update a mutable store; threads update shared
memory and transfer control via locks; and network services send and receive messages to and
from their peers.

Each of these acts of communication contributes to a shared understanding of the relevant
knowledge required to undertake some task common to the involved parties. That is, the
purpose of communication is to share state: to replicate information from peer to peer. After all,
a communication that does not affect a receiver’s view of the world literally has no effect. Put
differently, each task shared by a group of components entails various acts of communication
in the frame of an overall conversation, each of which conveys knowledge to components
that need it. Each act of communication contributes to the overall conversational state involved
in the shared task. Some of this conversational state relates to what must be or has been
done; some relates to when it must be done. Traditionally, the “what” corresponds closely to
“communication,” and the “when” to “coordination.”

The central challenge in programming for a concurrent world is the unpredictability of a com-
ponent’s interactions with its context. Pure, total functions are the only computations whose
interactions are completely predictable: a single value in leads to a terminating computation
which yields a single value out. Introduction of effects such as non-termination, exceptions,
or mutability makes function output unpredictable. Broadening our perspective to coroutines
makes even the inputs to a component unpredictable: an input may arrive at an unexpected
time or may not arrive at all. Threads may observe shared memory in an unexpected state, or
may manipulate locks in an unexpected order. Networks may corrupt, discard, duplicate, or
reorder messages; network services may delegate tasks to third parties, transmit out-of-date
information, or simply never reply to a request.

This seeming chaos is intrinsic: unpredictability is a defining characteristic of concurrency.
To remove the one would eliminate the other. However, we shall not declare defeat. If we
cannot eliminate harmful unpredictability, we may try to minimize it on one hand, and to cope
with it on the other. We may seek a model of computation that helps programmers eliminate
some forms of unpredictability and understand those that remain.
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To this end, I have developed new programming language design, Syndicate, which rests on
a new model of concurrent computation, the dataspace model. In this dissertation I will defend
the thesis that

Syndicate provides a new, effective, realizable linguistic mechanism for sharing
state in a concurrent setting.

This claim must be broken down before it can be understood.

mechanism for sharing state . The dataspace model is, at heart, a mechanism for shar-
ing state among neighboring concurrent components. The design focuses on mechanisms
for sharing state because effective mechanisms for communication and coordination fol-
low as special cases. Chapter 2 motivates the Syndicate design, and chapter 3 surveys a
number of existing linguistic approaches to coordination and communication, outlining the
multi-dimensional design space which results. Chapter 4 then presents a vocabulary for
and formal model of dataspaces along with basic correctness theorems.

linguistic mechanism . The dataspace model, taken alone, explains communication and
coordination among components but does not offer the programmer any assistance in struc-
turing the internals of components. The full Syndicate design presents the primitives of
the dataspace model to the programmer by way of new language constructs. These con-
structs extend the underlying programming language used to write a component, bridging
between the language’s own computational model and the style of interaction offered by
the dataspace model. Chapter 5 presents these new constructs along with an example of
their application to a simple programming language.

realizability. A design that cannot be implemented is useless; likewise an implementation
that cannot be made performant enough to be fit-for-purpose. Chapter 6 examines an ex-
ample of the integration of the Syndicate design with an existing host language. Chapter 7

discusses the key data structures, algorithms, and implementation techniques that allowed
construction of the two Syndicate prototypes, Syndicate/rkt and Syndicate/js.

effectiveness . Chapter 8 argues informally for the effectiveness of the programming model
by explaining idiomatic Syndicate style through dissection of example protocols and pro-
grams. Chapter 9 goes further, arguing that Syndicate eliminates various patterns prevalent
in concurrent programming, thereby simplifying programming tasks. Chapter 10 discusses
the performance of the Syndicate design, first in terms of the needs of the programmer and
second in terms of the actual measured characteristics of the prototype implementations.

novelty. Chapter 11 places Syndicate within the map sketched in chapter 3, showing that it
occupies a point in design space not covered by other models of concurrency.

Concurrency is ubiquitous in computing, from the very smallest scales to the very largest.
This dissertation presents Syndicate as an approach to concurrency within a non-distributed
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program.1 However, the design has consequences that may be of use in broader settings such
as distributed systems, network architecture, or even operating system design. Chapter 12

concludes the dissertation, sketching possible connections between Syndicate and these areas
that may be examined more closely in future work.

1 That is, Syndicate does not yet address the issues of unreliable or congested media, uncontrollable latency or
scheduling, or secure separation of powers familiar from Deutsch’s “fallacies of distributed computing” (Rotem-
Gal-Oz 2006).





2
Philosophy and Overview of the Syndicate Design

Computer Scientists don’t do philosophy.
—Mitch Wand

Taking seriously the idea that concurrency is fundamentally about knowledge-sharing has
consequences for programming language design. In this chapter I will explore the ramifications
of the idea and outline a mechanism for communication among and coordination of concurrent
components that stems directly from it.

Concurrency demands special support from our programming languages. Often specific
communication mechanisms like message-passing or shared memory are baked in to a lan-
guage. Sometimes additional coordination mechanisms such as locks, condition variables, or
transactions are provided; in other cases, such as in the actor model, the chosen communication
mechanisms double as coordination mechanisms. In some situations, the provided coordina-
tion mechanisms are even disguised: the event handlers of browser-based JavaScript programs
are carefully sequenced by the system, showing that even sequential programming languages
exhibit internal concurrency and must face issues arising from the unpredictability of the out-
side world.1

Let us step back from consideration of specific conversational mechanisms, and take a
broader viewpoint. Seen from a distance, all these approaches to communication and coor-
dination appear to be means to an end: namely, they are means by which relevant knowledge is
shared among cooperating components. Knowledge-sharing is then simply the means by which
they cooperate in performing their common task.

Focusing on knowledge-sharing allows us to ask high-level questions that are unavailable to
us when we consider specific communication and coordination mechanisms alone:

K1 What does it mean to cooperate by sharing knowledge?

K2 What general sorts of facts do components know?

K3 What do they need to know to do their jobs?

It also allows us to frame the inherent unpredictability of concurrent systems in terms of knowl-
edge. Unpredictability arises in many different ways. Components may crash, or suffer errors
or exceptions during their operation. They may freeze, deadlock, enter unintentional infinite

1 This example reinforces the useful distinction of concurrency from parallelism: the former results when multiple
independent ongoing activities exist; the latter, when more than one can be pursued simultaneously.
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loops, or merely take an unreasonable length of time to reply. Their actions may interleave
arbitrarily. New components may join and existing components may leave the group without
warning. Connections to the outside world may fail. Demand for shared resources may wax
and wane. Considering all these issues in terms of knowledge-sharing allows us to ask:

K4 Which forms of knowledge-sharing are robust in the face of such unpredictability?

K5 What knowledge helps the programmer mitigate such unpredictability?

Beyond the unpredictability of the operation of a concurrent system, the task the system is
intended to perform can itself change in unpredictable ways. Unforeseen program change
requests may arrive. New features may be invented, demanding new components, new knowl-
edge, and new connections and relationships between existing components. Existing relation-
ships between components may be altered. Again, our knowledge-sharing perspective allows
us to raise the question:

K6 Which forms of knowledge-sharing are robust to and help mitigate the impact of changes
in the goals of a program?

In the remainder of this chapter, I will examine these questions generally and will outline
Syndicate’s position on them in particular, concluding with an overview of the Syndicate

approach to concurrency. We will revisit these questions in chapter 3 when we make a detailed
examination of and comparison with other forms of knowledge-sharing embodied in various
programming languages and systems.

2.1 cooperating by sharing knowledge

We have identified conversation among concurrent components abstractly as a mechanism for
knowledge-sharing, which itself is the means by which components work together on a com-
mon task. However, taken alone, the mere exchange of knowledge is insufficient to judge
whether an interaction is cooperative, neutral, or perhaps even malicious. As programmers, we
will frequently wish to orchestrate multiple components, all of which are under our control, to
cooperate with each other. From time to time, we must equip our programs with the means for
responding to non-cooperative, possibly-malicious interactions with components that are not
under our control. To achieve these goals, an understanding of what it is to be cooperative is
required.

H. Paul Grice, a philosopher of language, proposed the cooperative principle of conversation
in order to make sense of the meanings people derive from utterances they hear:

cooperative principle (cp). Make your conversational contribution such as is required,
at the stage at which it occurs, by the accepted purpose or direction of the talk exchange in
which you are engaged. (Grice 1975)

He further proposed four conversational maxims2 as corollaries to the CP, presented in figure 1.
It is important to note the character of these maxims:

2 As opposed to other kinds of maxims, “aesthetic, social, or moral in nature” (Grice 1975, p. 47)
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quantity.

1. Make your contribution as informative as required (for the current purposes of the
exchange).

2. Do not make your contribution more informative than is required.

quality. Try to make your contribution one that is true.

1. Do not say what you believe to be false.

2. Do not say that for which you lack adequate evidence.

relation. Be relevant.

manner . Be perspicuous.

1. Avoid obscurity of expression.

2. Avoid ambiguity.

3. Be brief (avoid unnecessary prolixity).

4. Be orderly.

Figure 1: Grice’s Conversational Maxims (Grice 1975)

They are not sociological generalizations about speech, nor they are moral pre-
scriptions or proscriptions on what to say or communicate. Although Grice pre-
sented them in the form of guidelines for how to communicate successfully, I think
they are better construed as presumptions about utterances, presumptions that we
as listeners rely on and as speakers exploit. (Bach 2005)

Grice’s principle and maxims can help us tackle question K1 in two ways. First, they can be
read directly as constructive advice for designing conversational protocols for cooperative in-
terchange of information. Second, they can attune us to particular families of design mistakes
in such protocols that result from cases in which these “presumptions” are invalid. This can
in turn help us come up with guidelines for protocol design that help us avoid such mistakes.
Thus, we may use these maxims to judge a given protocol among concurrent components, ask-
ing ourselves whether each communication that a component makes lives up to the demands
of each maxim.

Grice introduces various ways of failing to fulfill a maxim, and their consequences:

1. Unostentatious violation of a maxim, which can mislead peers.

2. Explicit opting-out of participation in a maxim or even the Cooperative Principle in gen-
eral, making plain a deliberate lack of cooperation.

3. Conflict between maxims: for example, there may be tension between speaking some nec-
essary (Quantity(1)) truth (Quality(1)), and a lack of evidence in support of it (Quality(2)),
which may lead to shaky conclusions down the line.
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4. Flouting of a maxim: blatant, obviously deliberate violation of a conversational maxim,
which “exploits” the maxim, with the intent to force a hearer out of the usual frame of the
conversation and into an analysis of some higher-order conversational context.

Many, but not all, of these can be connected to analogous features of computer communication
protocols. In this dissertation, I am primarily assuming a setting involving components that de-
liberately aim to cooperate. We will not dwell on deliberate violation of conversational maxims.
However, we will from time to time see that consideration of accidental violation of conversa-
tional maxims is relevant to the design and analysis of computer protocols. For example, Grice
writes that

[the] second maxim [of Quantity] is disputable; it might be said that to be overin-
formative is not a transgression of the [Cooperative Principle] but merely a waste of
time. However, it might be answered that such overinformativeness may be confus-
ing in that it is liable to raise side issues; and there may also be an indirect effect, in
that the hearers may be misled as a result of thinking that there is some particular
point in the provision of the excess of information. (Grice 1975)

This directly connects to (perhaps accidental) excessive bandwidth use (“waste of time”) as
well as programmer errors arising from exactly the misunderstanding that Grice describes.

It may seem surprising to bring ideas from philosophy of language to bear in the setting of co-
operating concurrent computerized components. However, Grice himself makes the connection
between his specific conversational maxims and “their analogues in the sphere of transactions
that are not talk exchanges,” drawing on examples of shared tasks such as cooking and car
repair, so it does not seem out of place to apply them to the design and analysis of our conver-
sational computer protocols. This is particularly the case in light of Grice’s ambition to explain
the Cooperative Principle as “something that it is reasonable for us to follow, that we should not
abandon.” (Grice 1975, p. 48; emphasis in original)

The CP makes mention of the “purpose or direction” of a given conversation. We may view
the fulfillment of the task shared by the group of collaborating components as the purpose
of the conversation. Each individual component in the group has its own role to play and,
therefore, its own “personal” goals in working toward successful completion of the shared
task. Kitcher (1990), writing in the context of the social structure of scientific collaboration,
introduces the notions of personal and impersonal epistemic intention.3 We may adapt these ideas
to our setting, explicitly drawing out the notion of a role within a conversational protocol. A
cooperative component “wishes” for the group as a whole to succeed: this is its “impersonal”
epistemic intention. It also has goals for itself, “personal” epistemic intentions, namely to
successfully perform its roles within the group.

Finally, the CP is a specific example of the general idea of epistemic reasoning, logical reason-
ing incorporating knowledge and beliefs about one’s own knowledge and beliefs, and about
the knowledge and beliefs of other parties (Fagin et al. 2004; Hendricks and Symons 2015; van
Ditmarsch, van der Hoek and Kooi 2017). However, epistemic reasoning has further applica-
tions in the design of conversational protocols among concurrent components, which brings us
to our next topic.

3 See also Dunn (2017) who places Kitcher’s work in a wider context.
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Figure 2: Components, tasks, and conversational structure

2.2 knowledge types and knowledge flow

The conversational state that accumulates as part of a collaboration among components can
be thought of as a collection of facts. First, there are those facts that define the frame of a
conversation. These are exactly the facts that identify the task at hand; we label them “fram-
ing knowledge”, and taken together, they are the “conversational frame” for the conversation
whose purpose is completion of a particular shared task. Just as tasks can be broken down into
more finely-focused subtasks, so can conversations be broken down into sub-conversations. In
these cases, part of the conversational state of an overarching interaction will describe a frame
for each sub-conversation, within which corresponding sub-conversational state exists. The
knowledge framing a conversation acts as a bridge between it and its wider context, defining
its “purpose” in the sense of the CP. Figure 2 schematically depicts these relationships.

Some facts define conversational frames, but every shared fact is contextualized within some
conversational frame. Within a frame, then, some facts will pertain directly to the task at
hand. These, we label “domain knowledge”. Generally, such facts describe global aspects
of the common problem that remain valid as we shift our perspective from participant to
participant. Other facts describe the knowledge or beliefs of particular components. These, we
label “epistemic knowledge”.

For example, as a file transfer progresses, the actual content of the file does not change: it
remains a global fact that byte number 300 (say) has value 255, no matter whether the transfer
has reached that position or not. The content of the file is thus “domain knowledge”. However,
as the transfer proceeds and acknowledgements of receipt stream from the recipient to the
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transmitter, the transmitter’s beliefs about the receiver’s knowledge change. Each successive
acknowledgement leads the transmitter to believe that the receiver has learned a little more of
the file’s content. Information on the progress of the transfer is thus “epistemic knowledge”.4

If domain knowledge is “what is true in the world”, and epistemic knowledge is “who knows
what”, the third piece of the puzzle is “who needs to know what” in order to effectively make
a contribution to the shared task at hand. We will use the term “interests” as a name for those
facts that describe knowledge that a component needs to learn. Knowledge of the various
interests in a group allows collaborators to plan their communication acts according to the
needs of individual components and the group as a whole. In conversations among people,
interests are expressed as questions; in a computational setting, they are conveyed by requests,
queries, or subscriptions.5

The interests of components in a concurrent system thus direct the flow of knowledge within
the system. The interests of a group may be constant, or may vary with time.

When interest is fixed, remaining the same for a certain class of shared task, the programmer
can plan paths for communication up front. For example, in the context of a single TCP
connection, the interests of the two parties involved are always the same: each peer wishes to
learn what the other has to say. As a consequence, libraries implementing TCP can bake in the
assumption that clients will wish to access received data. As another example, a programmer
charged with implementing a request counter in a web server may choose to use a simple
global integer variable, safe in the knowledge that the only possible item of interest is the
current value of the counter.

A changing, dynamic set of interests, however, demands development of a vocabulary for
communicating changes in interest during a conversation. For example, the query language
of a SQL database is just such a vocabulary. The server’s initial interest is in what the client
is interested in, and is static, but the client’s own interests vary with each request, and must
be conveyed anew in the context of each separate interaction. Knowledge about dynamically-
varying interests allows a group of collaborating components to change its interaction patterns
on the fly.6

With this ontology in hand, we may answer questions K2 and K3. Each task is delimited by
a conversational frame. Within that frame, components share knowledge related to the domain
of the task at hand, and knowledge related to the knowledge, beliefs, needs, and interests of
the various participants in the collaborative group. Conversations are recursively structured by
shared knowledge of (sub-)conversational frames, defined in terms of any or all of the types
of knowledge we have discussed. Some conversations take place at different levels within a
larger frame, bridging between tasks and their subtasks. Components are frequently engaged
in multiple tasks, and thus often participate in multiple conversations at once. The knowledge

4 Is the receiver telling the truth, or has it been discarding the received data, falsely acknowledging safe receipt of it?
This is where the Cooperative Principle comes in. Acting as if the transmitter’s beliefs are in fact knowledge trusts
that the receiver is properly cooperating.

5 The fact of a “need to know” is also perhaps a form of epistemic knowledge, as it expresses a claim about the
knowledge of a particular component: namely, that it does not know some specific thing or things.

6 This perspective lines up very well with the Cooperative Principle, in that an expressed interest—a question or
query—strongly suggests an immediately relevant, appropriate, required conversational contribution.
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a component needs to do its job is provided to it when it is created, or later supplied to it in
response to its interests.

2.3 unpredictability at run-time

A full answer to question K4 must wait until the survey of communication and coordina-
tion mechanisms of chapter 3. However, this dissertation will show that at least one form
of knowledge-sharing, the Syndicate design, encourages robust handling of many kinds of
concurrency-related unpredictability.

The epistemological approach we have taken to questions K1–K3 suggests some initial steps
toward an answer to question K5. In order for a program to be robust in the face of unpre-
dictable events, it must first be able to detect these events, and second be able to muster an
appropriate response to them. Certain kinds of events can be reliably detected and signaled,
such as component crashes and exceptions, and arrivals and departures of components in the
group. Others cannot easily be detected reliably, such as nontermination, excessive slowness,
or certain kinds of deadlock and datalock. Half-measures such as use of timeouts must suffice
for the latter sort. Still other kinds of unpredictability such as memory races or message races
may be explicitly worked around via careful protocol design, perhaps including information
tracking causality or provenance of a piece of knowledge or arranging for extra coordination
to serialize certain sensitive operations.

No matter the source of the unpredictability, once detected it must be signaled to interested
parties. Our epistemic, knowledge-sharing focus allows us to treat the facts of an unpredictable
event as knowledge within the system. Often, such a fact will have an epistemic consequence.
For example, learning that a component has crashed will allow us to discount any partial
results we may have learned from it, and to discard any records we may have been keeping
of the state of the failed component itself. Generally speaking, an epistemological perspective
can help each component untangle intact from damaged or potentially untrustworthy pieces
of knowledge. Having classified its records into “salvageable” and “unrecoverable”, it may
discard items as necessary and engage with the remaining portion of the group in actions to
repair the damage and continue toward the ultimate goal.

One particular strategy is to retry a failed action. Consideration of the roles involved in a
shared task can help determine the scope of the action to retry. For example, the idea of super-
vision that features so prominently in Erlang programming (Armstrong 2003) is to restart entire
failing components from a specification of their roles. Here, consideration of the epistemic in-
tentions of components can be seen to help the programmer design a system robust to certain
forms of unpredictable failure.

2.4 unpredictability in the design process

Programs are seldom “finished”. Change must be accommodated at every stage of a program’s
life cycle, from the earliest phases of development to, in many cases, long after a program is
deployed. When concurrency is involved, such change often involves emendations to protocol
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definitions and shifts in the roles and relationships within a group of components. Just as with
question K4, a full examination of question K6 must wait for chapter 3. However, approaching
the question in the abstract, we may identify a few desirable characteristics of linguistic support
for concurrent programming.

First, debugging of concurrent programs can be extremely difficult. A language should
have tools for helping programmers gain insight into the intricacies of the interactions among
each program’s components. Such tools depend on information gleaned from the knowledge-
sharing mechanism of the language. As such, a mechanism that generates trace information
that matches the mental model of the programmer is desirable.

Second, changes to programs often introduce new interactions among existing components.
A knowledge-sharing mechanism should allow for straightforward composition of pieces of
program code describing (sub)conversations that a component is to engage in. It should be
possible to introduce an existing component to a new conversation without heavy revision of
the code implementing the conversations the component already supports.

Finally, service programs must often run for long periods of time without interruption. In
cases where new features or important bug-fixes must be introduced, it is desirable to be able
to replace or upgrade program components without interrupting service availability. Similar
concerns arise even for user-facing graphical applications, where upgrades to program code
must preserve various aspects of program state and configuration across the change.

2.5 Syndicate’s approach to concurrency

Syndicate places knowledge front and center in its design in the form of assertions. An asser-
tion is a representation of an item of knowledge that one component wishes to communicate
to another. Assertions may represent framing knowledge, domain knowledge, and epistemic
knowledge, as a component sees fit. Each component in a group exists within a dataspace
which both keeps track of the group’s current set of assertions and schedules execution of its
constituent components. Components add and remove assertions from the dataspace freely,
and the dataspace ensures that components are kept informed of relevant assertions according
to their declared interests.

In order to perform this task, Syndicate dataspaces place just one constraint on the interpre-
tation of assertions: there must exist, in a dataspace implementation, a distinct piece of syntax
for constructing assertions that will mean interest in some other assertion. For example, if “the
color of the boat is blue” is an assertion, then so is “there exists some interest in the color of
the boat being blue”. A component that asserts interest in a set of other assertions will be kept
informed as members of that set appear and disappear in the dataspace through the actions of
the component or its peers.

Syndicate makes extensive use of wildcards for generating large—in fact, often infinite—sets
of assertions. For example, “interest in the color of the boat being anything at all” is a
valid and useful set of assertions, generated from a piece of syntax with a wildcard marker
in the position where a specific color would usually reside. Concretely, we might write
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interestExists(color(boat, ?)), which generates the set of assertions interestExists(color(boat, x)),
with x ranging over the entire universe of assertions.7

The design of the dataspace model thus far seems similar to the tuplespace model (Gelernter
1985; Gelernter and Carriero 1992; Carriero et al. 1994). There are two vital distinctions. The
first is that tuples in the tuplespace model are “generative”, taking on independent existence
once placed in the shared space, whereas assertions in the dataspace model are not. Asser-
tions in a dataspace never outlive the component that is currently asserting them;8 when a
component terminates, all its assertions are retracted from the shared space. This occurs whether
termination was normal or the result of a crash or an exception. The second key difference is
that multiple copies of a particular tuple may exist in a tuplespace, while redundant assertions
in a dataspace cannot be distinguished by observers. If two components separately place an
assertion x into their common dataspace, a peer that has previously asserted interest in x is
informed merely that x has been asserted, not how many times it has been asserted. If one
redundant assertion of x is subsequently withdrawn, the observer will not be notified; only
when every assertion of x is retracted is the observer notified that x is no longer present in the
dataspace. Observers are shown only a set view on an underlying bag of assertions. In other
words, producing a tuple is non-idempotent, while making an assertion is idempotent.

Even more closely related is the fact space model (Mostinckx et al. 2007; Mostinckx, Lombide
Carreton and De Meuter 2008), an approach to middleware for connecting programs in mo-
bile networks. The model is based on an underlying tuplespace, interpreting tuples as logical
facts by working around the generativity and poor fault-tolerance properties of the tuplespace
mechanism in two ways. First, tuples are recorded alongside the identity of the program that
produced them. This provenance information allows tuples to be removed when their producer
crashes or is otherwise disconnected from the network. Second, tuples can be interpreted in
an idempotent way by programs. This allows programs to ignore redundant tuples, recovering
a set view from the bag of tuples they observe. While the motivations and foundations of the
two works differ, in many ways the dataspace and fact space models address similar concerns.
Conceptually, the dataspace model can be viewed as an adaptation and integration of the fact
space model into a programming language setting. The fact space model focuses on scaling up
to distributed systems, while our focus is instead on a mechanism that scales down to concur-
rency in the small. In addition, the dataspace model separates itself from the fact space model
in its explicit, central epistemic constructions and its emphasis on conversational frames.

The dataspace model maintains a strict isolation between components in a dataspace, forcing
all interactions between peers through the shared dataspace. Components access and update
the dataspace solely via message passing. Shared memory in the sense of multi-threaded mod-
els is ruled out. In this way, the dataspace model seems similar to the actor model (Hewitt,
Bishop and Steiger 1973; Agha 1986; Agha et al. 1997; De Koster et al. 2016). The core distinc-
tion between the models is that components in the dataspace model communicate indirectly
by making and retracting assertions in the shared store which are observed by other compo-
nents, while actors in the actor model communicate directly by exchange of messages which are

7 We defer selection of a specific universe of assertions to chapter 4.
8 Assertions thus have an additional, intrinsic epistemic character: the existence of an assertion implies the existence

of an asserter.
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addressed to other actors. Assertions in a dataspace are routed according to the intersection
between sets of assertions and sets of asserted interests in assertions, while messages in the
actor model are each routed to an explicitly-named target actor.

The similarities between the dataspace model and the actor, tuplespace, and fact space mod-
els are strong enough that we borrow terminology from them to describe concepts in Syndicate.
Specifically, we borrow the term “actor” to denote a Syndicate component. What the ac-
tor model calls a “configuration” we fold into our idea of a “dataspace”, a term which also
denotes the shared knowledge store common to a group of actors. The term “dataspace” it-
self was chosen to highlight this latter denotation, making a connection to fact spaces and
tuplespaces.

We will touch again on the similarities and differences among these models in chapter 3,
examining details in chapter 11. In the remainder of this subsection, let us consider Syndicate’s
relationship to questions K1–K6.

cooperation, knowledge & conversation. The Syndicate design takes questions
K1–K3 to heart, placing them at the core of its choice of sharing mechanism and the concomi-
tant approach to protocol design. Actors exchange knowledge encoded as assertions via a
shared dataspace. All shared state in a Syndicate program is represented as assertions: this
includes domain knowledge, epistemic knowledge, and frame knowledge. Key to Syndicate’s
functioning is the use of a special form of epistemic knowledge, namely assertions of interest.
It is these assertions that drive knowledge flow in a program from parties asserting some fact
to parties asserting interest in that fact.

Viewing an interaction among actors as a conversation and shared assertions as conversational
state allows programmers to employ the linguistic tools discussed in section 2.1, taking steps
toward a pragmatics of computer protocols.9 Syndicate encourages programmers to design
conversational protocols directly in terms of roles and to map conversational contributions onto
the assertion and retraction of assertions in the shared space. Grice’s maxims offer high-level
guidance for defining the meaning of each assertion: the maxims of quantity guide the design
of the individual records included in each assertion; those of quality and relevance help deter-
mine the criteria for when an assertion should be made and when it should be retracted; and
those of manner shape a vocabulary of primitive assertions with precisely-defined meanings
that compose when simultaneously expressed to yield complex derived meanings.

Syndicate’s assertions of interest determine the movement of knowledge in a system. They
define, in effect, the set of facts an actor is “listening” for. All communication mechanisms
must have some equivalent feature, used to route information from place to place. Unusually,
however, Syndicate allows actors to react to these assertions of interest, in that assertions of
interest are ordinary assertions like any other. Actors may act based on their knowledge of the

9 In linguistics, ‘pragmatics’ means something slightly different to its meaning in the field of programming languages:

Pragmatics is sometimes characterized as dealing with the effects of context [...] if one collectively
refers to all the facts that can vary from utterance to utterance as ‘context.’ (Korta and Perry 2015)

Mey (2001) defines pragmatics as the subfield of linguistics which “studies the use of language in human communi-
cation as determined by the conditions of society”. Broadening its scope to include computer languages in software
communication as determined by the conditions of the system as a whole takes us into a somewhat speculative area.
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way knowledge moves in a system by expressing interest in interest and deducing implicatures
from the discovered facts. Mey (2001) defines a conversational implicature as “something which
is implied in conversation, that is, something which is left implicit in actual language use.”
Grice (1975) makes three statements helpful in pinning down the idea of conversational impli-
cature: 1. “To assume the presence of a conversational implicature, we have to assume that at
least the Cooperative Principle is being observed.” 2. “Conversational implicata are not part of
the meaning of the expressions to the employment of which they attach.” This is what distin-
guishes implicature from implication. 3. “To calculate a conversational implicature is to calculate
what has to be supposed in order to preserve the supposition that the Cooperative Principle is
being observed.”

For example, imagine an actor F responsible for answering questions about factorials. The
assertion fact(8, 40320) means that the factorial of 8 is 40320. If F learns that some peer has as-
serted interestExists(fact(8, ?)), which is to be interpreted as interest in the set of facts describing
all potential answers to the question “what is the factorial of 8?,” it can act on this knowledge
to compute a suitable answer and can then assert fact(8, 40320) in response. Once it learns that
interest in the factorial of 8 is no longer present in the group, it can retract its own assertion and
release the corresponding storage resources.10 Knowledge of interest in a topic acts as a signal
of demand for some resource: here, computation (directly) and storage (indirectly). The raw
fact of the interest itself has the direct semantic meaning “please convey to me any assertions
matching this pattern”, but has an indirect, unspoken, pragmatic meaning—an implicature—in
our imagined protocol of “please compute the answer to this question.”11

The idea of implicature finds use beyond assertions of interest. For example, the process of
deducing an implicature may be used to reconstruct temporarily- or permanently-unavailable
information “from context,” based on the underlying assumption that the parties involved are
following the Cooperative Principle. For example, a message describing successful fulfillment
of an order carries an implicature of the existence of the order. A hearer of the message may
infer the order’s existence on this basis. Similarly, a reply implicates the existence of a request.

Finally, the mechanism that Syndicate provides for conveying assertions from actor to actor
via the dataspace allows reasoning about common knowledge (Fagin et al. 2004). An actor placing
some assertion into the dataspace knows both that all interested peers will automatically learn
of the assertion and that each such peer knows that all others will learn of the assertion. Provid-
ing this guarantee at the language level encourages the use of epistemic reasoning in protocol
design while avoiding the risks of implementing the necessary state-management substrate by
hand.

run-time unpredictability. Recall from section 2.3 that robust treatment of unpre-
dictability requires that we must be able to either detect and respond to or forestall the oc-
currence of the various unpredictable situations inherent to concurrent programming. The
dataspace model is the foundation of Syndicate’s approach to questions K4 and K5, offering

10 See section 8.7 for more on “procedure calls” and associated resource management.
11 The semantic meaning of the assertion is general across Syndicate programs: interest in an assertion has a fixed

meaning to Syndicate no matter the domain of the protocol concerned. Implicatures deduced from assertions,
however, have meaning only within a specific protocol.
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a means for signaling and detection of such events. However, by itself the dataspace model
is not enough. The picture is completed with linguistic features for structuring state and con-
trol flow within each individual actor. These features allow programmers to concisely express
appropriate responses to unexpected events. Finally, Syndicate’s knowledge-based approach
suggests techniques for protocol design which can help avoid certain forms of unpredictability
by construction.

The dataspace model constrains the means by which Syndicate programs may communicate
events within a group, including communication of unpredictable events. All communication
must be expressed as changes in the set of assertions in the dataspace. Therefore, an obvious
approach is to use assertions to express such ideas as demand for some service, membership
of some group, presence in some context, availability of some resource, and so on. Actors
expressing interest in such assertions will receive notifications as matching assertions come and
go, including when they vanish unexpectedly. Combining this approach with the guarantee
that the dataspace removes all assertions of a failing actor from the dataspace yields a form of
exception propagation.

For example, consider a protocol where actors assert userMessage(S), where S is a message for
the user, in order to cause a user interface element to appear on the user’s display. The actor
responsible for reacting to such assertions, creating and destroying graphical user interface
elements, will react to retraction of a userMessage assertion by removing the associated graphical
element. The actor that asserts some userMessage may deliberately retract it when it is no longer
relevant for the user. However, it may also crash. If it does, the dataspace model ensures that
its assertions are all retracted. Since this includes the userMessage assertion, the actor managing
the display learns automatically that its services are no longer required.

Another example may be seen in the fact example discussed above. The client asserting
interestExists(fact(8, ?)) may “lose interest” before it receives an answer, or of course may crash
unexpectedly. From the perspective of actor F, the two situations are identical: F is informed
of the retraction, concludes that no interest in the factorial of 8 remains, and may then choose
to abandon the computation. The request implicated by assertion of interestExists(fact(8, ?)) is
effectively canceled by retraction, whether this is caused by some active decision on the part of
the requestor or is an automatic consequence of its unexpected failure.

The dataspace model thus offers a mechanism for using changes in assertions to express
changes in demand for some resource, including both expected and unpredictable changes.
Building on this mechanism, Syndicate offers linguistic tools for responding appropriately to
such changes. Assertions describing a demand or a request act as framing knowledge and thus
delimit a conversation about the specific demand or request concerned. For example, the
presence of userMessage(S) for each particular S corresponds to one particular “topic of conver-
sation”. Likewise, the assertion interestExists(fact(8, ?)) corresponds to a particular “call frame”
invoking the services of actor F. Actors need tools for describing such conversational frames,
associating local conversational state, relevant event handlers, and any conversation-specific
assertions that need to be made with each conversational frame created.
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Syndicate introduces a language construct called a facet for this purpose.12 Each actor is
composed of multiple facets; each facet represents a particular conversation that the actor is
engaged in. A facet both scopes and specifies conversational responses to incoming events.
Each facet includes private state variables related to the conversation concerned, as well as
a bundle of assertions and event handlers. Each event handler has a pattern over assertions
associated with it. Each of these patterns is translated into an assertion of interest and combined
with the other assertions of the facet to form the overall contribution that the facet makes to
the shared dataspace. An analogy to objects in object-oriented languages can be drawn. Like
an object, a facet has private state. Its event handlers are akin to an object’s methods. Unique
to facets, though, is their contribution to the shared state in the dataspace: objects lack a means
to automatically convey changes in their local state to interested peers.13

Facets may be nested. This can be used to reflect nested sub-conversations via nested facets.
When a containing facet is terminated, its contained facets are also terminated, and when
an actor has no facets left, the actor itself terminates. Of course, if the actor crashes or is
explicitly shut down, all its facets are removed along with it. These termination-related aspects
correspond to the idea that a thread of conversation that logically depends on some overarching
discussion context clearly becomes irrelevant when the broader discussion is abandoned.

The combination of Syndicate’s facets and its assertion-centric approach to state replication
yields a mechanism for robustly detecting and responding to certain kinds of unpredictable
event. However, not all forms of unpredictability lend themselves to explicit modeling as
shared assertions. For these, we require an alternative approach.

Consider unpredictable interleavings of events: for example, UDP datagrams may be re-
ordered arbitrarily by the network. If some datagram B can only be interpreted after datagram
A has been interpreted, a datagram receiver R must arrange to buffer packets when they are
received out of order, reconstructing an appropriate order to perform its task. The same ap-
plies to messages passed between actors in the actor model. The observation that datagram A

establishes necessary context for the subsequent message B suggests an approach we may take
in Syndicate. If instead of messages we model A and B as assertions, then we may write our
program R as follows:

1. Express interest in A. Wait until notified that A has been asserted.

2. Express interest in B. Wait until notified that B has been asserted.

3. Process A and B as usual.

4. Withdraw the previously-asserted interests in A and B.

This program will function correctly no matter whether A is asserted before B or vice versa.
The structure of program R reflects the observation that A supplies a frame within which B is to
be understood by paying attention to B only after having learned A. Use of assertions instead of
messages allows an interpreter of knowledge to decouple itself from the precise order of events

12 The term “facet” is borrowed from a related use in the language E (Miller 2006, section 6.2), which seems to have
taken the name in turn from the language Joule (Agorics, Inc. 1995, chapter 3).

13 Almost all object-oriented languages turn to the observer pattern (Gamma et al. 1994) to simulate this ability.
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in which knowledge is acquired and shared, concentrating instead on the logical dependency
ordering among items of knowledge.14

Finally, certain forms of unpredictability cannot be effectively detected or forestalled. For
example, no system can distinguish nontermination from mere slowness in practice. In cases
such as these, timeouts can be used in Syndicate just as in other languages. Modeling time as
a protocol involving assertions laterThan(t) in the dataspace allows us to smoothly incorporate
time with other protocols, treating it as just like any other kind of knowledge about the world.

unpredictability in the design process . Section 2.4, expanding on question K6, in-
troduced the challenges of debuggability, flexibility, and upgradeability. The dataspace model
contributes to debuggability, while facets and hierarchical layering of dataspaces contribute
to flexibility. While this dissertation does not offer more than a cursory investigation of up-
gradeability, the limited exploration of the topic so far completed does suggest that it could be
smoothly integrated with the Syndicate design.

The dataspace model leads the programmer to reason about the group of collaborating actors
as a whole in terms of two kinds of change: actions that alter the set of assertions in the
dataspace, and events delivered to individual actors as a consequence of such actions. This
suggests a natural tracing mechanism. There is nothing to the model other than events and
actions, so capturing and displaying the sequence of actions and events not only accurately
reflects the operation of a dataspace program, but directly connects to the programmer’s mental
model as well.

Facets can be seen as atomic units of interaction. They allow decomposition of an actor’s
relationships and conversations into small, self-contained pieces with well-defined boundaries.
As the overall goals of the system change, its actors can be evolved to match by making al-
terations to groups of related facets in related actors. Altering, adding, or removing one facet
while leaving others in an actor alone makes perfect sense.

The dataspace model is hierarchical. Each dataspace is modeled as a component in some wider
context: as an actor in another, outer dataspace. This applies recursively. Certain assertions in
the dataspace may be marked with a special constructor that causes them to be relayed to the
next containing dataspace in the hierarchy, yielding cross-dataspace interaction. Peers in a
particular dataspace are given no means of detecting whether their collaborators are simple
actors or entire nested dataspaces with rich internal structure. This frees the program designer
to decompose an actor into a nested dataspace with multiple contained actors, without affecting
other actors in the system at large. This recursive, hierarchical (dis)aggregation of actors also
contributes to the flexibility of a Syndicate program as time goes by and requirements change.

Code upgrade is a challenging problem for any system. Replacing a unit of code involves
the old code marshaling its state into a bundle of information to be delivered to the new
code. In other words, the actor involved sends a message to its “future self”. Systems like
Erlang (Armstrong 2003) incorporate sophisticated language- and library-level mechanisms for
supporting such code replacement. Syndicate shares with Erlang some common ideas from
the actor model. The strong isolation between actors allows each to be treated separately

14 Program R recovers a form of logical monotonicity for the small protocol fragment it is engaging in. An interesting
connection can be made here to the CALM principle of Alvaro et al. (2011).
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when it comes to code replacement. Logically, each is running an independent codebase. By
casting all interactions among actors in terms of a protocol, both Erlang and Syndicate offer
the possibility of protocol-mediated upgrades and reboots affecting anything from a small part
to the entirety of a running system.15

2.6 Syndicate design principles

In upcoming chapters, we will see concrete details of the Syndicate design and its implementa-
tion and use. Before we leave the high-level perspective on concurrency, however, a few words
on general principles of the design of concurrent and distributed systems are in order. I have
taken these guidelines as principles to be encouraged in Syndicate and in Syndicate pro-
grams. To be clear, they are my own conjectures about what makes good software. I developed
them both through my experiences with early Syndicate prototypes and my experiences of
development of large-scale commercial software in my career before beginning this project. In
some cases, the guidelines influenced the Syndicate design, having an indirect but universal
effect on Syndicate programs. In others, they form a set of background assumptions intended
to directly shape the protocols designed by Syndicate programmers.

exclude implementation concepts from domain ontologies . When working
with a Syndicate implementation, programmers must design conversational protocols that
capture relevant aspects of the domain each program is intended to address. The most impor-
tant overarching principle is that Syndicate programs and protocols should make their domain
manifest, and hide implementation constructs. Generally, each domain will include an ontology of
its own, relating to concepts largely internal to the domain. Such an ontology will seldom or
never include concepts from the host language or even Syndicate-specific ideas.

Following this principle, Syndicate takes care to avoid polluting a programmer’s domain
models with implementation- and programming-language-level concepts. As far as possible,
the structure and meaning of each assertion is left to the programmer. Syndicate implemen-
tations reserve the contents of a dataspace for domain-level concepts. Access to information
in the domain of programs, relevant to debugging, tracing and otherwise reflecting on the op-
eration of a running program, is offered by other (non-dataspace, non-assertion) means. This
separation of domain from implementation mechanism manifests in several specific corollaries:

1. Do not propagate host-language exception values across a dataspace.

An actor that raises an uncaught exception is terminated and removed from the dataspace,
but the details of the exception (stack traces, error messages, error codes etc.) are not
made available to peers via the dataspace. After all, exceptions describe some aspect of a
running computer program, and do not in general relate to the program’s domain.

15 The content of a given dataspace is just the union of the assertions currently maintained by its contained actors. Each
connected actor usually maintains a complete picture of its own assertions. When all the actors in a group do this,
the dataspace underpinning the group could in principle be rebooted or upgraded seamlessly without disrupting
the work of the group as a whole, reconstructing dataspace state from the records of the actors themselves.
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Instead, a special reflective mechanism is made available for host-language programs to
access such information for debugging and other similar purposes. Actors in a dataspace
do not use this mechanism when operating normally. As a rule, they instead depend
on domain-level signaling of failures in terms of the (automatic) removal of domain-level
assertions on failure, and do not depend on host-language exceptions to signal domain-
level exceptional situations.16

2. Make internal actor identifiers completely invisible.

The notion of a (programming-language) actor is almost never part of the application
domain; this goes double for the notion of an actor’s internal identifier (a.k.a. pointer,
“pid”, or similar). Where identity of specific parties is relevant to a domain, Syndicate

requires the protocol to explicitly specify and manage such identities, and they remain
distinct from the internal identities of actors in a running Syndicate program. Again,
during debugging, the identities of specific actors are relevant to the programmer, but this
is because the programmer is operating in a different domain from that of the program
under study.

Explicit treatment of identity unlocks two desirable abilities:

a) One (implementation-level) actor can transparently perform multiple (domain-level)
roles. Having decoupled implementation-level identity from domain-level informa-
tion, we are free to choose arbitrary relations connecting them.

b) One actor can transparently delegate portions of its responsibilities to others. Ex-
plicit management of identity allows actors to share a domain-level identity without
needing to share an implementation-level identity. Peers interacting with such actors
remain unaware of the particulars of any delegation being employed.

3. Multicast communication should be the norm; point-to-point, a special case.

Conversational interactions can involve any number of participants. In languages where
the implementation-provided medium of conversation always involves exactly two par-
ticipants, programmers have to encode n-party domain-level conversations using the
two-party mechanism. Because of this, messages between components have to mention
implementation-level conversation endpoints such as channel or actor IDs, polluting oth-
erwise domain-specific ontologies with implementation-level constructs. In order to keep
implementation ideas out of domain ontologies, Syndicate does not define any kind of
value-level representation of a conversation. Instead, it leaves the choice of scheme for
naming conversations up to the programmer.

4. Equivalences on messages, assertions and other forms of shared state should be in terms
of the domain, not in terms of implementation constructs.

16 Syndicate distinguishes itself from Erlang here. Erlang’s failure-signaling primitives, links and monitors, necessar-
ily operate in terms of actor IDs, so it is no great step to include stack traces and error messages alongside an actor
ID in a failure description record.
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For example, consider deduplication of received messages. In some protocols, in order
to make message receipt idempotent, a table of previously-seen messages must be main-
tained. To decide membership of this table, a particular equivalence must be chosen.
Forcing this equivalence to involve implementation-level constructs entails a need for the
programmer to explicitly normalize messages to ensure that the implementation-level
equivalence reflects the desired domain-level equivalence. To be even more specific:

a) If a transport includes message sequence numbers, message identifiers, timestamps
etc., then these items of information from the transport should not form part of the
equivalence used.

b) Sender identity should not form part of the equivalence used. If a particular protocol
needs to know the identity of the sender of a message, it should explicitly include a
definition of the relevant notion of identity (not necessarily the implementation-level
identity of the sender) and explicitly include it in message type definitions.

support resource management decisions . Concurrent programs in all their forms
rely on being able to scope the size and lifetime of allocations of internal resources made in
response to external demand. “Demand” and “resource” are extremely general ideas. As a
result, resource management decisions appear in many different guises, and give rise to a
number of related principles:

1. Demand-matching should be well-supported.

Demand-matching is the process of automatic allocation and release of some resource in
response to detected need elsewhere in a program. The concept applies in many different
places.

For example, in response to the demand of an incoming TCP connection, a server may
allocate resources including a pair of memory buffers and a new thread. The buffers,
combined with TCP back-pressure, give control over memory usage, and the thread gives
control over compute resources as well as offering a convenient language construct to
attach other kinds of resource-allocation and -release decisions to. When the connection
closes, the server may terminate the thread, release other associated resources, and final-
ize its state.

Another example can be found in graphical user interfaces, where various widgets mani-
fest in response to the needs of the program. An entry in a “buddy list” in a chat program
may be added in response to presence of a contact, making the “demand” the presence
of the contact and the “resource” the resulting list entry widget. When the contact dis-
connects, the “demand” for the “resource” vanishes, and the list entry widget should be
removed.

2. Service presence (Konieczny et al. 2009) and presence information generally should be
well-supported.

Consider linking multiple independent services together to form a concurrent application.
A web-server may depend on a database: it “demands” the services of the database,
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which acts as a “resource”. The web-server and database may in turn depend upon a
logging service. Each service cannot start its work before its dependencies are ready: it
observes the presence of its dependencies as part of its initialization.

Similarly, in a publish-subscribe system, it may be expensive to collect and broadcast a
certain statistic. A publisher may use the availability of subscriber information to decide
whether or not the statistic needs to be maintained. Consumers of the statistic act as
“demand”, and the resource is the entirety of the activity of producing the statistic, along
with the statistic itself. Presence of consumers is used to manage resource commitment.

Finally, the AMQP messaging middleware protocol (The AMQP Working Group 2008)
includes special flags named “immediate” and “mandatory” on each published message.
They cause a special “return to sender” feature to be activated, triggering a notification
to the sender only when no receiver is present for the message at the time of its publication.
This form of presence allows a sender to take alternative action in case no peer is available
to attend to its urgent message.

support direct communication of public aspects of component state . This
is a generalization of the notion of presence, which is just one portion of overall state.

avoid dependence on timeouts . In a distributed system, a failed component is indis-
tinguishable from a slow one and from a network failure. Timeouts are a pragmatic solution
to the problem in a distributed setting. Here, however, we have the luxury of a non-distributed
design, and we may make use of specific forms of “demand” information or presence in order
to communicate failure. Timeouts are still required for inter-operation with external systems,
but are seldom needed as a normal part of greenfield Syndicate protocol design.

reduce dependence on order-of-operations . The language should be designed to
make programs robust by default to reordering of signals. As part of this, idempotent signals
should be the default where possible.

1. Event-handlers should be written as if they were to be run in a (pseudo-) random order,
even if a particular implementation does not rearrange them randomly. This is similar to
the thinking behind the random event selection in CML’s choice mechanism (Reppy 1992,
page 131).

2. Questions of deduplication, equivalence, and identity must be placed at the heart of each
Syndicate protocol design, even if only at an abstract level.

eschew transfer of higher-order data . Mathematical and computational structures
enjoy an enormous amount of freedom not available to structures that must be realized in the
physical world. Similarly, patterns of interaction that can be realized in a non-distributed
setting are often inappropriate, unworkable, or impossible to translate to a distributed setting.
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One example of this concerns higher-order data, by which I mean certain kinds of closure,17

mutable data structures, and any other stateful kind of entity.
Syndicate is not a distributed programming language, but was heavily inspired by my ex-

perience of distributed programming and by limitations of existing programming languages
employed in a distributed setting. Furthermore, certain features of the design suggest that it
may lead to a useful distributed programming model in future. With this in mind, certain
principles relate to a form of physical realizability; chief among them, the idea of limiting
information exchange to first-order data wherever possible. The language should encourage
programmers to act as if transfer of higher-order data between peers in a dataspace were im-
possible. While non-distributed implementations of Syndicate can offer support for transfer
of functions, objects containing mutable references, and so on, stepping to a distributed setting
limits programs to exchange of first-order data only, since real physical communication net-
works are necessarily first-order. Transfer of higher-order data involves a hidden use/mention
distinction. Higher-order data may be encoded, but cannot directly be transmitted.

With that said, however, notions of stateful location or place are important to certain domains,
and the ontologies of such domains may well naturally include references to such domain-
relevant location information. It is host-language higher-order data that Syndicate discourages,
not domain-level references to location and located state.

arrange actors hierarchically. Many experiments in structuring groups of (actor
model) actors have been performed over the past few decades. Some employ hierarchies of
actors, that is, the overall system is structured as a tree, with each actor or group existing in
exactly one group (e.g. Varela and Agha 1999). Others allow actors to be placed in more than
one group at once, yielding a graph of actors (e.g. Callsen and Agha 1994).

Syndicate limits actor composition to tree-shaped hierarchies of actors, again inspired by
physical realizability. Graph-like connectivity is encoded in terms of protocols layered atop
the hierarchical medium provided. Recursive groupings of computational entities in real sys-
tems tend to be hierarchical: threads within processes within containers managed by a kernel
running under a hypervisor on a core within a CPU within a machine in a datacenter.

2.7 on the name “Syndicate”

Now that we have seen an outline of the Syndicate design, the following definitions may shed
light on the choice of the name “Syndicate”:

A syndicate is a self-organizing group of individuals, companies, corporations or
entities formed to transact some specific business, to pursue or promote a shared
interest.

— Wikipedia18

17 Specifically, closures closing over mutable state; “pure” closures are in some sense not higher-order. See also Miller’s
work on “spores” (Miller, Haller and Odersky 2014; Miller et al. 2016).

18 Definition retrieved from Wikipedia, https://en.wikipedia.org/wiki/Syndicate, on 23 August 2017.

https://en.wikipedia.org/wiki/Syndicate
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Syndicate, n.

1. A group of individuals or organizations combined to promote a com-
mon interest.

1.1 An association or agency supplying material simultaneously
to a number of newspapers or periodicals.

Syndicate, v.tr.

...
1.1 Publish or broadcast (material) simultaneously in a number
of newspapers, television stations, etc.

— Oxford Dictionary19

An additional relevant observation is that a syndicate can be a group of companies, and a
company can be a group of actors.

19 Definition retrieved from the online Oxford Living Dictionaries, https://en.oxforddictionaries.com/definition/syndicate
on 23 August 2017. The full Oxford English Dictionary entries for “syndicate” are much longer and do not make
such a pleasing connection to the language design idea.

https://en.oxforddictionaries.com/definition/syndicate


3
Approaches to Coordination

Our analysis of communication and coordination so far has yielded a high-level, abstract view
on concurrency, taking knowledge-sharing as the linchpin of cooperation among components.
The previous chapter raised several questions, answering some in general terms, and leav-
ing others for investigation in the context of specific mechanisms for sharing knowledge. In
this chapter, we explore these remaining questions. To do so, we survey the paradigmatic
approaches to communication and coordination. Our focus is on the needs of programmers
and the operational issues that arise in concurrent programming. That is, we look at ways in
which an approach helps or hinders achievement of a program’s goals in a way that is robust
to unpredictability and change.

3.1 a concurrency design landscape

The outstanding questions from chapter 2 define a multi-dimensional landscape within which
we place different approaches to concurrency. A given concurrency model can be assigned to
a point in this landscape based on its properties as seen through the lens of these questions.
Each point represents a particular set of trade-offs with respect to the needs of programmers.

To recap, the questions left for later discussion were:

K4 Which forms of knowledge-sharing are robust in the face of the unpredictability intrinsic
to concurrency?

K6 Which forms of knowledge-sharing are robust to and help mitigate the impact of changes
in the goals of a program?

In addition, the investigation of question K3 (“what do concurrent components need to know to
do their jobs?”) concluded with a picture of domain knowledge, epistemic knowledge, framing
knowledge, and knowledge flow within a group of components. However, it left unaddressed
the question of mechanism, giving rise to a follow-up question:

K3bis How do components learn what they need to know as time goes by?

In short, the three questions relate to robustness, operability and mechanism, respectively. The rest
of the chapter is structured around an informal investigation of characteristics refining these
categories.
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mechanism (K3bis). A central characteristic of a given concurrency model is its mecha-
nism for exchange of knowledge among program components. Each mechanism yields
a different set of possibilities for how concurrent conversations evolve. First, a conver-
sation may have arbitrarily many participants, and a participant may engage in multiple
conversations at once. Hence, models and language designs must be examined as to

C1 how they support various conversation group sizes and

C2 how they support correlation and demultiplexing of incoming events.

Second, conversations come with associated state. Each participating component must
find out about changes to this state and must integrate those changes with its local view. The
component may also wish to change conversational state; such changes must be signaled to
relevant peers. A mechanism can thus be analyzed in terms of

C3 how it supports integration of state changes with a component’s local view and

C4 how it arranges for state changes to be signaled to conversational peers.

robustness (K4). Each concurrency model offers a different level of support to the pro-
grammer for addressing the unpredictability intrinsic to concurrent programming. Pro-
grams rely on the integrity of each participant’s view of overall conversational state; this
may entail consideration of consistency among different views of the shared state in the
presence of unpredictable latency in change propagation. These lead to investigation of

C5 how a model helps maintain integrity of conversational state and

C6 how it helps ensure consistency of state as a program executes.

In addition, viewing a conversation as a series of events describing changes in conversa-
tional state has direct implications for the connection between data flow and control flow.
Clearly, the arrival of a notification (data) at a participant ought to reliably trigger control
flow; but conversely, the creation and termination of components must also be able to
reliably trigger notifications to peers. This includes exceptions and other forms of partial
failure. Hence, we may ask

C7 how data flow leads to control flow in programs and

C8 how control flow, such as start-up or termination of a component, leads to data flow.

Finally, robust programs demand effective strategies for management of computational,
storage and other types of resources, leading us to inquire

C9 how a concurrency model supports resource management during execution.

operability (K6). The notion of operability is broad, including attributes pertaining to the
ease of working with the model at design, development, debugging and deployment time.
We will focus on the ability of a model to support

C10 debuggability and visualizability of interactions and relationships among components;

C11 evolvability of the pattern of interactions within a program; and

C12 durability of long-lived state as code evolves and features come and go.

Figure 3: Characteristics of approaches to concurrency
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Characteristics C1–C12 in figure 3 will act as a lens through which we will examine three
broad families of concurrency: shared memory models, message-passing models, and tu-
plespaces and external databases. In addition, we will analyze the fact space model briefly
mentioned in the previous chapter.

We illustrate our points throughout with a chat server that connects an arbitrary number of
participants. It relays text typed by a user to all others and generates announcements about
the arrival and departure of peers. A client may thus display a list of active users. The chat
server involves chat-room state—the membership of the room—and demands many-to-many
communication among the concurrent agents representing connected users. Each such agent
receives events from two sources: its peers in the chat-room and the TCP connection to its user.
If a user disconnects or a programming error causes a failure in the agent code, resources such
as TCP sockets must be cleaned up correctly, and appropriate notifications must be sent to the
remaining agents and users.

3.2 shared memory

Shared memory languages are those where threads communicate via modifications to shared
memory, usually synchronized via constructs such as monitors (Gosling et al. 2014; IEEE 2009;
ISO 2014). Figure 4 sketches the heart of a chat room implementation using a monitor (Brinch
Hansen 1993) to protect the shared members variable.

(C1; C3; C4) Mutable memory tracks shared state and also acts as a communications mecha-
nism. Buffers and routing information for messages between threads are explicitly encoded as
part of the conversational state, which naturally accommodates the multi-party conversations
of our chat server. However, announcing changes in conversational state to peers—a connec-
tion or disconnection, for example—requires construction of a broadcast mechanism out of
low-level primitives.

(C2) To engage in multiple conversations at once, a thread must monitor multiple regions
of memory for changes. Languages with powerful memory transactions make this easy; the
combination of “retry” and “orelse” gives the requisite power (Harris et al. 2005). Absent such
transactions, and ruling out polling, threads must explicitly signal each other when making
changes. If a thread must wait for any one of several possible events, it is necessary to reinvent
multiplexing based on condition variables and write code to perform associated book-keeping.

(C5) Maintaining the integrity of shared state is famously difficult. The burden of correctly
placing transaction boundaries or locks and correctly ordering updates falls squarely on the
programmer. It is reflected in figure 4 not only in the use of the monitor concept itself, but
also in the careful ordering of events in the connect and disconnect methods. In particular,
the call to announce (line 13) must follow the removal of user (line 12), because otherwise,
the system may invoke callback for the disconnected user. Similarly, cloning the members

map (line 15) is necessary so that a disconnecting user (line 17) does not change the collection
mid-iteration. Moreover, even with transactions and correct locking discipline, care must be
taken to maintain logical invariants of an application. For example, if a chat user’s thread
terminates unexpectedly without calling disconnect, the system continues to send output to
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1 class Chatroom

2 private Map<String, (String->())> members

3 public synchronized connect(user, callback)

4 for (existingUser, _) in members

5 callback(existingUser + " arrived")

6 members.put(user, callback)

7 announce(user + " arrived")

8 public synchronized speak(user, text)

9 announce(user + ": " + text)

10 public synchronized disconnect(user)

11 if (!members.containsKey(user)) { return }

12 members.remove(user)

13 announce(user + " left")

14 private announce(what)

15 for (user, callback) in members.clone()

16 try { callback(what) }

17 catch (exn) { disconnect(user) }

Figure 4: Monitor-style chat room

the associated TCP socket indefinitely, even though input from the socket is no longer being
handled, meaning members has become logically corrupted. Conversely, a seemingly-correct
program may call disconnect twice in corner cases, which explains the check (line 11) for
preventing double departure announcements.

(C7; C8) Memory transactions with “retry” allow control flow to follow directly from changes
to shared data; otherwise, however, data flow is completely decoupled from inter-thread con-
trol flow. The latter is provided via synchronization primitives, which are only coincidentally
associated with changes to the shared store. Coming from the opposite direction, control flow is
also decoupled from data flow. For example, exceptions do not automatically trigger a clean-up
of shared state or signal the termination of the thread to the relevant group of peers.1 Deter-
mining responsibility for a failure and deciding on appropriate recovery actions is challenging.
Consider an action by user A that leads to a call to announce. If the callback associated with
user B (line 16) throws an exception, the handler on line 17 catches it. To deal with this situation,
the developer must reason in terms of three separate, stateful entities with non-trivial responsi-
bilities: the agents for A and B plus the chat room itself. If the exception propagates, it may not
only damage the monitor’s state but terminate the thread representing A, even though it is the
fault of B’s callback. Contrast the problems seen in this situation with the call to the callback
in connect (line 5); it does not need an exception handler, because the data flow resulting from
the natural control flow of exception propagation is appropriate.

1 This line of reasoning recalls the explanation offered by Sun (now Oracle) for why the Java method Thread.stop is
deprecated. http://docs.oracle.com/javase/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html

http://docs.oracle.com/javase/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html
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(C9) The thread model also demands the manual management of resources for a given con-
versation. For example, disposal of unwanted or broken TCP sockets must be coded explicitly
in every program.

(C6) On the bright side, because it is common to have a single copy of any given piece of
information, with all threads sharing access to that copy, explicit consideration of consistency
among replicas is seldom necessary.

The many interlocking problems described above are difficult to discover in realistic pro-
grams, either through testing or formal verification. To reach line 17, a callback must fail mid-
way through an announcement caused by a different user. The need for the .clone() on line 15

is not directly obvious. To truly gain confidence in the implementation, one must consider
cases where multiple failures occur during one announcement, including the scenario where
a failure during speak causes disconnect and another failure occurs during the resulting an-
nouncement. The interactions between the various locks, loops, callbacks, exception handlers,
and pieces of mutable state are manifold and non-obvious.

(C10; C11; C12) Because shared memory languages allow unconstrained access to shared
memory, not connected to any kind of scoping construct or protocol description, recovering
a clear picture of the relationships and interactions among threads is extremely challenging.
Similarly, as discussed for character C2, modifying a component to engage in multiple conver-
sations at once or expanding the scope of a conversation to include multiple components is in
general invasive. Finally, the lack of a clear linguistic specification of the structure of the shared
memory and its relationship to a program’s threads largely precludes automated support for
orthogonal persistence and code upgrade.

An important variation on shared memory is the single-threaded, event-based style of Java-
Script (ECMA 2015). While use of explicit locking is reduced in such cases, most of the analysis
of the threaded approach continues to hold.

3.3 message-passing

Message-passing models of concurrency include languages using Hoare’s CSP channels (Hoare
1985) or channels from the π-calculus (Milner 1999), and those based on the actor model (He-
witt, Bishop and Steiger 1973; Agha 1986; Agha et al. 1997; De Koster et al. 2016). Channel
languages include CML (Donnelly and Fluet 2008; Reppy 1991), Go, and Rust, which all use
channels in a shared-memory setting, and the Join Calculus (Fournet and Gonthier 2000), which
assumes an isolated-process setting. This section concentrates on isolated processes because
channel-based systems using shared memory are like those discussed in section 3.2. Actor lan-
guages include Erlang (Armstrong 2003), Scala (Haller and Odersky 2009), AmbientTalk (Van
Cutsem et al. 2014), and E (Miller, Tribble and Shapiro 2005).

Channel- and actor-based models are closely related (Fowler, Lindley and Wadler 2016). An
actor receives input exclusively via a mailbox (Agha 1986), and messages are explicitly ad-
dressed by the sending actor to a specific recipient. In channel-based languages, messages are
explicitly addressed to particular channels; each message goes to a single recipient, even when
a channel’s receive capability is shared among a group of threads.
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1 def chatroom()

2 members = new Hashtable()

3 while True

4 match receiveMessage()

5 case Connect(user, PID)

6 monitor(PID) // Erlang-style "link"

7 for peer in members.keys

8 send(PID, ChatOutput(peer + " arrived"))

9 members.put(user, PID)

10 announce(members, user + " arrived")

11 case EXIT_SIGNAL(PID)

12 user = members.findKeyForValue(PID)

13 members.remove(user)

14 announce(members, user + " left")

15 case Speak(user, text)

16 announce(members, user + ": " + text)

17 def announce(members, what)

18 for PID in members.values

19 send(PID, ChatOutput(what))

Figure 5: Actor-style chat room

(C1) Both actor- and channel-based languages force an encoding of the chat room’s one-to-
many medium in terms of built-in point-to-point communication constructs.2 Compare figure 5,
which expresses the chat room as a process-style actor, with figure 6, which presents pseudo-
code for a channel-based implementation. In figure 5, the actor embodying the chat room’s
broadcast medium responds to Speak messages (line 15) by sending ChatOutput messages to
actors representing users in the room. In figure 6, the thread running the chatroom() procedure
responds similarly to Speak instructions received on its control channel (line 13).

(C2) Languages with channels often provide a “select” construct, so that programs can wait
for events on any of a group of channels. Such constructs implement automatic demultiplex-
ing by channel identity. For example, a thread acting as a user agent might await input from
the chat room or the thread’s TCP connection (figure 7a). The language runtime takes care to
atomically resolve the transaction. In these languages, a channel reference can stand directly
for a specific conversational context. By contrast, actor languages lack such a direct represen-
tation of a conversation. Actors retrieve messages from their own private mailbox and then
demultiplex manually by inspecting received messages for correlation identifiers (figure 7b).
While the channel-based approach forces use of an implementation-level correlator—the chan-
nel reference—explicit pattern-based demultiplexing allows domain-level information in each
received message to determine the relevant conversational context. The E language (Miller
2006; De Koster, Van Cutsem and De Meuter 2016) is a hybrid of the two approaches, offering

2 AmbientTalk is unusual among actor languages for the depth of its consideration for multicast communication and
coordination, offering n-way primitives alongside point-to-point communication. We discuss AmbientTalk further
in section 3.5.
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1 def chatroom(ch)

2 members = new Hashtable()

3 while True

4 match ch.get()

5 case Connect(user, callbackCh)

6 for peer in members.keys

7 callbackCh <- peer + " arrived"

8 members.put(user, callbackCh)

9 announce(members, user + " arrived")

10 case Disconnect(user)

11 members.remove(user)

12 announce(members, user + " left")

13 case Speak(user, text)

14 announce(members, user + ": " + text)

15 def announce(members, what)

16 for callbackCh in members.values

17 callbackCh <- what

Figure 6: Channel-style chat room

1 select {
2 case line <- callbackCh:
3 tcpOutputCh <- line
4 case line <- tcpInputCh:
5 chatroomCh <- Speak(myName, line)
6 }

(a) channel-style

1 match receiveMessage() {
2 case ChatOutput(line):
3 socket.write(line)
4 case TcpInput(_, line):
5 send(ChatroomPID, Speak(myName, line))
6 }

(b) Actor-style

Figure 7: Demultiplexing multiple conversations.

object references to denote specific conversations within the heap of a given actor, and employs
method dispatch as a limited pattern matcher over received messages.

(C3; C4; C5) With either actors or channels, only a small amount of conversational state is
managed by the language runtime. In actor systems, it is the routing table mapping actor
IDs to mailbox addresses; in channel-based systems, the implementation of channel references
and buffers performs the analogous role. Developers implement other kinds of shared state
using message passing. This approach to conversational state demands explicit programming
of updates to a local replica of the state based on received messages. Conversely, when an
agent decides that a change to conversational state is needed, it must broadcast the change
to the relevant parties. Correct notification of changes is crucial to maintaining integrity of
conversational state. Most other aspects of integrity maintenance become local problems due
to the isolation of individual replicas. In particular, a crashing agent cannot corrupt peers.
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(C5) Still, the programmer is not freed from having to consider execution order when it
comes to maintaining local state. Consider the initial announcement of already-present peers
to an arriving user in figure 5 (lines 7–8). Many subtle variations on this code arise from
moving the addition of the new user (line 9) elsewhere in the Connect handler clause; some
omit self-announcement or announce the user’s appearance twice.

(C7; C8) Both models make it impossible to have data flow between agents without associated
control flow. As Hewitt, Bishop and Steiger (1973) write, “control flow and data flow are
inseparable” in the actor model. However, control flow within an agent may not coincide with
an appropriate flow of data to peers, especially when an exception is raised and crashes an
agent. Channel references are not exclusively owned by threads, meaning we cannot generally
close channels in case of a crashing thread. Furthermore, most channel-based languages are
synchronous, meaning a send blocks if no recipient is ready to receive. If a thread servicing a
channel crashes, then the next send to that channel may never complete. In our chat server,
a crashed user agent thread can deadlock the whole system: the chatroom thread may get
stuck during callbacks (lines 7 and 17 in figure 6). In general, synchronous channel languages
preclude local reasoning about potential deadlocks; interaction with some party can lead to
deadlock via a long chain of dependencies. Global, synchronous thinking has to be brought
to bear in protocol design for such languages: the programmer must consider scheduling in
addition to data flow. Actors can do better. Sends are asynchronous, introducing latency
and buffering but avoiding deadlock, and mailboxes are owned by exactly one actor. If that
actor crashes, further communication to or from that actor is hopeless. Indeed, Erlang offers
monitors and exit signals, i.e., an actor may subscribe to a peer’s lifecycle events (line 6 in
figure 5). Such subscriptions allow the chat room to combine error handling with normal
disconnection. No matter whether a user agent actor terminates normally or abnormally, the
EXIT_SIGNAL handler (lines 12–14) runs, announcing the departure to the remaining peers. The
E language allows references to remote objects to break when the associated remote vat exits,
crashes, or disconnects, providing a hybrid of channel-style demultiplexing with Erlang-style
exit signaling.

(C6) Where many replicas of a piece of state exist alongside communications delays, the
problem of maintaining consistency among replicas arises. Neither channels nor actors have
any support to offer here. Channels, and synchronous communication in general, seem to pri-
oritize (without guaranteeing) consistency at the expense of deadlock-proneness; asynchronous
communication avoids deadlock, but risks inconsistency through the introduction of latency.

(C9) Exit signals are a step toward automatically managing resource deallocation. While ac-
tors must manually allocate resources, the exit signal mechanism may be used to tie the lifetime
of a resource, such as a TCP socket, to the lifetime of an actor. If fine-grained control is needed,
it must be programmed manually. Additionally, in asynchronous (buffered) communication,
problems with resource control arise in a different way: it is easy to overload a component,
causing its input buffer or mailbox to grow potentially without bound.

(C10) Enforced isolation between components, and forcing all communication to occur via
message-passing, makes the provision of tooling for visualizing execution traces possible. Lan-
guages such as Erlang include debug trace facilities in the core runtime, and make good use of
them for lightweight capturing of traces even in production. However, the possibility of mes-
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sage races complicates reasoning and debugging; programmers are often left to analyze the live
behavior of their programs, if tooling is unavailable or inadequate. Modification of programs
to capture ad-hoc trace information frequently causes problematic races to disappear, further
complicating such analysis.

(C11) As figure 7 makes clear, modifying a component to engage in multiple simultaneous
conversations can be straightforward, if all I/O goes through a single syntactic location. How-
ever, if communication is hidden away in calls to library routines, such modifications demand
non-local program transformations. Similarly, adding a new participant to an existing con-
versation can require non-local changes. In instances where a two-party conversation must
now include three or more participants, this often results in reification of the communications
medium into a program component in its own right.

(C12) Erlang encourages adherence to a “tail-call to next I/O action” convention allowing
easy upgrade of running code. Strictly-immutable local data and functional programming
combine with this convention to allow a module backing a process to be upgraded across such
tail-calls, seamlessly transitioning to a new version of the code. In effect, all actor state is
held in accumulator data structures explicitly threaded through actor implementations. Other
actor languages without such strong conventions cannot offer such a smooth path to live code
upgrade. Channel-based languages could include similar conventions; in practice, I am not
aware of any that do so.

3.4 tuplespaces and databases

Finally, hybrid models exist, where a shared, mutable store is the medium of communication,
but the store itself is accessed and components are synchronized via message passing. These
models are database-like in nature. Languages employing such models include tuplespace-based
languages such as Linda (Gelernter 1985; Carriero et al. 1994), Lime (Murphy, Picco and Ro-
man 2006), and TOTAM (Scholliers, González Boix and De Meuter 2009; Scholliers et al. 2010;
González Boix 2012; González Boix et al. 2014), as well as languages that depend solely on an
external DBMS for inter-agent communication, such as PHP (Tatroe, MacIntyre and Lerdorf
2013).

Tuplespace languages have in common the notion of a “blackboard” data structure, a tu-
plespace, shared among a group of agents. Data items, called tuples, are written to the shared
area and retrieved by pattern matching.3 Once published to the space, tuples take on indepen-
dent existence. Similarly, reading a tuple from the space may move it from the shared area to
an agent’s private store.

The original tuplespace model provided three essential primitives: out, in, and rd. The
first writes tuples to the store; the other two move and copy tuples from the store to an agent,
respectively. Both in and rd are blocking operations; if multiple tuples match an operation’s
pattern, an arbitrary single matching tuple is moved or copied. Later work extended this aus-
tere model with, for example, copy-collect (Rowstron and Wood 1996), which allows copying

3 Compare to shared-memory or message-passing communications media, where items are retrieved either in queue
order or by memory location.
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1 class UserAgent

2 public run(name, socket)

3 new Reaction(Present(_), fn(who) { socket.println(who + " arrived") })

4 new Reaction(Absent(_), fn(who) { socket.println(who + " left") })

5 new Reaction(Message(_,_), fn(who, what) { socket.println(who + ": " + what) })

6 previousLine = null

7 try

8 inp(Absent(name))

9 out(Present(name))

10 while (line = socket.readLine()) != null

11 if previousLine != null: in(Message(name, previousLine))

12 out(Message(name, line))

13 previousLine = line

14 finally

15 if previousLine != null: in(Message(name, previousLine))

16 in(Present(name))

17 out(Absent(name))

Figure 8: Tuplespace-style chat room user agent, modeled on LChat.java from the Lime 1.06 distribution.

of all matching tuples rather than the arbitrary single match yielded by rd. Such extensions
add essential expressiveness to the system (Busi and Zavattaro 2001; Felleisen 1991). Lime goes
further yet, offering not only non-blocking operations inp and rdp, but also reactions, which are
effectively callbacks, executed once per matching tuple. Upon creation of a reaction, existing
tuples trigger execution of the callback. When subsequent tuples are inserted, any matches to
the reaction’s pattern cause additional callback invocations. This moves tuplespace program-
ming toward programming with publish/subscribe middleware (Eugster et al. 2003). TOTAM
takes Lime’s reactions even further, allowing reaction to removal of a previously-seen tuple.

External DBMS systems share many characteristics with tuplespaces: they allow storage
of relations; stored items are persistent; retrieval by pattern-matching is common; and many
modern systems can be extended with triggers, code to be executed upon insertion, update, or
removal of matching data. One difference is the notion of transactionality, standard in DBMS
settings but far from settled in tuplespaces (Bakken and Schlichting 1995; Papadopoulos and
Arbab 1998). Another is the decoupling of notions of process from the DBMS itself, where
tuplespace systems integrate process control with other aspects of the coordination mechanism.

Figure 8 presents a pseudo-code tuplespace implementation of a user agent, combining Java-
like constructs with Lime-like reactions. Previous sketches have concentrated on appropriate
implementation of the shared medium connecting user agents; here, we concentrate on the
agents themselves, because tuplespaces are already sufficiently expressive to support broad-
casting.4

4 Our chat server problem is challenging to solve using the original Linda primitives alone. The introduction of
copy-collect and reactions removes these obstacles.
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(C1; C2; C3) Tuplespaces naturally yield multi-party communication. All communication
happens indirectly through manipulation of shared state. Inserted tuples are visible to all
participants.5 With reactions, programmers may directly express the relationship between ap-
pearance of tuples matching a pattern and execution of a code fragment, allowing a richer kind
of demultiplexing of conversations than channel-based models. For example, the reactions in
figure 8 (lines 3–5) manifestly associate conversations about presence, absence and utterances
with specific responses, respectively; the tuplespace automatically selects the correct code to
execute as events are received. By contrast, in tuplespace languages without reactions, the
blocking natures of in and rd lead to multiplexing problems similar to those seen with shared
memory and monitors.

(C1) Tuples are persistent, hence the need to retract each message before inserting the next
(line 11). An unfortunate side effect is that if a new participant joins mid-conversation, it
receives the most recent utterance from each existing peer, even though that utterance may
have been made a long time ago.

(C7; C8; C4; C5) Data flow usually occurs concomitantly with control flow in a tuplespace;
in and rd are blocking operations, and reactions trigger code execution in response to a re-
ceived event. Control flow, however, does not always trigger associated data flow. Because
manipulation of the tuplespace is imperative, no mechanism exists within the core tuplespace
model to connect the lifetime of tuples in the space with the lifetime of the agent responsible
for them. This can lead to difficulty maintaining application-level invariants, even though the
system ensures data-structure-level integrity of the tuplespace itself. For an example, see the
explicit clean-up action as the process prepares to exit (lines 15–17). In addition, the effect of
exceptions inside reactions remains unclear in all tuplespace languages. Turning to external
DBMS, we see that the situation is worse. There, setting aside the possibility of abusing trig-
gers for the purpose, changes in state do not directly have an effect on the flow of control in
the system. Connections between programs and the DBMS are viewed as entirely transient and
records inserted are viewed as sacrosanct once committed.

(C8) Tuplespaces take a wide variety of approaches to failure-handling (Bakken and Schlicht-
ing 1995; Rowstron 2000). In Lime, in particular, tuples are localized to tuplespace fragments
associated with individual agents. These fragments automatically combine when agents find
themselves in a common context. Agent failure or disconnection removes its tuplespace frag-
ment from the aggregate whole. While Lime does not offer the ability to react to removal of
individual tuples, it can be configured to insert _host_gone tuples into the space when it de-
tects a disconnection. By reacting to appearance of _host_gone tuples, applications can perform
coarse-grained cleaning of the knowledgebase after disconnection or failure. Separately, TO-
TAM’s per-tuple leases (González Boix et al. 2014) give an upper bound on tuple lifetime. Our
example chat room is written in an imaginary tuplespace dialect lacking fine-grained reactions
to tuple withdrawal, and thus inserts Absent records upon termination (lines 4, 8, and 17 in
figure 8) to maintain its invariants.

(C6) Reactions and copy-collect allow maintenance of eventually-consistent views and pro-
duction of consistent snapshots of the contents of a tuplespace, respectively. However, opera-

5 Systems like TOTAM introduce rule-based visibility constraints for tuples.
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tions like rd are not only non-deterministic but non-atomic in the sense that by the time the
existence of a particular tuple is signaled, that tuple may have been removed by a third party.
Tuplespaces, then, offer some mechanisms by which the consistency of the various local repli-
cas of tuplespace contents may be maintained and reasoned about. In contrast, most DBMS
systems do not offer such mechanisms for reasoning about and maintaining a client’s local copy
of data authoritatively stored at a server. Instead, a common approach is to use transactions
to atomically query and then alter information. The effect of this is to bound the lifetime of
local views on global state, ensuring that while they exist, they fit in to the transactional frame-
work on offer, and that after their containing transaction is over, they cannot escape to directly
influence further computation.

(C9) Detection of demand for some resource can be done using tuples indicating demand and
corresponding reactions. The associated callback can allocate and offer access to the demanded
resource. In systems like TOTAM, retraction of a demand tuple can be interpreted as the end
of the need for the resource it describes; in less advanced tuplespaces, release of resources must
be arranged by other means.

(C10) Both tuplespaces and external databases give excellent visibility into application state,
on the condition that the tuplespace or database is the sole locus of such state. In cases where
this assumption holds, the entirety of the state of the group is visible as the current contents
of the shared store. This unlocks the possibility of rich tooling for querying and modifying
this state. Such tooling is a well-integrated part of existing DBMS ecosystems. In principle,
recording and display of traces of interactions with the shared store could also be produced
and used in visualization or debugging.

(C11) The original tuplespace model of Linda lacked non-blocking operations, leading it to
suffer from usability flaws well-known from the context of synchronous IPC. As Elphinstone
and Heiser write,

While certainly minimal, and simple conceptually and in implementation, experi-
ence taught us significant drawbacks of [the model of synchronous IPC as the only
mechanism]: it forces a multi-threaded design onto otherwise simple systems, with
the resulting synchronisation complexities. (Elphinstone and Heiser 2013)

These problems are significantly mitigated by the addition of Lime’s reactions and the later
developments of TOTAM’s context-aware tuplespace programming. Generally speaking, tuple-
space-based designs have moved from synchronous early approaches toward asynchronous
operations, and this has had benefits for extending the interactions of a given component as
well as extending the scope of a given conversation. External DBMS systems are generally neu-
tral when it comes to programming APIs, but many popular client libraries offer synchronous
query facilities only, lack support for asynchronous operations, and offer only limited support
for triggers.

(C12) External DBMS systems offer outstanding support for long-lived application state, mak-
ing partial restarts and partial code upgrades a normal part of life with a DBMS application.
Transactionality helps ensure that application restarts do not corrupt shared state. Tuplespaces
in principle offer similarly good support.
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Finally, the two models, viewed abstractly, suffer from a lack of proper integration with
host languages. The original presentation of tuplespaces positions the idea as a complete,
independent language design; in reality, tuplespaces tend to show up as libraries for existing
languages. Databases are also almost always accessed via a library. As a result, developers must
often follow design patterns to close the gap between the linguistic capabilities of the language
and their programming needs. Worse, they also have to deploy several different coordination
mechanisms, without support from their chosen language and without a clear way of resolving
any incompatibilities.

3.5 the fact space model

The fact space model (Mostinckx et al. 2007) synthesizes rule-based systems and a rich tuplespace
model with actor-based programming in a mobile, ad-hoc networking setting to yield a pow-
erful form of context-aware programming. The initial implementation of the model, dubbed
Crime, integrates a RETE-based rule engine (Forgy 1982) with the TOTAM tuplespace and a
functional reactive programming (FRP) library (Elliott and Hudak 1997; Bainomugisha et al.
2013) atop AmbientTalk, an object-oriented actor language in the style of E (Van Cutsem et al.
2014). AmbientTalk is unusual among actor languages for its consideration of multicast com-
munication and coordination. In its role as “language laboratory”, it has incorporated ideas
from many other programming paradigms. AmbientTalk adds distributed service discovery,
error handling, anycast and multicast to an actor-style core language intended for a mobile,
ad-hoc network context; TOTAM supplements this with a distributed database, and the rule
engine brings logic programming to the table.

In the words of Mostinckx et al.,

The Fact Space model is a coordination model which provides applications with
a federated fact space: a distributed knowledge base containing logic facts which
are implicitly made available for all devices within reach. [...] [T]he Fact Space
model combines the notion of a federated fact space with a logic coordination lan-
guage. (Mostinckx, Lombide Carreton and De Meuter 2008)

Tuples placed within the TOTAM tuplespace are interpreted as ground facts in the Prolog logic-
programming sense. Insertions correspond to Prolog’s assert; removals to retract. TOTAM’s
reactions, which unlike Lime may be triggered on either insertion or removal of tuples, allow
connection of changes in the tuplespace to the inputs to the RETE-based rule engine, yielding
forward-chaining logic programming driven by activity in the common space.6

Figure 9 sketches a pseudo-code user agent program. An actor running userAgent is created
for each connecting user. As it starts up, it registers two reactions. The first (lines 2–3) reacts
to appearance and disappearance of Present tuples. The second (line 4) reacts to each Message

tuple appearing in the space. Line 5 places a Present tuple representing the current user in the
tuplespace, where it will be detected by peers. Lines 6–10 enter a loop, waiting for user input
and replacing the user’s previous Message, if any, with a new one.

6 When facts in the space are chosen to correspond to observable aspects of a program’s context, this yields context-
aware programming: programs react to relevant changes in their environment.
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1 def userAgent(name, socket)

2 whenever: [Present, ?who] read: { socket.println(who + " arrived") }

3 outOfContext: { socket.println(who + " left") }

4 whenever: [Message, ?who, ?what] read: { socket.println(who + ": " + what) }

5 publish: [Present, name]

6 previousLine = nil

7 while (line = socket.readLine()) != nil

8 if previousLine != nil: inp([Message, name, previousLine])

9 publish: [Message, name, line]

10 previousLine = line

Figure 9: Fact space style chat room user agent

(C1; C2; C7) The TOTAM tuplespace offers multi-party communication, and the rule engine
allows installation of pattern-based reactions to events, resulting in automatic demultiplexing
and making for a natural connection from data flow to associated control flow. Where an
interaction serves to open a conversational frame for a sub-conversation, additional reactions
may be installed; however, there is no linguistic representation of such conversational frames,
meaning that any logical association between conversations must be manually expressed and
maintained.

(C3; C4) AmbientTalk’s reactive context-aware collections (Mostinckx, Lombide Carreton and
De Meuter 2008) allow automatic integration of conclusions drawn by the rule engine with
collection objects such as sets and hash tables. Each collection object is manifested as a behavior
in FRP terminology, meaning that changes to the collection can in turn trigger downstream
reactions depending on the collection’s value. However, achieving the effect of propagating
changes in local variables as changes to tuples in the shared space is left to programmers.

(C5; C6; C8) The Fact Space model removes tuples upon component failure. Conclusions
drawn from rules depending on removed facts are withdrawn in turn. Programs thereby enjoy
logical consistency after partial failure. However, automatic retraction of tuples is performed
only in cases of disconnection. When a running component is engaged in multiple conversa-
tions, and one of them comes to a close, there is no mechanism provided by which facts relat-
ing to the terminated conversation may be automatically cleaned up. Programmers manually
delete obsolescent facts or turn to a strategy borrowed from the E language, namely creation of
a separate actor for each sub-conversation. If they choose this option, however, the interactions
among the resulting plethora of actors may increase overall system complexity.

(C9) The ability to react to removal as well as insertion of tuples allows programs to match
supply of some service to demand, by interpreting particular assertions as demand for some
resource. This can, in principle, allow automatic resource management; however, this is only
true if all allocation of and interaction with such resources is done via the tuple space. For
example, if the actor sketched in figure 9 were to crash, then absent explicit exception-handling
code, the connected socket would leak, remaining open.7 Additionally, in situations where

7 https://soft.vub.ac.be/amop/crime/download

https://soft.vub.ac.be/amop/crime/download
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1 def userAgent(name, socket)

2 presentUsers = set()

3 whenever: [Present, ?who, ?status]

4 read: {

5 if who not in presentUsers

6 presentUsers.add(who)

7 socket.println(who + " arrived")

8 socket.println(who + " status: " + status)

9 }

10 outOfContext: {

11 if rd([Present, who, ?anyStatus]) == nil

12 presentUsers.remove(who)

13 socket.println(who + " left")

14 }

15 ...

Figure 10: Aggregating distinct facts

tuples may be interpreted simultaneously at a coarse-grained and fine-grained level, some care
must be taken in interpreting tuple arrival and departure events. For example, imagine a slight
enhancement of our example program, where we include a user-chosen status message in our
Present tuples. In order to react both to appearance and disappearance of a user as well as
a change in a user’s status, we must interpret Present tuples as sketched in figure 10. There,
Present tuples are aggregated by their who fields, ignoring their status fields, in addition to
being interpreted entire. The presentUsers collection serves as intermediate state for a kind of
SELECT DISTINCT operation, indicating whether any Present tuples for a particular user exist
at all in the tuplespace. In the retraction handler (lines 10–14) we explicitly check whether any
Present tuples for the user concerned remain in the space, only updating presentUsers if none
are left. This avoids incorrectly claiming that a user has left the chat room when they have
merely altered their status message.

An alternative approach to the problem is to make use of a feature of Crime not yet described.
The Crime implementation of the fact space model exposes the surface syntax of the included
rule engine to the programmer, allowing logic program fragments to be written using a Prolog-
like syntax and integrated with a main program written in AmbientTalk. This could allow a
small program

UserPresent(?who) :- Present(?who,?status).

to augment the tuplespace with UserPresent tuples whenever any Present tuple for a given
user exists at all. On the AmbientTalk side, programs would then react separately to appearance
and disappearance of UserPresent and Present tuples.

(C10) Like tuplespaces generally, the fact space model has great potential for tool support
and system state visualization. However, only those aspects of a program communicating via
the underlying tuplespace benefit from its invariants. In the case of the Crime implementation
based on AmbientTalk, only selected inter-component interactions travel via the tuplespace and
rule engine, leaving other interactions out of reach of potential fact-space-based tools. Program-



40 approaches to coordination

mers must carefully combine reasoning based on the invariants of the fact space model with
the properties of the other mechanisms available for programmer use, such as AmbientTalk’s
own inter-actor message delivery, service discovery and broadcast facilities.

(C11) Extending a conversation to new components and introducing an existing compo-
nent to an additional conversation are both readily supported by the fact space model as
implemented in Crime. However, because no automatic support for release of conversation-
associated state exists (other than outright termination of an entire actor), programmers must
carefully consider the interactions among individual components. When one of an actor’s con-
versations comes to a close but other conversations remain active, the programmer must make
sure to release local conversational state and remove associated shared tuples, but only when
they are provably inaccessible to the remaining conversations.

(C12) Crime’s AmbientTalk foundation is inspired by E, and can benefit directly from re-
search done on persistence and object upgrade in E-like settings (Yoo et al. 2012; Miller, Van
Cutsem and Tulloh 2013).

3.6 surveying the landscape

Figure 11 summarizes this chapter’s analysis. Each of the first four columns in the table shows,
from the programmer’s point of view, the support they can expect from a programming lan-
guage taking the corresponding approach to concurrency. Each row corresponds to one of the
properties of concurrency models introduced in figure 3. A few terms used in the table require
explanation. An entry of “manual” indicates that the programmer is offered no special support
for the property. An entry of “semi-automatic” indicates that some form of support for the
property is available, at least for specialized cases, but that general support is again left to the
programmer. For example, channel-based languages can automatically demultiplex conversa-
tions, but only so long as channels correspond one-to-one to conversations, and the fact space
model automatically preserves integrity of conversational state, but only where the end of an
actor’s participation in a conversation is marked by disconnection from the shared space. Fi-
nally, an entry of “automatic” indicates that an approach to concurrency offers strong, general
support for the property. An example is the fact space model’s ability to integrate changes in
the shared space with local variables via its reactive context-aware collections.

While the first four columns address the properties of existing models of concurrency, the
final column of the table identifies an “ideal” point in design space for us to aim towards in
the design of new models.

(C1; C2; C3; C4) We would like a flexible communications mechanism accommodating many-
to-many as well as one-to-one conversations. A component should be able to engage in multiple
conversations, without having to jump through hoops to do so. Events should map to event
handlers directly in terms of their domain-level meaning. Since conversations come with con-
versational frames, and conversational frames scope state and behavior, such frames and their
interrelationships should be explicit in program code. As conversations proceed, the associated
conversational state evolves. Changes to that state should automatically be integrated with lo-
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cal views on it, and changes in local state should be able to be straightforwardly shared with
peers. Agents should be offered the opportunity to react to all kinds of state changes.

(C5; C6) We would like to automatically enforce application-level invariants regarding shared,
conversational state. In case of partial failure, we should be able to identify and discard dam-
aged portions of conversational state. Where replicas of a piece of conversational state exist,
we would like to be able to reason about their mutual consistency. (C7; C8) Hewitt’s criterion
that “control and data flow are inseparable” should hold as far as possible, both in terms of
control flow being manifestly influenced by data flow and in terms of translation of control ef-
fects such as exceptions into visible changes in the common conversational context. (C9) Since
conversations often involve associated resources, we would like to be able to connect allocation
and release of resources with the lifecycles of conversational frames.

(C10; C11; C12) Given the complexity of concurrent programming, we would like the ability
to build tools to gain insight into system state and to visualize both correct and abnormal
behavior for debugging and development purposes. Modification of our programs should
easily accommodate changes in the scope of a given conversation among components, as well
as changes to the set of interactions a given component is engaged in. Finally, robustness
involves tolerance of partial failure and partial restarts; where long-lived application state exists,
support for code upgrades should also be offered.



Part II

T H E O RY





Overview

Syndicate is a design in two parts. The first part is called the dataspace model. This model offers
a mechanism for communication and coordination within groups of concurrent components,
plus a mechanism for organizing such groups and relating them to each other in hierarchical
assemblies. The second part is called the facet model. This model introduces new language fea-
tures to address the challenges of describing an actor’s participation in multiple simultaneous
conversations.

Chapter 4 fleshes out the informal description of the dataspace model of section 2.5 with a
formal semantics. The semantics describes a hierarchical structure of components in the shape
of a tree. Intermediate nodes in the tree are called dataspaces. From the perspective of the
dataspace model, leaf nodes in the tree are modeled as (pure) event-transducer functions; their
internal structure is abstracted away.

Chapter 5 describes the facet model part of the Syndicate design, addressing the internal
structure of the leaf actors of the dataspace model. Several possible means of interfacing a
programming language to a dataspace exist. The simplest approach is to directly encode the
primitives of the model in the language of choice, but this forces the programmer to attend to
much detail that can be handled automatically by a suitable set of linguistic constructs. The
chapter proposes such constructs, augments a generic imperative language model with them,
and gives a formal semantics for the result. Together, the dataspace and facet models form a
complete design for extending a non-concurrent host language with concurrency.





4
Computational Model I: The Dataspace Model

This chapter describes the dataspace model using mathematical syntax and semantics, includ-
ing theorems about the model’s key properties. The goal of the model presented here is to
articulate a language design idea. We wish to show how to construct a concurrent language
from a generic base language via the addition of a fixed communication layer. The details of
the base language are not important, and are thus largely abstracted away. We demand that
the language be able to interpret dataspace events, encode dataspace actions, map between
its internal data representations and the assertion values of the dataspace model, and confine
its computational behavior to that expressible with a total mathematical function. We make
the state of each actor programmed in the (extended) base language explicit, require that its
behavior be specified as a state-transition function, and demand that it interacts with its peers
exclusively via the exchange of immutable messages—not by way of effects. This strict en-
forcement of message-passing discipline does not prevent us from using an imperative base
language, as long as its effects do not leak. In other words, the base could be a purely func-
tional language such as Haskell, a higher-order imperative language such as Racket, or an
object-oriented language such as JavaScript.

The dataspace model began life under the moniker “Network Calculus” (NC) (Garnock-
Jones, Tobin-Hochstadt and Felleisen 2014), a formal model of publish-subscribe networking
incorporating elements of presence as such, rather than the more general state-replication sys-
tem described in the follow-up paper (Garnock-Jones and Felleisen 2016) and refined in this
dissertation. The presentation in this chapter draws heavily on that of the latter paper, amend-
ing it in certain areas to address issues that were not evident at the time.

4.1 abstract dataspace model syntax and informal semantics

Figure 12 displays the syntax of dataspace model programs. Each program P is an instruction to
create a single actor: either a leaf actor or a dataspace actor. A leaf actor has the shape actor fboot π.
Its initial assertions are described by the set π, while its boot function fboot embodies the first
few computations the actor will perform. The boot function usually yields an init(·) record
specifying a sequence of initial actions −→a ∈ −→Act along with an existentially-quantified package
pack 〈τ, (fbeh,u)〉. This latter specifies the type τ of the actor’s private state, the initial private
state value u ∈ τ, and the actor’s permanent event-transducing behavior function fbeh ∈ Fτ.
Alternatively, the boot function may decide that the actor should immediately terminate, in
which case it yields an exit(·) record bearing a sequence of final actions −→a ∈ −→Act for the short-
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Programs P ∈ Prog ::= actor fboot π | dataspace
−→
P

Events e ∈ Evt ::= 〈c〉 | π
Actions a ∈ Act ::= 〈c〉 | π | P

Boot functions fboot ∈ Boot = 1→ init(
−→
Act×∃τ.(Fτ × τ)) + exit(

−→
Act)

Behavior functions fbeh ∈ Fτ = Evt× τ→ continue(
−→
Act× τ) + exit(

−→
Act)

Assertion/Message values v, c ∈ Val ::= b | (c, . . . )

Assertion sets π ∈ ASet = P(Val)

Base values b ∈ BVal = Atoms, incl. strings, symbols, numbers, etc.

?c , (observe, c)

� c , (outbound, c)

� c , (inbound, c)

Figure 12: Syntax of dataspace model programs

lived actor to perform before it becomes permanently inert.1 A dataspace actor has the shape
dataspace

−→
P and creates a group of communicating actors sharing a new assertion store. Each

P in the sequence of programs contained in the definition of a dataspace actor will form one of
the initial actors placed in the group as it starts its existence.

Each leaf actor behavior function consumes an event plus its actor’s current state. The func-
tion computes either a continue(·) record, namely a sequence of desired actions plus an updated
state value, or an exit(·) record carrying a sequence of desired final actions alone in case the ac-
tor decides to request its own termination. We require that such behavior functions be total. If
the base language supports exceptions, any uncaught exceptions or similar must be translated
into an explicit termination request. If this happens, we say that the actor has crashed, even
though it returned a valid termination request in an orderly way.

In the λ-calculus, a program is usually a combination of an inert part—a function value—and
an input value. In the dataspace model, delivering an event to an actor is analogous to such
an application. However, the pure λ-calculus has no analogue of the actions produced by
dataspace model actors.

1 Design note: An alternative, roughly equivalent design omits Boot in favor of actor carrying some τ, fbeh ∈ Fτ, and
u ∈ τ directly, with that fbeh receiving a distinct, one-time startup event. Yet another option is to define Fτ to yield
continue(

−→
Act× ∃τ.(Fτ × τ)), giving a “become”-like semantics (Agha et al. 1997). Neither variation simplifies the

presentation. I have chosen the variation described because it seems to me to capture the idea of a one-time, staged
startup computation without sacrificing a fixed behavior function or introducing a startup pseudo-event.



4.1 abstract dataspace model syntax and informal semantics 49

A dataspace model actor may produce actions like those in the traditional actor model,
namely sending messages 〈c〉 and spawning new actors P, but it may also produce state change
notifications (SCNs) π. These convey sets of assertions an actor wishes to publish to its contain-
ing dataspace.

As a dataspace interprets an SCN action, it updates its assertion store. It tracks every asser-
tion made by each contained actor. It not only maps each actor to its current assertions, but each
active assertion to the set of actors asserting it. The assertions of each actor, when combined
with the assertions of its peers, form the overall set of assertions present in the dataspace.

When an actor issues an SCN action, the new assertion set completely replaces all previous
assertions made by that actor. To retract an assertion, the actor issues a state change notification
action lacking the assertion concerned. For example, imagine an actor whose most-recently-
issued SCN action conveyed the assertion set {a,b, c}. By issuing an SCN action {a,b}, the actor
would achieve the effect of retracting the assertion c. Alternatively, issuing an SCN {a,b, c,d}
would augment the actor’s assertion set in the assertion store with a new assertion d. Finally,
the SCN {a,b,d} describes assertion of d simultaneous with retraction of c.

We take the liberty of using wildcard ? as a form of assertion set comprehension. For now,
when we write expressions such as {(a, ?)}, we mean the set of all pairs having the atom a on
the left. In addition, we use three syntactic shorthands as constructors for commonly-used
structures: ?c, � c and � c are abbreviations for tuples of the atoms observe, outbound and
inbound, respectively, with the value c. Thus, {??} means {?c | c ∈ Val}.2

When an actor issues an assertion of shape ?c, it expresses an interest in being informed
of all assertions c. In other words, an assertion ?c acts as a subscription to c. Similarly, ??c
specifies interest in being informed about assertions of shape ?c, and so on. The dataspace
sends a state change notification event to an actor each time the set of assertions matching the
actor’s interests changes.

An actor’s subscriptions are assertions like any other.3 State change notifications thus give
an actor control over its subscriptions as well as over any other information it wishes to make
available to its peers or acquire from them.

dataspace “iswim”. The examples in this chapter use a mathematical notation to high-
light the essential aspects of the coordination abilities of the dataspace model without dwelling
on base language details. While the notation used is not a real language (if you see what I
mean (Landin 1966)), it does have implemented counterparts in the prototypes of the data-
space model that incorporate Racket and JavaScript as base languages. These implementations
were used to write programs which in turn helped build intuition and serve as a foundation
for the full Syndicate design.

We use italic text to denote Dataspace ISWIM variables and monospace to denote literal atoms
and strings. In places where the model demands a sequence of values, for example the actions
returned from a behavior function, our language supplies a single list value [a1, ...,an]. We
include list comprehensions [a |a ∈ Act,P(a), ...] because actors frequently need to construct,

2 Clearly, implementers must take pains to keep representations of sets specified in this manner tractable. We discuss
this issue in more detail in section 7.1.

3 However, unlike most other assertions, they directly represent epistemic knowledge.
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filter, and transform sequences of values. Similarly, we add syntax for sets {c1, ..., cn}, including
set comprehensions {c | c ∈ Val,P(c), ...}, and for tuples (v1, ..., vn), to represent the sets and
tuples needed by the model.

We define functions using patterns over the language’s values. For example, the leaf behavior
function definition

box (〈(set, id, vc)〉, vo) = continue([{?(set, id, ?), (value, id, vc)}], vc)

introduces a function box that expects two arguments: a message and an arbitrary value. The
〈(set, id, vc)〉 pattern for the former says it must consist of a triple with the atom set on the left
and arbitrary values in the center and right field. The function yields a continue(·) record—it
wishes to continue running—containing a pair whose left field is a sequence of actions and
whose right field is the actor’s new state value vc. The sequence of actions consists of only
one element: a state change notification action bearing an assertion set. The assertion set is
written in part using a wildcard denoting an infinite set, and in part using a simple value. The
resulting assertion set thus contains not only the triple (value, id, vc) but also the infinite set of
all ?-labeled triples with set on the left and with id in the middle.

Example 4.1. Suppose we wish to create an actor X with an interest in the price of milk. Here
is how it might be written:

actor fbootX {?(price, milk, ?)}

The comprehension defining its initial assertion set is interpreted to denote the set

{?(price, milk, c) | c ∈ Val}

If some peer Y previously asserted (price, milk, 1.17), this assertion is immediately delivered
to X in a state change notification event. Infinite sets of interests thus act as query patterns over
the shared dataspace.

Redundant assertions do not cause change notifications. If actor Z subsequently also as-
serts (price, milk, 1.17), no notification is sent to X, since X has already been informed that
(price, milk, 1.17) has been asserted. However, if Z instead asserts (price, milk, 9.25), then a
change notification is sent to X containing both asserted prices.

Symmetrically, it is not until the last assertion of shape (price, milk,p) for some particular p
is retracted from the dataspace that X is sent a notification about the lack of assertions of shape
(price, milk,p).

When an actor crashes, all its assertions are automatically retracted. By implication, if no
other actor is making the same assertions at the time, then peers interested in the crashing
actor’s assertions are sent a state change notification event informing them of the retraction(s).

♦

Example 4.2. For a different example, consider an actor representing a shared mutable refer-
ence cell. A new box (initially containing 0) is created by choosing a name id and launching
the actor

actor (λ().init([], pack 〈Val, (box, 0)〉)) {?(set, id, ?), (value, id, 0)}
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The new actor’s initial assertion set includes assertions of interest in set messages labeled with
id as well as of the fact that the value of box id is currently 0. Its behavior is given by the
function box whose definition we saw earlier, its initial actions by the empty sequence, and its
initial state is just 0. Upon receipt of a set message bearing a new value vc, we may read off
its response by consulting the definition of box above. The actor replaces its private state value
with vc and constructs a single action specifying the new set of facts the actor wants to assert.
This new set of facts includes the unchanged set-message subscription as well as a new value

fact, thereby replacing vo with vc in the shared dataspace.
To read the value of the box, clients either include an appropriate assertion in their initially

declared interests or issue it later:

actor (λ().init([], pack 〈1, (boxClient, ())〉)) {?(value, id, ?)}

As corresponding facts come and go in response to actions taken by the box actor they are
forwarded to interested parties. For example, the boxClient behavior function responds to
notification of a change in the contents of the box by issuing an instruction to update the box:

boxClient ({(value, id, v)}, ()) = continue([〈(set, id, v+ 1)〉], ())

The behavior of the box and boxClient actors, when run together in a dataspace, is to repeat-
edly increment the number held in the box. ♦

Example 4.3. Our next example demonstrates demand matching. The need to measure demand
for some service and allocate resources in response appears in different guises in a wide variety
of concurrent systems. Here, we imagine a client, A, beginning a conversation with some service
by adding (hello, A) to the shared dataspace. In response, the service should create a worker
actor to talk to A.

The “listening” part of the service is spawned as follows:

actor (λ().init([], pack 〈ASet, (demandMatcher, ∅)〉)) {?(hello, ?)}

Its behavior function is defined as follows:

demandMatcher (πnew,πold) = continue([mkWorker x | (hello, x) ∈ πnew − πold],πnew)

The actor-private state of demandMatcher, πold, is the (initially empty) set of currently-asserted
hello tuples.4 The incoming event, πnew, is the newest version of that set from the environment.
The demand matcher performs set subtraction to determine newly-appeared requests and calls
a helper function mkWorker to produce a matching service actor for each:

mkWorker x = actor (λ().init(initialActionsFor x, pack 〈τ, (worker, s)〉)) ∅
where s = initialStateFor x ∈ τ and worker ∈ Fτ

Thus, when (hello, A) first appears as a member of πnew, the demand matcher invokes mkWorker
with A as an argument, which yields a request to create a new worker actor that talks to client

4 Implementations of the dataspace model to date internalize assertion sets as tries (section 7.1)
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A. The conversation between A and the new worker proceeds from there. A more sophisticated
implementation of demand matching might maintain a pool of workers, allocating incoming
conversation requests as necessary. ♦

File

Server

novel.txt todo.txt esop.tex

Word Processor App App ...

Kernel

Figure 13: Layered File Server / Word Processor architecture

Example 4.4. Our final example demonstrates an architectural pattern seen in operating sys-
tems, web browsers, and cloud computing. Figure 13 sketches the architecture of a program
implementing a word processing application with multiple open documents, alongside other
applications and a file server actor. The “Kernel” dataspace is at the bottom of this tree-like
representation of containment.

The hierarchical nature of the dataspace model means that each dataspace has a containing
dataspace in turn. Actors may interrogate and augment assertions held in containing datas-
paces by prefixing assertions relating to the nth relative dataspace layer with n “outbound”
markers �. Dataspaces relay �-labeled assertions outward. Some of these assertions may de-
scribe interest in assertions existing at an outer layer. Any assertions matching such interests
are relayed back in by the dataspace, which prefixes them with an “inbound” marker � to dis-
tinguish them from local assertions.

In this example, actors representing open documents communicate directly with each other
via a local dataspace scoped to the word processor, but only indirectly with other actors in the
system. When the actor for a document decides that it is time to save its content to the file
system, it issues a message such as

〈� (save, "novel.txt", "Call me Ishmael.")〉

into its local dataspace. The harpoon (�) signals that, like a system call in regular software ap-
plications, the message is intended to be relayed to the next outermost dataspace—the medium
connecting the word processing application as a whole to its peers. Once the message is relayed,
the message

〈(save, "novel.txt", "Call me Ishmael.")〉

is issued into the outer dataspace, where it may be processed by the file server. The harpoon is
removed as part of the relaying operation, and no further harpoons remain, indicating that the
message should be processed here, at this dataspace.
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The file server responds to two protocols, one for writing files and one for reading file con-
tents and broadcasting changes to files as they happen. These protocols are articulated as two
subscriptions:

{?(save, ?, ?), ??(contents, ?, ?)}

The first indicates interest in save messages. When a save message is received, the server stores
the updated file content.

The second indicates interest in subscriptions in the shared dataspace, an interest in interest in
file contents. This is how the server learns that peers wish to be kept informed of the contents
of files under its control. The file server is told each time some peer asserts interest in the
contents of a file. In response, it asserts facts of the form

(contents, "novel.txt", "Call me Ishmael.")

and keeps them up-to-date as save commands are received, finally retracting them when it
learns that peers are no longer interested. In this way, the shared dataspace not only acts as
a kind of cache for the files maintained on disk, but also doubles as an inotify-like mecha-
nism (Love 2005) for signaling changes in files. ♦

Our examples illustrate the key properties of the dataspace model and their unique combi-
nation. Firstly, the box and demand-matcher examples show that conversations may naturally
involve many parties, generalizing the actor model’s point-to-point conversations. At the same
time, the file server example shows that conversations are more precisely bounded than those
of traditional actors. Each of its dataspaces crisply delimits its contained conversations, each of
which may therefore use a task-appropriate language of discourse.

Secondly, all three examples demonstrate the shared-dataspace aspect of the model. As-
sertions made by one actor can influence other actors, but cannot directly alter or remove
assertions made by others. The box’s content is made visible through an assertion in the data-
space, and any actor that knows id can retrieve the assertion. The demand-matcher responds to
changes in the dataspace that denote the existence of new conversations. The file server makes
file contents available through assertions in the (outer) dataspace, in response to clients placing
subscriptions in that dataspace.

Finally, the model places an upper bound on the lifetimes of entries in each shared space.
Items may be asserted and retracted by actors at will in response to incoming events, but when
an actor crashes, all of its assertions are automatically retracted.5 If the box actor were to
crash during a computation, the assertion describing its content would be visibly withdrawn,
and peers could take some compensating action. The demand matcher can be enhanced to
monitor supply as well as demand and to take corrective action if some worker instance exits
unexpectedly. The combination of this temporal bound on assertions with the model’s state
change notifications gives good failure-signaling and fault-tolerance properties, improving on
those seen in Erlang (Armstrong 2003).
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Dataspaces C ∈ Cfg ::= [−→q ;R;
−→
A ] CI ∈ CfgI ::= [·;R;

−→
AI]

Actors A ∈ Actor ::= ` 7→ Σ AQ ∈ ActorQ ::= ` 7→ ΣQ AI ∈ ActorI ::= ` 7→ ΣI

States Σ ∈ State ::= 〈−→e .B .−→a 〉 ΣQ ∈ StateQ ::= 〈−→e .B . ·〉 ΣI ∈ StateI ::= 〈· .BI . ·〉
Behaviors B ∈ Beh = ∃τ.(Fτ × τ)∪Cfg BI ∈ BehI = ∃τ.(Fτ × τ)∪CfgI︸ ︷︷ ︸ ︸ ︷︷ ︸

Quiescent Inert

Queued Actions q ∈ QAct ::= (k,a)

Dataspace Contents R ∈ Space = P(ID×Val)

Peer Identifiers j,k ∈ ID ::= ` | �

Locations ` ∈ Loc = N

boot : Prog→ State×ASet

boot (actor fboot π) =

(〈· . pack 〈τ, (fbeh,u)〉 .−→a 〉,π) when fboot() = init(−→a , pack 〈τ, (fbeh,u)〉)

(〈· . pack 〈1, (noop, ())〉 . ∅−→a 〉,π) when fboot() = exit(−→a )

boot (dataspace
−→
P ) = (〈· . [

−−−→
(�,P); ∅; ·] . ·〉, ∅)

noop : F1

noop (e, ()) = continue(· , ())

Figure 14: Evaluation Syntax and Inert and Quiescent Terms
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4.2 formal semantics of the dataspace model

The semantics of the dataspace model is most easily understood via an abstract machine. Fig-
ure 14 shows the syntax of machine configurations, plus a metafunction boot, which loads
programs in Prog into starting machine states in State, and an inert behavior function noop.

The reduction relation operates on actor states Σ = 〈−→e .B .−→a 〉, which are triples of a queue
of events −→e destined for the actor, the actor’s behavior and internal state B, and a queue of
actions −→a issued by the actor and destined for processing by its containing dataspace. An
actor’s behavior and state B can take on one of two forms. For a leaf actor, behavior and
state are kept together with the type of the actor’s private state value in an existential package
B = pack 〈τ, (fbeh,u)〉 ∈ ∃τ.(Fτ × τ). For a dataspace actor, behavior is determined by the
reduction rules of the model, and its state is a configuration B ∈ Cfg.

Dataspace configurations C comprise three registers: a queue of actions to be performed −→q ,
each labeled with some identifier denoting the origin of the action; the current contents of the
assertion store R; and a sequence of actors

−−−→
` 7→ Σ residing within the configuration. Each actor

is assigned a local label `, also called a location, scoped strictly to the configuration and mean-
ingless outside. Labels are required to be locally-unique within a given configuration. They
are never made visible to leaf actors: labels are an internal matter, used solely as part of the
behavior of dataspace actors. The identifiers marking each queued action in the configuration
are either the labels of some contained actor or the special identifier � denoting an action re-
sulting from some external force, such as an event arriving from the configuration’s containing
configuration.

reduction relation. The reduction relation drives actors toward quiescent and even inert
states. Figure 14 defines these syntactic classes, which are roughly analogous to values in the
call-by-value λ-calculus. A state Σ is quiescent when its sequence of actions is empty, and it
is inert when, besides being quiescent, it has no more events to process and cannot take any
further internal reductions.

The reductions of the dataspace model are defined by the following rules. For convenient
reference, the rules are also shown together in figure 15. Rules notify-leaf and quit deliver an
event to a leaf actor and update its state based on the results. Rule notify-ds delivers an event
to a dataspace actor. Rule gather collects actions produced by contained actors in a dataspace to
a central queue, and rules newtable, message, and spawn interpret previously-gathered actions.
Finally, rule schedule allows contained actors to take a step if they are not already inert.

Definition 4.5 (Rule notify-leaf). A leaf actor’s behavior function, given event e0 and private
state value u, may yield a continue() instruction, i.e. fbeh(e0,u) = continue(−→a ′,u ′). In this case,
the actor’s state is updated in place and newly-produced actions are enqueued for processing:

〈−→e e0 . pack 〈τ, (fbeh,u)〉 .−→a 〉 −→ 〈−→e . pack
〈
τ, (fbeh,u ′)

〉
.−→a ′−→a 〉

5 This is a concept well-known in the networking community as fate-sharing (Clark 1988).
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〈−→e e0 . pack 〈τ, (fbeh,u)〉 .−→a 〉 −→ 〈−→e . pack
〈
τ, (fbeh,u ′)

〉
.−→a ′−→a 〉 when fbeh(e0,u) = continue(−→a ′,u ′) (notify-leaf)

〈−→e e0 . pack 〈τ, (fbeh,u)〉 .−→a 〉 −→ 〈−→e . pack 〈1, (noop, ())〉 . ∅−→a ′−→a 〉 when fbeh(e0,u) = exit(−→a ′) (quit)

〈−→e e0 . [·;R;
−→
AI] .

−→a 〉 −→ 〈−→e . [(�, inp e0);R;
−→
AI] .

−→a 〉 (notify-ds)

〈−→e . [ −→q ;R;
−→
AQ(` 7→ 〈−→e ′ .B .−→a ′a ′′〉)

−→
A ] .−→a 〉 (gather)

−→ 〈−→e . [(`,a ′′)−→q ;R;
−→
AQ(` 7→ 〈−→e ′ .B .−→a ′ 〉)

−→
A ] .−→a 〉

〈−→e . [−→q (k,π);R ;
−→
AQ ] . −→a 〉 (newtable)

−→ 〈−→e . [−→q ;R⊕ (k,π);
−−−−−−−−−→
bc k π R AQ] . (out k π R)

−→a 〉

〈−→e . [−→q (k, 〈c〉);R;
−→
AQ ] . −→a 〉 (message)

−→ 〈−→e . [−→q ;R;
−−−−−−−−−−→
bc k 〈c〉 R AQ] . (out k 〈c〉 R)−→a 〉

〈−→e . [−→q (k,P);R;
−→
AQ ] .−→a 〉 (spawn)

−→ 〈−→e . [−→q (`,π) ;R;
−→
AQ(` 7→ Σ)] .−→a 〉

where ` = 1+max {j |
(
j 7→ Σ ′

)
∈
−→
AQ} and (Σ,π) = boot P

ΣQ −→ Σ ′

〈−→e . [·;R;
−→
AI(` 7→ ΣQ)

−→
AQ] .

−→a 〉 −→ 〈−→e . [·;R;
−→
AQ
−→
AI(` 7→ Σ ′)] .−→a 〉

(schedule)

Figure 15: Reduction semantics of the dataspace model
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Definition 4.6 (Rule quit). Alternatively, a leaf actor’s behavior function may yield an exit()
instruction in response to event e0, i.e. fbeh(e0,u) = exit(−→a ′). In this case, the terminating actor
is replaced with a noop behavior and its final few actions are enqueued:

〈−→e e0 . pack 〈τ, (fbeh,u)〉 .−→a 〉 −→ 〈−→e . pack 〈1, (noop, ())〉 . ∅−→a ′−→a 〉

Finally, a synthesized SCN action ∅ is enqueued. The result is the permanent retraction of the
actor’s remaining assertions. This rule covers both deliberate and exceptional termination.6

Definition 4.7 (Rule notify-ds). When an event e0 arrives for a dataspace, it is labeled with the
special location � and enqueued for subsequent interpretation.

〈−→e e0 . [·;R;
−→
AI] .

−→a 〉 −→ 〈−→e . [(�, inp e0);R;
−→
AI] .

−→a 〉

Definition 4.8 (Inbound event transformation). The metafunction inp transforms each such
incoming event by prepending an “inbound” marker � to each assertion contained in the event.
This marks the assertions as pertaining to the next outermost dataspace, rather than to the local
dataspace.

inp : Evt→ Act

inp π = {� c | c ∈ π}
inp 〈c〉 = 〈� c〉

Definition 4.9 (Rule gather). The gather rule reads from the queue of actions produced by a
particular actor for interpretation by its dataspace. It marks each action with the label of the
actor before enqueueing it in the dataspace’s pending action queue for processing.

〈−→e . [−→q ;R;
−→
AQ(` 7→ 〈−→e ′ .B.−→a ′a ′′〉)

−→
A ].−→a 〉 −→ 〈−→e . [(`,a ′′)−→q ;R;

−→
AQ(` 7→ 〈−→e ′ .B.−→a ′〉)

−→
A ].−→a 〉

Now that we have considered event delivery and action production and collection, we may
turn to action interpretation. The newtable and message rules are central. They both depend
on metafunctions bc (short for “broadcast”) and out to transform queued actions into pend-
ing events for local actors and the containing dataspace, respectively. Before we examine the
supporting metafunctions, we will examine the two rules themselves.

Definition 4.10 (Dataspace update). The assertions of a party labeled k are replaced in a data-
space’s contents R by an assertion set π using the ⊕ operator:

R⊕ (k,π) = {(j, c) | (j, c) ∈ R, j 6= k}∪ {(k, c) | c ∈ π}

6 Terminated actors remain in their configurations indefinitely with the reduction relation as written. In the same
way that the CESK machine can be equipped with reduction rules for garbage collection (Felleisen, Findler and Flatt
2009, ch. 9), a rule for removing inert actors with no assertions can be added to our reduction relation if we wish.
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Definition 4.11 (Rule newtable). A queued state change notification action (k,π) not only com-
pletely replaces the assertions associated with k in the shared dataspace but also inserts a state
change notification event into the event queues of interested local actors via bc. Because k
may have made “outbound” assertions labeled with �, newtable also prepares a state change
notification for the wider environment, using out.

〈−→e . [−→q (k,π);R;
−→
AQ] .

−→a 〉 −→ 〈−→e . [−→q ;R⊕ (k,π);
−−−−−−−−−→
bc k π R AQ] . (out k π R)

−→a 〉

Remark. This is the only rule to update a dataspace’s R. In addition, because k’s assertion set is
completely replaced, it is here that retraction of previously-asserted items takes effect.

Definition 4.12 (Rule message). The message rule interprets send-message actions 〈c〉. The
bc metafunction is again used to deliver the message to interested peers, and out relays the
message on to the containing dataspace if it happens to be “outbound”-labeled with �.

〈−→e . [−→q (k, 〈c〉);R;
−→
AQ] .

−→a 〉 −→ 〈−→e . [−→q ;R;
−−−−−−−−−−→
bc k 〈c〉 R AQ] . (out k 〈c〉 R)−→a 〉

Definition 4.13 (Event broadcast). The bc metafunction computes the consequences for an ac-
tor labeled ` of an action performed by another party labeled k. When it deals with a state
change notification action π, the entire aggregate shared dataspace is projected according to
the asserted interests of `. The results of the projection are assembled into a state change notifi-
cation event, but are enqueued only if the event would convey new information to `. When bc
deals with a message action 〈c〉, a corresponding message event is enqueued for ` only if ` has
previously asserted interest in c.

bc : ID× Evt× Space×ActorQ → Actor

bc k π Rold (` 7→ 〈−→e .B . ·〉) =

` 7→ 〈πnew
−→e .B . ·〉 when πnew 6= πold

` 7→ 〈 −→e .B . ·〉 when πnew = πold

where Rnew = Rold ⊕ (k,π)

πnew = {c | (j, c) ∈ Rnew, (`, ?c) ∈ Rnew}

πold = {c | (j, c) ∈ Rold , (`, ?c) ∈ Rold }

bc k 〈c〉 Rold (` 7→ 〈−→e .B . ·〉) =

` 7→ 〈〈c〉−→e .B . ·〉 when (`, ?c) ∈ Rold

` 7→ 〈 −→e .B . ·〉 otherwise

Definition 4.14 (Outbound action transformation). The metafunction out is analogous to bc,
but for determining information to be relayed to a containing dataspace as a consequence of a
local action.

out : ID× Evt× Space→ −→Act

out � e R = · (empty sequence of actions)

out ` π R = {c | (j, � c) ∈ R⊕ (`,π)}∪ {?c | (j, ? � c) ∈ R⊕ (`,π)}

out ` 〈c〉 R =

〈d〉 when c =� d

· otherwise
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The first clause ensures that the out metafunction never produces an action for transmission
to the outer dataspace when the cause of the call to out is an action from the outer dataspace.
Without this rule, configurations would never become inert.

Definition 4.15 (Rule spawn). The spawn rule allocates a fresh label ` and places a newly-
spawned actor into the collection of local actors, alongside its siblings. The new label ` is chosen
to be distinct from k, from every element of

{
k ′ | (k ′,a ′) ∈ −→q

}
, and from the labels of every

−→
AQ.

Any deterministic7 allocation strategy will do; we will choose ` = 1+max {j | (j 7→ Σ ′) ∈
−→
AQ}.

The new actor’s initial state Σ and initial assertions π are computed from the actor specification
P by (Σ,π) = boot P.

〈−→e . [−→q (k,P);R;
−→
AQ] .

−→a 〉 −→ 〈−→e . [−→q (`,π);R;
−→
AQ(` 7→ Σ)] .−→a 〉

Remark. The rule takes care to ensure that a new actor’s initial assertions π are processed ahead
of other queued actions −→q , even though the new actor’s initial actions will be placed at the
end of the queue and processed in order as usual. This allows a spawning actor to atomically
delegate responsibility to a new actor by issuing a state-change notification immediately fol-
lowing the actor action. Assertions indicating to the world that the spawning party has “taken
responsibility” for some task may be placed in the new actor’s initial assertion set and omitted
from the subsequent state-change notification. This eliminates any possibility of an interven-
ing moment in which a peer might see a retraction of the assertions concerned. Furthermore,
even if the new actor crashes during boot, there will be a guaranteed moment in time before
its termination when its initial assertion set was visible to peers. Because the computation of
the initial assertion set happens in the execution context of the spawning actor, an uncaught
exception raised during that computation correctly blames the spawning actor for the failure.
However, the computation of the initial actions is performed in the context of the spawned actor,
and an exception at that moment correctly blames the spawned actor.8

Definition 4.16 (Rule schedule). Finally, the schedule rule allows quiescent, non-inert contained
actors to take a step. It rotates the sequence of actors as it does so.9

ΣQ −→ Σ ′

〈−→e . [·;R;
−→
AI(` 7→ ΣQ)

−→
AQ] .

−→a 〉 −→ 〈−→e . [·;R;
−→
AQ
−→
AI(` 7→ Σ ′)] .−→a 〉

Variations on this rule can express different scheduling policies. For example, sorting the
sequence decreasing by event queue length prioritizes heavily-loaded actors.

7 Non-deterministic allocation strategies affect theorem 4.20 but are otherwise harmless, so long as they preserve
local uniqueness of labels.

8 An alternative approach to spawning could involve “fork” and “exec” operations analogous to those of the same
name offered by Unix kernels. An actor could “fork”, leading to two (almost-) identical copies, both retaining the
set of assertions current at the time of the fork. One copy would immediately perform an “exec” to replace its
behavior function. Both actors would then tailor their assertion sets to their separate domains of responsibility.

9 This scheduling policy, in conjunction with the determinism of the system (theorem 4.20) and the totality of leaf
actor behavior functions, yields fairness (Clinger 1981).



60 computational model i : the dataspace model

4.3 cross-layer communication

Actors label assertions and message bodies with � to address them to the dataspace’s own con-
taining dataspace, but there is no corresponding means of addressing an assertion or message
to a contained dataspace or actor. Actors may reach out, but not in. Because there is always a
unique containing dataspace, reserving specific names for referring to it—the harpoon marks �
and �—is reasonable. These two reserved constructors bootstrap arbitrary cross-layer communi-
cation arrangements. Actors draw communications inward by reaching out. They establish sub-
scriptions at outer layers which cause relevant messages and assertions to be relayed towards
the inner requesting layer. In effect, they “pull” rather than having peers “push” information.

Directing communications to specific siblings requires a name for each actor. Actor IDs are,
as a matter of principle,10 not made available to the programmer. In cases where “pushing”
information inward is desired and useful, and where the resulting sensitive dependence on
the topological structure of the overall configuration is acceptable, the dataspace model leaves
the specific naming scheme chosen up to the programmer, offering a mechanism (� and �) but
remaining neutral on policy.

4.4 messages versus assertions

We have included message-sending actions 〈c〉 as primitive operations. However, message
transmission can be usefully viewed as a derived construct, as a special case of assertion signal-
ing. We may achieve substantially the same effect as 〈c〉 by asserting c, holding the assertion for
“long enough” for it to register with interested peers, and then retracting c again. A message,
then, can be imagined as a transient assertion.

There are two interesting corner-cases to consider when thinking about messages in this way.
The reduction rules as written have no trouble delivering messages of the form 〈?c〉, despite
the effect that an assertion of ?c would have; and a message 〈c ′〉 will be delivered to interested
recipients even if some neighboring actor is asserting the value c ′ at the same time. In a
variation on the dataspace model lacking primitive message-sending actions, neither situation
works quite as expected.

First, consider the assertion-based analogue of the message 〈?c〉. The sender would briefly
assert ?c before retracting it again. However, ?c asserts interest in c. For the duration of the
assertion, it would have the effect of drawing matching assertions c toward the sending actor.
Primitive support for messages, by contrast, imagines that the “assertion” of the message lasts
for an infinitesimal duration. This applies equally to “assertions” of messages that appear to
denote interest in other assertions. By the time the events triggered by the message are to be
delivered, it is as if the assertion of interest has already been retracted, so no events describing
assertions c make their way toward the sender.

Second, consider performing the action 〈c ′〉 when c ′ is already being asserted by some other
peer. The assertion-based analogue of 〈c ′〉 is to briefly assert c ′ and then to retract it. However,
redundant assertions do not cause perceptible changes in state. The net effect of the fleeting

10 See discussion in section 2.6.
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assertion of c ′ is zero; no events are delivered.11 Again, by incorporating messages primitively,
we side-step the problem. Strictly speaking, the message rule should have a side-condition
forbidding its application (or perhaps making it a no-op) when (j, c ′) ∈ R for some j. This
would imply that sending certain messages at certain times would lead reduction to become
stuck. Certain data would be reserved for use in message-sending; others, for more long-lived
assertions and retractions. Were this to be elaborated into a type system, each dataspace would
have a type representing its protocol. This type would classify values as either message-like or
assertion-like.12 Judgments would connect with the type system of the base language to ensure
that the classifications were respected by produced actions.13

4.5 properties

A handful of theorems capture invariants that support the design of and reasoning about ef-
fective protocols for dataspace model programs. Theorem 4.17 ensures that the dataspace does
not get stuck, even though individual actors within the dataspace may behave unpredictably.
Theorem 4.20 ensures deterministic reduction of the system. Theorem 4.23 assures program-
mers that the dataspace does not reorder an actor’s actions or any of the resulting events.
Theorem 4.35 makes a causal connection between the actions of an actor and the events it
subsequently receives. It expresses the purpose of the dataspace: to keep actors informed of
exactly the assertions and messages relevant to their interests as those interests change. Tests
constructed in Redex (Felleisen, Findler and Flatt 2009) and proofs written for Coq (Coq devel-
opment team 2004) confirm theorems 4.17 and 4.20.

Theorem 4.17 (Soundness). A state Σ ∈ State is either inert (Σ ∈ StateI) or there exists some Σ ′

such that Σ −→ Σ ′.

Proof (Sketch). We employ the Wright/Felleisen technique (Wright and Felleisen 1994) with the
progress lemma below. The proof makes use of the fact that all leaf actor behavior functions
are total.

Definition 4.18 (Height). Let the height of a behavior be defined as follows:

height : Beh→N

height pack 〈τ, (fbeh,u)〉 = 0

height [−→q ;R;
−−−−−−−−−−−−→
` 7→ 〈−→e .B .−→a 〉] = 1+ max(

−−−−−→
height B)

Lemma 4.19 (Progress). For all C ∈ Cfg and H ∈ N such that height(C) 6 H, C is either inert
(C ∈ CfgI) or there exists some C ′,−→a such that 〈· .C . ·〉 −→ 〈· .C ′ .−→a 〉.

11 This is in some ways similar to the idea of medium access control. Multiple stations transmitting at the same time
“corrupt” each others’ messages. Some means of ensuring the separation of overlapping transmissions in space or
in time is required.

12 If message sending were a derived concept, such a type system would not suffice to ensure two peers did not
simultaneously try to “send message c” by briefly asserting c.

13 Research into the design of such a type system is ongoing (Caldwell, Garnock-Jones and Felleisen 2017).
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Proof (Sketch). By nested induction on the height bound and structure of C.

Theorem 4.20 (Deterministic Evaluation). For any Σ there exists at most one Σ ′ such that Σ −→ Σ ′.

Proof. The reduction relation is structured to ensure at most one applicable rule in any situation.
Either

• Σ = 〈−→e e0 . BI .−→a 〉, in which case event e0 is consumed by BI (rules notify-leaf, notify-ds,
and quit); or

• Σ = 〈−→e . [−→q ;R;
−→
AQ(` 7→ 〈−→e ′ . B .−→a ′a ′′〉)

−→
A ] .−→a 〉, in which case a ′′ is gathered onto −→q

(rule gather); or

• Σ = 〈−→e . [−→q (k,a ′′);R;
−→
AQ] .

−→a 〉, in which case a ′′ is interpreted (newtable, message, and
spawn); or

• Σ = 〈−→e . [·;R;
−→
AI(` 7→ ΣQ)

−→
AQ
′] .−→a 〉 and ΣQ −→ Σ ′, in which case actor ` takes a step

(rule schedule).

Observe that the cases are disjoint: the first demands a BI, but in the others the configuration
is not inert; the second demands some non-quiescent actor; the third demands a queued action
and only quiescent actors; the fourth demands no queued actions and only quiescent actors.
Therefore, assume there exists distinct Σ ′ and Σ ′′ such that Σ −→ Σ ′ and Σ −→ Σ ′′. We may
then show a contradiction by nested induction on the two instances of the reduction relation
and systematic elimination of possible sources of difference between Σ ′ and Σ ′′.

Remark 4.21 (Concurrency and determinism). Despite appearances, theorem 4.20 does not sac-
rifice concurrency; recall from chapter 2 the argument that sequential programs frequently
include internal concurrency. Concurrency does not entail nondeterminism. Even with de-
terministic reduction rules as written, many sources of unpredictability remain. For example,
programs might interact with the outside world, including external clocks of various kinds,
leading to fine variation in timing of events; code written by one person might make use of
“black box” library code written by another, without precisely-documented timing specifica-
tions; or fine details of the implementation of some component could change, leading to subtly
different interleavings. Introduction of nondeterminism by, say, varying the schedule rule or
relaxing some of the quiescence or inertness constraints in the other rules would merely in-
troduce another source of unpredictability. The essential properties of the dataspace model
survive such changes unharmed.

Remark 4.22 (Dataspace reliability). While individual leaf actors may exit at any time, dataspace
actors cannot terminate at all: no means for voluntary exit is provided, and theorem 4.17 as-
sures us that a dataspace will not crash. In a correct implementation of the dataspace model,
dataspace actors will likewise not crash. If the implementation is buggy enough that a data-
space does in fact crash, but not so buggy that it takes its containing dataspace down with it,
the usual removal of an actor’s assertions allows peers of the failing dataspace actor to observe
the consequences of its termination. Abrupt failure of a dataspace is analogous to a crash of an
entire computer: there is no opportunity for a clean shutdown of the programs the computer is
running; instead, the entire computer simply vanishes offline from the perspective of its peers.
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Theorem 4.23 (Order Preservation). If an actor produces action A before action B, then A is inter-
preted by the dataspace before B. Events are enqueued atomically with interpretation of the action that
causes them. If event C for actor ` is enqueued before event D, also for `, then C is delivered before D.

Proof (Sketch). The reduction rules consistently move items one-at-a-time from the front of one
queue to the back of another, and events are only enqueued during action interpretation.

Our final theorem (4.35) guarantees the programmer that each actor receives “the truth, the
whole truth, and nothing but the truth” from the dataspace, according to the declared interests
of the actor, keeping in mind that there may be updates to the actor’s interest set pending in
the pipeline. It ensures that the dataspace conveys every relevant assertion and only relevant
assertions,14 and shows that the dataspace is being cooperative in the sense of Grice’s Cooper-
ative Principle and Conversational Maxims (section 2.1 and figure 1). The theorem directly
addresses the maxims of Quantity, Quality, and Relation.

Before we are able to formally state the theorem, we must define several concepts.

Definition 4.24 (Paths). A path p ∈ Path =
−−→
Loc 3

−→
` is a possibly-empty sequence of locations.

A path resolves to a State by the partial recursive function resolvePath:

resolvePath : State× Path ⇀ State

resolvePath Σ · = Σ

resolvePath 〈−→e . [−→q ;R;
−→
A(` 7→ Σ)

−→
A ′] .−→a 〉 (` p) = resolvePath Σ p

resolvePath 〈−→e . [−→q ;R;
−→
A ] .−→a 〉 (` p) undefined when there is no actor labeled ` in

−→
A

The definition of resolvePath makes it clear that locations in a path are ordered leftmost-
outermost and rightmost-innermost with respect to a nested dataspace configuration. When
resolvePath Σ p is defined, we say p is in Σ, and write p ∈ Σ; otherwise, p is not in Σ, p /∈ Σ.

Definition 4.25 (Dataspace contents for a path). We write RpΣ to denote the contents of the
shared dataspace immediately surrounding the actor denoted by nonempty path p = (p ′ `) in
Σ. That is,

R
p
Σ = R where resolvePath Σ p ′ = 〈−→e . [−→q ;R;

−→
A
(
` 7→ Σ ′

)−→
A ′] .−→a 〉

Definition 4.26 (Current interest set of p in Σ). The current interest set of the actor denoted by
nonempty path p = (p ′ `) in a given state Σ is

interestsOf (p,Σ) ,
{
c | (`, ?c) ∈ RpΣ

}
Definition 4.27 (Syllabus). The syllabus of an actor with nonempty path p at state Σ is

pl Σ ,
{
c | (j, c) ∈ RpΣ, c ∈ interestsOf (p,Σ)

}
The syllabus describes the dataspace’s understanding of what p needs to know from the data-
space, as of the moment captured by the state Σ; the notation is chosen to connote the idea
of p “reading” from Σ. The syllabus of p at Σ will guide the dataspace as it constructs events
conveying changed knowledge to p.

14 While theorem 4.35 captures many important properties of the dataspace model, it remains future work to extend
it to soundness and completeness properties for assertions relayed across nested dataspace layers.
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Definition 4.28 (Reduction sequences). We use the notation S(P) ∈
−−−→
State to denote a finite

sequence of states corresponding to a prefix of the sequence of reductions of a program P ∈
Prog. We write S(P)i ∈ State to denote the ith element of the sequence. A sequence S(P) starts
with S(P)0 = Σwhere (Σ, ∅) = boot (dataspace P). Subsequent states in S(P) are pairwise related
by the reduction relation; that is, S(P)0 −→ S(P)1 −→ · · · −→ S(P)|S(P)|. We say that a path p is
in S(P) if p ∈ S(P)i for some i.

Definition 4.29 (Enqueued events). We write enqueuedAt (S(P), i,p, e) when event e is enqueued
for eventual delivery to actor p in reduction sequence S(P) at the transition S(P)i −→ S(P)i+1:

enqueuedAt (S(P), i,p, e) ⇐⇒
(
resolvePath S(P)i p = 〈−→e ′ .B .−→a 〉
∧ resolvePath S(P)i+1 p = 〈e−→e ′ .B .−→a 〉

)
Definition 4.30 (Truthfulness). An assertion set π is called truthful with respect to a dataspace
whose contents are R if it contains only assertions actually present in R. That is, π is truthful if
π ⊆ {c | (j, c) ∈ R}.15

Definition 4.31 (Relevance). An assertion set π is called relevant to an actor ` in a dataspace
whose contents are R if it contains only assertions of interest to `; i.e., if π ⊆ {c | (`, ?c) ∈ R}.

Definition 4.32 (Soundness). An assertion set π is called sound for an actor ` in a dataspace
whose contents are R if it is both truthful w.r.t R and relevant w.r.t. ` and R.

Definition 4.33 (Completeness). An assertion set π is called complete for an actor named ` in
a dataspace whose contents are R if it contains every assertion both actually present and of
interest to `; that is, if π ⊇ ({c | (j, c) ∈ R}∩ {c | (`, ?c) ∈ R}).

Definition 4.34 (Most recent SCN event). Let p be a path of an actor, S(P) be a reduction
sequence, and i in index to a state in S(P). The most recent SCN event enqueued for p as it
exists within S(P)i, written πS(P),p

i , is computed by

π
S(P),p
i =


π ′ if enqueuedAt (S(P), i− 1,p,π ′) ; otherwise,

π
S(P),p
i−1 if resolvePath S(P)i p is defined; otherwise,

∅

Theorem 4.35 (Conversational Soundness and Completeness). Let S(P) be a reduction sequence.
For every actor denoted by a nonempty path p = (p ′ `) in S(P), at every step i,

1. interestsOf (p, S(P)i) depends solely on successive SCN actions issued by actor p.

2. pl S(P)i 6= pl S(P)i+1 iff there exists π such that enqueuedAt (S(P), i,p,π).

3. enqueuedAt (S(P), i,p,π) implies that π is sound and complete for ` and Rp
S(P)i+1

.

15 Here, as elsewhere in this chapter, {c | (j, c) ∈ R} is interpreted as {c | ∃j. (j, c) ∈ R} when j is free.
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4. resolvePath S(P)i p
′ = 〈−→e . [−→q (k, 〈c〉);Rp

S(P)i
;
−→
A (` 7→ Σ)

−→
A ′].−→a 〉∧c ∈ interestsOf (p, S(P)i)

⇐⇒ enqueuedAt (S(P), i,p, 〈c〉).

That is: (1) the dataspace’s understanding of the interests of p (which shape its syllabus) is
solely determined by the actions of p; (2) every time the syllabus of p changes, an SCN event is
enqueued for p, and every SCN event enqueued for p results from a change in its syllabus; (3)
every SCN event for p is sound and complete with respect to the interests of p and the contents
of the dataspace of p; and (4) every message action of interest to p results in a message event
for p, and no other message events are produced for p.

Proof.
(1) By lemma 4.36, the gather rule, and theorem 4.23.
(2) Forward direction: by lemma 4.40, πS(P),p

i 6= πS(P),p
i+1 . Let π = π

S(P),p
i+1 , and the conclusion

follows from lemma 4.37. Reverse direction: we are given some π s.t. enqueuedAt (S(P), i,p,π).
By definition, then, πS(P),p

i+1 = π; by lemma 4.42, πS(P),p
i 6= π. Combining these facts, πS(P),p

i 6=
π
S(P),p
i+1 ; now, apply lemma 4.40 and we are done.

(3) By definition, in conjunction with our premises, πS(P),p
i+1 = π; lemma 4.41 yields our result.

(4) Forward direction: rule message is the only applicable rule; the conclusion follows by
definition of bc for message routing. Reverse direction: likewise, because rule message is the
only rule that enqueues message events.

Lemma 4.36. Let p = (p ′ `) be a nonempty path of an actor in some S(P). Wherever interestsOf (p, S(P)i) 6=
interestsOf (p, S(P)i+1), we have that:

1. −→q =
−→
q ′(`,π), where resolvePath S(P)i p

′ = 〈−→e . [−→q ;Rp
S(P)i

;
−→
A (` 7→ Σ)

−→
A ′] .−→a 〉, and

2. interestsOf (p, S(P)i+1) = {c | ?c ∈ π}.

Proof. Direct from the facts that rule newtable is the only possible rule that can apply as
S(P)i −→ S(P)i+1 and that newtable replaces Rp

S(P)i
in the containing dataspace of p with

R
p
S(P)i+1

= R⊕ (`,π).

Lemma 4.37. πS(P),p
i 6= πS(P),p

i+1 =⇒ enqueuedAt
(
S(P), i,p,πS(P),p

i+1

)
.

Proof. Straightforward consequence of definition 4.34.

Definition 4.38. The notation Σa [Σb]
p:r−→ Σc [Σd] is interpreted as a relation defined by:

Σa [Σa]
·:r−→ Σc [Σc] ⇐⇒ Σa −→ Σc by rule r

Σa [Σb]
(` p):r−→ Σc [Σd] ⇐⇒

(
Σa −→ Σc by rule schedule

∧ (resolvePath Σa `) [Σb]
p:r−→ (resolvePath Σc `) [Σd]

)
Lemma 4.39. Let p = (p ′ `) be a nonempty path and S(P) be a reduction sequence. If πS(P),p

i 6=
π
S(P),p
i+1 ,
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1. S(P)i [Σ
′]
p ′:newtable−→ S(P)i+1 [Σ

′′] for some Σ ′,Σ ′′

2. πS(P),p
i+1 = {c | (j, c) ∈ Rp

S(P)i+1
, (`, ?c) ∈ Rp

S(P)i+1
} = pl S(P)i+1

Proof. 1. By lemma 4.37, an SCN event must be enqueued for p at this step; no other rule
than newtable enqueues SCN events. 2. Metafunction bc is the source of the new SCN event,
which is equal to πS(P),p

i+1 by definition. The first case of bc must apply in order for some event
to be enqueued; following the definitions and the use of bc in the newtable rule gives us our
result.

Lemma 4.40. Let p = (p ′ `) be a nonempty path and S(P) be a reduction sequence. For every i,
π
S(P),p
i = pl S(P)i.

Proof. By induction on i.

• Case i = 0. Recall that (S(P)0, ∅) = boot (dataspace P) = (〈· . [(�,P); ∅; ·] . ·〉, ∅). Vacuously
true, because both Rp

S(P)0
and pl S(P)0 are undefined for all p.

• Case i > 0. If πS(P),p
i−1 6= π

S(P),p
i , the result is immediate, by lemma 4.39. Otherwise,

π
S(P),p
i−1 = π

S(P),p
i ; combining this with the induction hypothesis, we learn that πS(P),p

i =

pl S(P)i−1.

There are two cases to consider: either the dataspace containing actor p steps by rule
newtable, or some other kind of reduction takes place.

– If for some Σ ′,Σ ′′ we have that S(P)i−1 [Σ ′]
p ′:newtable−→ S(P)i [Σ

′′], then we know that
an actor

(
` 7→ 〈−→e ′ .B . ·〉

)
is an immediate child of the dataspace configuration in

Σ ′. Furthermore we know that
(
` 7→ 〈−→e ′ .B . ·〉

)
must also be an immediate child

of the dataspace configuration in Σ ′′, because otherwise πS(P),p
i would differ from

π
S(P),p
i−1 . It follows then that the second case of bc must apply for actor ` in this

reduction step, and so bc’s πnew = πold , meaning that pl S(P)i = pl S(P)i−1. By
π
S(P),p
i = pl S(P)i−1, we are done.

– Otherwise, it must be the case that Rp
S(P)i−1

= R
p
S(P)i

, because no other reduction
step can possibly affect the R register of the dataspace containing actor p. Applying
this to prove pl S(P)i = pl S(P)i−1 gives our result by πS(P),p

i = pl S(P)i−1.

Lemma 4.41. Let p = (p ′ `) be a nonempty path and S(P) be a reduction sequence. For every i, πS(P),p
i

is both sound and complete w.r.t. ` and Rp
S(P)i

.

Proof. By lemma 4.40, πS(P),p
i = pl S(P)i. We must show:

• Soundness demands truthfulness, πS(P),p
i ⊆ {c | (j, c) ∈ Rp

S(P)i
} and relevance, πS(P),p

i ⊆
{c | (`, ?c) ∈ Rp

S(P)i
}. Both these properties are immediate from the definition of pl S(P)i.
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• Completeness demands πS(P),p
i ⊇

(
{c | (j, c) ∈ Rp

S(P)i
}∩ {c | (`, ?c) ∈ Rp

S(P)i
}
)

; this is also
immediate from the definition of pl S(P)i.

Lemma 4.42 (Necessity). enqueuedAt (S(P), i,p,π ′) =⇒ π
S(P),p
i 6= π ′.

Proof. Only rule newtable can enqueue an event π ′ for p. But it will only do so if, in bc, Rnew 6=
Rold ; that is, if

{c | (j, c) ∈ Rp
S(P)i+1

, (`, ?c) ∈ Rp
S(P)i+1

} 6= {c | (j, c) ∈ Rp
S(P)i

, (`, ?c) ∈ Rp
S(P)i

}

Applying the definition of syllabus, this is p l S(P)i+1 6= p l S(P)i, and lemma 4.40 gives
π
S(P),p
i+1 6= π

S(P),p
i . By definition, πS(P),p

i+1 = π ′ because enqueuedAt (S(P), i,p,π ′), and so we

know that π ′ 6= πS(P),p
i .

The “soundness” properties of theorem 4.35 forbid overapproximation of the interests of the
actor; communicated assertions and messages must be genuinely relevant. However, when
taken alone, they permit omission of information. The “completeness” properties ensure timely
communication of all relevant assertions and messages, but taken alone permit inclusion of
irrelevancies. It is only when both kinds of property are taken together that we obtain a
practical result.

It is interesting to consider variations on the model that weaken these properties. A data-
space allowing inclusion of assertions not in R (violation of truthfulness) would be harmful: it
would violate Grice’s maxims of Quality, and hence risk being branded uncooperative. Like-
wise, a dataspace omitting assertions in R it knows to be of interest (violation of completeness)
would also be harmful: this violates the first maxim of Quantity and the maxim of Relation.
By contrast, allowing inclusion of assertions not in the interest set of a given actor (violation
of relevance) would not be harmful, and may even be useful, even though strictly this overin-
formativeness would be a violation of the second maxim of Quantity. For example, it may be
more convenient or more efficient for a dataspace to convey “all sizes are available” than the
collection of separate facts “size 4 is available”, “size 6 is available” and “size 7 is available” to
some actor expressing interest only in the specific sizes 4, 6 and 7. As another example, use
of a narrow probabilistic overapproximation of an actor’s interest (e.g. a Bloom filter (Bloom
1970)) could save significant memory and CPU resources in a dataspace implementation while
placing only the modest burden of discarding irrelevant assertions on each individual actor.

All this is true only in situations where secrecy is not a concern. If it is important that
actors be forbidden from learning the contents of certain assertions, then the relevance aspect
of soundness suddenly becomes crucial. For example, consider a system using unguessable
IDs as capabilities. Clearly, it would be wrong to send an actor spurious assertions mentioning
capabilities that it does not legitimately hold. Secrecy is further discussed in section 11.3.

4.6 incremental assertion-set maintenance

Taking section 4.2 literally implies that dataspaces convey entire sets of assertions back and
forth every time some assertion changes. While wholesale transmission is a convenient illusion,
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it is intractable as an implementation strategy. Because the change in state from one moment
to the next is usually small, actors and dataspaces transmit redundant information with each
action and event. In short, the model needs an incremental semantics. Relatedly, while many
actors find natural expression in terms of whole sets of assertions, some are best expressed
in terms of reactions to changes in state. Supporting a change-oriented interface between leaf
actors and their dataspaces simplifies the programmer’s task in these cases.

Starting from the definitions of section 4.1, we replace assertion-set state-change notification
events with patches. Patches allow incremental maintenance of the shared dataspace without
materially changing the semantics in other respects. When extended to code in leaf actors, they
permit incremental computation in response to changes. We will call the syntax and seman-
tics already presented the monolithic dataspace model, and the altered syntax and semantics
introduced in this section the incremental dataspace model.

The required changes to program syntax are small. We replace assertion sets π with patches
∆ in the syntax of events and actions:

Events e ∈ Evt ::= 〈c〉 | ∆
Actions a ∈ Act ::= 〈c〉 | ∆ | P

Patches ∆ ∈ Patch ::=
πin

πout
where πin ∩ πout = ∅

All other definitions from figures 12 and 14 remain the same. The configuration syntax is
as before, except that queued events and actions now use patches instead of assertion sets.
Behavior functions, too, exchange patches with their callers.

Patches denote changes in assertion sets. They are intended to be applied to some existing
set of assertions. The notation is chosen to resemble a substitution, with elements to be added
to the set written above the line and those to be removed below. We require that a patch’s two
sets be disjoint.16

Definition 4.43 (Rule patch). To match the exchange of patches for assertion sets, we replace
the newtable reduction rule (definition 4.11 and figure 15) with a rule for applying patches:

〈−→e . [−→q (k,∆);R ;
−→
AQ ] . −→a 〉 (patch)

−→ 〈−→e . [−→q ;R⊕ (k,∆ ′);
−−−−−−−−−−−→
bc∆ k ∆ ′ R AQ] . (out k ∆ ′ R)

−→a 〉

where ∆ =
πin

πout
and ∆ ′ =

πin − {c | (k, c) ∈ R}
πout ∩ {c | (k, c) ∈ R}

.

Remark. The effect of the definition of ∆ ′ is to render harmless any attempt by k to add an
assertion it has already added or retract an assertion that is not asserted.

Definition 4.44 (Dataspace patching). The⊕ operator, defined above for wholesale assertion-set
updates (definition 4.10), is straightforwardly adapted to patches:

R⊕ (k,
πin

πout
) = R∪ {(k, c) | c ∈ πin}− {(k, c) | c ∈ πout}

16 Disjointness of πin and πout ensures that a patch can be applied either πin-first or πout-first without affecting the
result.
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Definition 4.45 (Inbound patch transformation). The inp metafunction is likewise easily ad-
justed:

inp
πin

πout
=

{� c | c ∈ πin }

{� c | c ∈ πout}

Definition 4.46 (Outbound patch transformation). It is the out metafunction that requires deep
surgery. We must take care not only to correctly relabel assertions in the resulting patch but to
signal only true changes to the aggregate set of assertions of the entire dataspace:17

out `
πin

πout
R =

{c | � c ∈ (πin − π ′)}∪ {?c | ? � c ∈ (πin − π ′)}

{c | � c ∈ (πout − π ′)}∪ {?c | ? � c ∈ (πout − π ′)}

where π ′ = {c | (j, c) ∈ R, j 6= `}

Definition 4.47 (Patch event broadcast). The metafunction bc∆, used in the patch rule, con-
structs a state change notification patch event tailored to the interests of actor `. The notification
describes the net change to the shared dataspace caused by actor k’s patch action—as far as
that change is relevant to the interests of `.

bc∆ : ID× Patch× Space×ActorQ → Actor

bc∆ k
πin

πout
Rold (` 7→ 〈−→e .B . ·〉) =


` 7→ 〈∆fb

−→e .B . ·〉 if ` = k and ∆fb 6= ∅∅
` 7→ 〈∆other

−→e .B . ·〉 if ` 6= k and ∆other 6= ∅∅
` 7→ 〈 −→e .B . ·〉 otherwise

where Rnew = Rold ⊕ (k,
πin

πout
)

π◦ = {c | (j, c) ∈ Rold }

π• = {c | (j, c) ∈ Rold , j 6= k}
π•in = πin − π

•

π•out = πout − π
•

∆other =
{c | c ∈ π•in , (`, ?c) ∈ Rold }

{c | c ∈ π•out, (`, ?c) ∈ Rold }

∆fb =
{c | c ∈ π•in , (`, ?c) ∈ Rnew}∪ {c | c ∈ (π◦ ∪ π•in − π•out), ?c ∈ πin }

{c | c ∈ π•out, (`, ?c) ∈ Rold }∪ {c | c ∈ π◦ , ?c ∈ πout}

The patch ∆fb that bc∆ constructs as feedback when ` = k differs from the patch ∆other delivered
to k’s peers. While assertions made by k’s peers do not change during the reduction, k’s
assertions do. Not only must new assertions in πin be considered as potentially worthy of
inclusion, but new subscriptions in πin must be given the opportunity to examine the entirety
of the aggregate state. Similar considerations arise for πout.

17 The definition of π ′ here is analogous to that of π• in the definition of bc∆, which also filters R to compute a mask
applied to the patch.
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The final changes adjust the quit and spawn rules to produce patches instead of assertion set
state change notifications in case of process termination and startup.

Definition 4.48 (Incremental quit rule). The quit rule becomes

〈−→e e0 . pack 〈τ, (fbeh,u)〉 .−→a 〉 −→ 〈−→e . pack 〈1, (noop, ())〉 . ∅
Val
−→a ′−→a 〉

when fbeh(e0,u) = exit(−→a ′). The sole change from definition 4.6 is use of ∅Val in place of ∅.

Definition 4.49 (Incremental spawn rule). The spawn rule becomes

〈−→e . [−→q (k,P);R;
−→
AQ] .

−→a 〉 −→ 〈−→e . [−→q (`, π
∅
);R;
−→
AQ(` 7→ Σ)] .−→a 〉

where ` is chosen as in definition 4.15 and where (Σ,π) = boot P. The only change from
definition 4.15 is use of π∅ in place of π.

equivalence between monolithic and incremental models . Programs using
the incremental protocol and semantics are not directly comparable to those using the mono-
lithic semantics. Each variation uses a unique language for communication between dataspaces
and actors. However, any two assertion sets π1 and π2 can be equivalently represented by π1
and a patch π2−π1

π1−π2
, because π2 = π1 ∪ (π2 − π1) − (π1 − π2) and (π2 − π1)∩ (π1 − π2) = ∅.

This idea suggests a technique for embedding an actor communicating via the monolithic
protocol into a dataspace that uses the incremental protocol.18 Specifically, the actor integrates
the series of incoming patches to obtain knowledge about the state of the world, and differenti-
ates its outgoing assertion sets with respect to previous assertion sets.

Every monolithic leaf actor can be translated into an equivalent incremental actor by compos-
ing its behavior function with a wrapper that performs this on-the-fly integration and differen-
tiation. The reduction rules ensure that, if every monolithic leaf actor in a program is translated
into an incremental actor in this way, each underlying monolithic-protocol behavior function
receives events and emits actions identical to those seen in the run of the unmodified program
using the monolithic semantics.

Definition 4.50. We write JPMK to denote the translation of a monolithic-protocol program into
the incremental-protocol language using this wrapping technique, and use M and I subscripts
for monolithic and incremental constructs generally.

The translation maintains additional state with each leaf actor in order to compute patches
from assertion sets and vice versa and to expose information required for judging equivalence
between the two kinds of machine state. Where a leaf actor has private state u in an untrans-
lated program, it has state (u,πi,πo) in the translated program. The new registers πi and πo
are the actor’s most recently delivered and produced assertion sets, respectively.

Definition 4.51. We write ΣM ≈ ΣI to denote equivalence between monolithic and incremental
actor states. To see what this means, let us imagine hierarchical configurations as trees like the

18 The symmetry of translation between patches and assertion sets also makes it possible to embed incremental-
protocol actors in a monolithic-protocol environment.



4.7 programming with the incremental protocol 71

one in figure 13. Each actor and each dataspace becomes a node, and each edge represents the
pair of queues connecting an actor to its container. For a monolithic-protocol configuration to
be equivalent to an incremental-protocol configuration, it must have the same tree shape and
equivalent leaf actors with identical private states. Furthermore, at each internal monolithic
node (i.e., at each dataspace), the assertion store must be identical to that in the corresponding
incremental node. Finally, events and actions queued along a given edge on the monolithic
side must have the same effects as those queued on the corresponding incremental edge.

The effects of monolithic and incremental action queues are the same when corresponding
slots in the queues contain either identical message-send actions, spawn actions that result in
equivalent actors, or state change notifications that have the same effect on the assertion store in
the containing dataspace. Comparing event queues is similar, except that instead of requiring
state change notifications to have identical effects on the shared dataspace, we require that
they instead identically modify the perspective on the shared dataspace that the actor they are
destined for has been accumulating.

If the conditions for establishing ΣM ≈ ΣI are satisfied, then reduction of ΣM proceeds in
lockstep with reduction of the equivalent ΣI, and equivalence is preserved at each step.

Theorem 4.52. For every monolithic program PM, let (Σ0M ,π0M ) = boot(PM) and (Σ0I ,π0I ) = boot(JPMK).
Then,

1. π0M = π0I .

2. If there exists ΣM such that Σ0M −→nM ΣM for some n ∈ N, then there exists a unique ΣI such that
Σ0I −→nI ΣI and ΣM ≈ ΣI.

Proof (Sketch). Conclusion 1 follows trivially from the definition of boot and the fact that the
translation process does not alter an actor’s initial assertion set. The bulk of the proof is de-
voted to establishing conclusion 2. We first define LPMM to mean augmentation of the monolithic
program with the same additional registers as provided by JPMK. Second, we define an equiv-
alence ≈MM between L·M-translated and untranslated monolithic machine states that ignores the
extra registers, and prove that reduction respects ≈MM. Third, we prove that LPMM and JPMK reduce
in lockstep, and that an equivalence ≈MI between translated monolithic and incremental states
is preserved by reduction. Finally, we prove that the two notions of equivalence ≈MM and ≈MI

together imply the desired equivalence ≈. The full proof takes the form of a Coq script.

4.7 programming with the incremental protocol

The incremental protocol occasionally simplifies programs for leaf actors. This applies not only
to examples in Dataspace ISWIM, but also to large programs written for the Racket or JavaScript
dataspace model implementations. Occasional simplification is not the only advantage of incre-
mentality: the incremental protocol often improves the efficiency of programs. Theorem 4.52

allows programmers to choose on an actor-by-actor basis which protocol is most appropriate
for a given task.
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Short-lived observables
(i.e. messages)

Long-lived observables
(i.e. assertions)

Short-lived interest — Query-like behavior

Long-lived interest Publish-subscribe State replication,
streaming queries

Figure 16: Behavior resulting from variation of subscription lifetime and fact lifetime

For example, the demand-matcher example (numbered 4.3 above) can be implemented in a
locally-stateless manner using patch-based state change notifications. It is no longer forced to
maintain a record of the most recent set of active conversations, and thus no set subtraction is
required. Instead, it can rely upon the added and removed sets in patch events it receives from
its dataspace. The revised demandMatcher behavior function takes () as its actor-private state
value, since each event it receives conveys all the information it needs:

demandMatcher (
πin

πout
, ()) = continue([mkWorker x | (hello, x) ∈ πin] , ())

More generally, theorem 4.53 can free actors written using the incremental protocol from
maintaining sets of assertions they have “seen before”; they may rely on the dataspace to
unambiguously signal (dis)appearance of assertions.

Theorem 4.53 (Concision). For all pairs of events e = π1
π2

and e ′ = π3
π4

delivered to an actor, c ∈
π1 ∩ π3 only if some event π5π6 was delivered between e and e ′, where c ∈ π6. Symmetrically, c cannot
be retracted twice without being asserted in the interim.

Proof (Sketch). The patch rule prunes patch actions against R to ensure that only real changes
are passed on in events. R itself is then updated to incorporate the patch so that subsequent
patches can be accurately pruned in turn.

4.8 styles of interaction

The dataspace model offers a selection of different styles of interaction. In order for commu-
nication to occur at all, some actors must assert items of knowledge c, and others must simul-
taneously assert interest in such knowledge, ?c. (Here, we may treat message-sending 〈c〉 as
fleeting assertions of c, as discussed in section 4.4.) Varying the lifetimes of assertions placed in
the dataspace gives rise to patterns of information exchange reminiscent of publish/subscribe
messaging, state replication, streaming queries, and instantaneous queries.

Figure 16 summarizes the situation. There are four regions of interest shown. Only three
yield interesting patterns of interaction: if both assertions of interest and assertions of knowl-
edge are very short-lived, no communication can occur. There is no moment when the two
kinds of assertion exist simultaneously.

When assertions of interest tend to be long-lived and assertions of the items of interest them-
selves tend to be brief in duration, a publish/subscribe pattern of interaction results. The as-
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sertions of interest can be thought of as subscriptions in this case. Publish/subscribe commu-
nication is naturally multi-party; however, point-to-point, channel-like messaging is readily
available via a convention for assignment and use of channel names.

As the lifetimes of assertions representing knowledge increase, the pattern of interaction
takes on a different character. It begins to resemble a streaming query style of knowledge trans-
fer, where long-lived queries over a changing set of rows yield incrementally-maintained result
sets. The resemblance is particularly strong when cast in terms of the incremental patch ac-
tions ∆ introduced in section 4.6. Seen from a different perspective, this pattern of interaction
appears similar to state replication, where spatially-distinct replicas of a set of information are
maintained by exchange of messages. The monolithic state change notifications π first intro-
duced in section 4.1 most clearly capture the intuition backing this perspective.

Finally, if we consider long-lived assertions of knowledge in combination with briefer and
briefer assertions of interest in this knowledge, the style of interaction approaches that of clients
making SELECT queries against a shared SQL database. Here, the assertions of interest can
usefully be thought of as queries. An important consideration in this style of interaction is the
length of time that each query is maintained.19

There is no general answer to the question of how long an assertion of interest should be
maintained in order to effectively act as a query over matching assertions. It varies from
protocol to protocol. In some protocols, it is certain that the assertions of interest will be
present at the moment the query is established, in which case an immediate retraction of
interest is sound. In other protocols, queries must be held in place for some time to allow
them to be detected and responded to. The specific duration depends on the mechanism by
which such responses are to be produced: a local actor may be able to compute a result in one
round-trip of control transfer, on demand; an actor communicating with a remote system over
a network link may require queries to be held for a certain number of seconds.

An actor maintaining an assertion of interest for any non-trivial length of time at all runs
the risk of the result set changing during the lifetime of the query. The longer the query is
maintained, the more the style of interaction begins to resemble a streaming query and the less
it has in common with SQL-style point-in-time queries of a snapshot of system state.

19 Abstractly, of course, time is measured in number of reduction steps rather than any real-world measure.





5
Computational Model II: Syndicate

With the dataspace model, we have a flexible facility for communicating changes in conversa-
tional state among a group of actors. We are able to express styles of interaction ranging from
unicast, multicast and broadcast messaging through streaming queries and state replication to
shared-database-like protocols. The model’s emphasis on structured exchange of public aspects
of component state allows us to express a wide range of effects including service presence, fate
sharing, and demand matching. These effects in turn serve as mechanisms by which a range of
resource-allocation, -management, and -release policies may be expressed.

The dataspace model brings actors together into a conversational group, but says nothing
about the internal structure of each leaf actor. Such actors are not only stateful, but internally
concurrent. Each leaf actor is frequently engaged in more than one simultaneous conversation.
Ordinary programming languages offer no assistance to the programmer for managing intra-
actor control and state, even when (like Dataspace ISWIM) extended with dataspace-model-
specific data types and functions. However, to simply discard such languages would be a
mistake: practicality demands interoperability. If we design a new language specifically for
leaf actor programming, we forfeit the benefits of the enormous quantity of useful software
written in already-existing languages.1 Instead, we seek tools for integrating the dataspace
model not only with existing programs and libraries but with existing ways of thinking.

We will need new control structures reflecting the conversation-related concepts the data-
space model introduces. Programmers are asked to think in terms of asynchronous (nested
sub-)conversations, but given ordinary sequential control flow. They are asked to maintain
connections between actor-private state and published assertions in a shared space, but given
ordinary variables and heaps. They are asked to respond to conversational implicatures ex-
pressing peers’ needs, but offered no support for turning such demands into manageable units
of programming. Conversely, they are asked to respond to signals indicating abandonment of
a conversation by releasing local related resources, but given no means of precisely delimiting
such resources. Finally, when a local control decision is made to end an interaction, program-
mers are left to manually ensure that this is communicated to affected peers.2

1 The idea of such a new language is nonetheless interesting, worthy of future exploration.
2 Actor languages face some of the same issues, especially as they relate to (de)multiplexing of conversations. Erlang,

for example, is like the unadorned dataspace model in funneling all communication for an actor through a single
behavior function. The E strategy of allocating a new object (what E terms a facet) to handle a given sub-conversation
is an interesting approach that takes advantage of E’s ability to offer peers different perspectives on shared state in
a single vat. E facets thus overlap in intent with Syndicate facets at least in part.
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The second part of the Syndicate design therefore builds on the dataspace model by propos-
ing new language features to address these challenges. The new features are intended for
incorporation into base languages used to express leaf actor behaviors. The central novelty is
an explicit representation of a (sub-)conversation named a facet. Facets nest, forming a tree
that mirrors the nested conversational structure of the actor’s interactions. Each actor’s private
state is held in fields; each field is associated with a particular facet. Special declarations called
endpoints allow the programmer to connect assertions in the dataspace with values held in local
fields in a bidirectional manner. Endpoints describing interest in assertions—that is, endpoints
that publish assertions of the form ?c into the dataspace—offer a convenient syntactic location
for the specification of responses to the appearance and disappearance of matching assertions.

Facets, fields, and endpoints together allow the programmer to write programs in terms
of conversations, conversational state, and conversational interactions. They connect local to
shared state. They offer a unit of resource management that can come and go with changes in
expressed demand. Finally, because the connection between a facet and the surrounding data-
space is bidirectional, adding or removing a facet automatically adds or removes its endpoints’
assertions, allowing peers to detect and respond to the change. In the extreme case of an actor
crash, all its facets are removed, automatically (if abruptly) ending all of its conversations.

Syndicate/λ. Chapter 4 used an informal quasi-language, Dataspace ISWIM, to illustrate
the formal system underpinning the dataspace model. Here, we take a slightly different
tack, illustrating new language features by presenting them as part of an otherwise-minimal,
mathematical, λ-calculus-inspired base language with just enough structure to act as a back-
drop. We call this language Syndicate/λ, by analogy with the full prototype implementations
Syndicate/rkt and Syndicate/js. In our formal presentation, we abstract away from concrete
details of base value types and specific built-in operations; where needed for examples, we
reuse the notation and concepts sketched for Dataspace ISWIM.

5.1 abstract Syndicate/λ syntax and informal semantics

Figure 17 displays the syntax of Syndicate/λ. It is stratified into expressions e ∈ Expr and
reactive, imperative programs Pr ∈ Pr. Expressions are both terminating and pure up to excep-
tions caused by partial primitive functions. Programs describe the interesting features of the
language. While expressions yield values, programs are evaluated solely for their side effects.

The empty or inert program is written 0. A semicolon is used to denote a form of sequential
composition, Pr1;Pr2. The inert program 0 is both a left and a right identity for this form of
composition. In this chapter, we identify terms up to arbitrary composition with 0. This avoids
spurious nondeterminism in reduction.

The usual λ-calculus syntax for application, e1 e2, is only available to programs, because the
language includes only procedure values λ [(P.Pr) . . . ] instead of the function values familiar
from λ-calculus. Each (P.Pr) in a procedure value is a branch of a pattern-match construct.
When the procedure is called, the supplied argument is tested against each P in left-to-right
order, and the entire call reduces to the corresponding Pr, substituted appropriately.
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Programs Pr ∈ Pr := 0 inert

| Pr;Pr composition

| e e procedure call

| let x = e in Pr bind immutable variable

| let x := e in Pr allocate mutable field

| x � e update mutable field

| send e send message via dataspace

| spawn Pr spawn actor

| dataspace Pr spawn dataspace

| x [A (D Pr) . . . ] start facet

| stop x Pr stop facet

Expressions e ∈ Expr := b | (e, . . . ) | p e . . . | x | λ [(P.Pr) . . . ]

Local values v ∈ Valλ := b | (v, . . . ) | λ [(P.Pr) . . . ]

Assertions c ∈ Val := b | (c, . . . )

Assertion sets π ∈ ASet = P(Val)

Names x ∈ Var (used to denote variables, fields, facets)

Event patterns D ∈ EPat := asserted P

| retracted P

| message 〈P〉
| start

| stop

Dataspace events ε ∈ Evt := 〈c〉 | ∆
Local events ε+ ∈ Evt+ := 〈c〉 | ∆ | start | stop

Dataspace actions a ∈ Act := 〈c〉 | ∆ | actor g π

Patterns P ∈ Pat := ? | b | (P, . . . ) | p e . . . | x | $x

Assertion templates k ∈ Tmpl := ? | b | (k, . . . ) | p e . . . | x

Pattern values I ∈ PVal := ? | b | (k, . . . ) | $x

Assertion endpoints A ∈ Tmpls := ∅ | k∪A
Base values b ∈ BVal = Atoms, incl. strings, symbols, numbers, etc.

Primitive functions p ∈ Prim

Figure 17: Syntax of Syndicate/λ programs



78 computational model ii : Syndicate

It is not only Syndicate/λ syntax that is stratified. Syndicate/λ bindings come in three
flavors: immutable variables (“variables”), mutable fields (“fields”), and names for facets (“facet
names”). The first two are introduced by the two forms of let, and the third is introduced as an
automatic consequence of creating a facet. Variables may include values containing procedures,
but fields must not. While not strictly required, this restriction captures some of the spirit of
programming in Syndicate; recall from section 2.6 the desire to eschew sharing of higher-order
data. Field update, x � e, naturally applies only to fields, not variables,3 and the value to be
stored in the field must not directly or indirectly contain a procedure value.

The command send e emits a dataspace model action of the form 〈c〉, where c is the result
of evaluating e. Similarly, the command spawn Pr spawns a sibling actor in the dataspace,
and dataspace Pr spawns a sibling dataspace initially containing a lone actor with behavior Pr.
Spawned programs Pr may refer to arbitrary variables and fields of their spawning actor; at
the moment of the spawn, the store is effectively duplicated, meaning that mutations to fields
subsequently performed affect only the actor performing them.

The final two syntactic forms create and destroy facets. The form x [A (D Pr) . . . ] specifies
a facet template which is instantiated at the moment the form is interpreted. Once instanti-
ated, the new facet’s endpoints—the assertion endpoint A and the event-handling endpoints
(D Pr)—become active and contribute assertions to the aggregate of assertions published by
the actor as a whole.

Each assertion endpoint A is written using syntax chosen to connote set construction. The
meaning of such an endpoint is exactly a set of assertions, the union of the sets denoted by the
assertion templates k embedded in the syntax of the assertion endpoint. Changing a field that
is referred to by an assertion endpoint automatically changes the assertions published by that
endpoint. In this way, Syndicate/λ programs are able to publish assertions that track changes
in local state.

Similarly, event-handling endpoints (D Pr) contribute assertions of interest derived from
the event pattern D into the dataspace, as well as specifying a subprogram Pr to run when
any event relating to D is delivered. Event patterns D may select the appearance (asserted P)
or disappearance (retracted P) of assertions matching some pattern, the arrival of a message
(message 〈P〉) matching some pattern, or the synthetic events start and stop which relate to
facet lifecycle.4 Patterns that contain binders $x capture portions of assertions in matching
events, making x available in subprograms Pr. As with assertion endpoints, every pattern P
automatically tracks changes in fields it refers to.

The form stop x Pr, only legal when surrounded by a facet named x, causes that facet—and
all its nested subfacets—to terminate cleanly, executing any stop event handlers they might
have. Once a terminating facet becomes inert, after its stop handlers have completed their tasks,
its assertions are removed from the shared dataspace and the facet itself is then deleted. The
program Pr in stop x Pr is then scheduled to execute alongside the terminating facet, so that any
facets that Pr creates will exist in the actor’s facet tree as siblings of the just-stopped facet x.

3 The “well-formedness” judgment of section 5.5 enforces this requirement, among others.
4 The start and stop events are purely internal, having no connection to any dataspace-level events or actions. They

are used for structuring the ordering of side-effects within a Syndicate/λ actor.
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Despite being layered atop the dataspace model, the events and actions of that model are not
directly exposed to the Syndicate/λ programmer the way that they are in Dataspace ISWIM.
Instead of yielding values describing actions to perform in a functional style, programs perform
side-effecting operations like send and spawn. Instead of functional state transduction, programs
imperatively update fields. Instead of describing changes to published assertion sets, programs
create facets with embedded endpoints. Finally, instead of manually directing control flow by
analyzing and interpreting received events, programs declare event-handling endpoints, which
are activated as appropriate.

Example 5.1. For our first example, let us revisit the shared mutable reference cell actors of
example 4.2. First, we spawn an actor implementing the cell itself:5

spawn (let v := 0 in box
[
∅ ∪ (value, v)

(
message 〈(set, $v ′)〉 (v � v ′)

)]
)

This actor first creates a new field v, initialized to zero. It then creates a single facet named
box, which has an assertion endpoint that places the assertion (value, v) into the shared data-
space. The semantics of Syndicate/λ automatically update this published assertion as the
value of v changes in response to subsequent events. The box facet also has a single event-
handling endpoint. In response to an incoming set message, the endpoint updates the field v
to contain the new value v ′ specified in the received message.

The client actor from example 4.2 can be written as follows:

spawn boxClient [∅ (asserted (value, $v) (send (set, v+ 1)))]

This actor is stateless, having no fields. It creates a single facet, boxClient, which makes no
assertions but contains a single event-handling endpoint which responds to patch events. If
such a patch event describes the appearance of an assertion matching the pattern (value, $v),
the endpoint sends a message 〈(set, v + 1)〉 via the dataspace. (We imagine here that Prim
includes functions for arithmetic and assume a convenient infix syntax.) Of course, the box
actor responds to such messages by updating its value assertion, which triggers boxClient again.
This cycle repeats ad infinitum. ♦

Example 5.2. Next, we translate the demand-matcher from example 4.3 to Syndicate/λ:

let worker = λ [($x.w [∅ (retracted (hello, x) (stop w 0)) (start . . . )])] in

spawn demandMatcher [∅ (asserted (hello, $x) (spawn (worker x)))]

The single event-handling endpoint in facet demandMatcher responds to each asserted hello

tuple by spawning a new actor, which begins its existence by calling the procedure worker,
passing it the x from the assertion that led to its creation. In turn, worker creates a facet w
which monitors retraction of (hello, x) in addition to performing whichever startup actions a
worker should perform. When the last peer to assert (hello, x) retracts its assertion, the worker
terminates itself by performing a stop command on its top-level facet, supplying 0 to replace it.

The concision of Syndicate/λ has allowed us to show how a worker terminates itself once
demand for its existence disappears. The Dataspace ISWIM version of example 4.3 omits this
functionality: it is possible but verbose to express in Dataspace ISWIM. ♦

5 We have dispensed here with the id field of example 4.2.
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Facet trees S, T ∈ Tree := Pr unreduced code

| ♠ exception

| S;S composition

| x [A (D Pr) . . . ] .S running facet

| x [A D . . . ] † S stopping facet

| % [S] termination boundary

Inert facet trees SI, TI ∈ TreeI := 0 | SI;SI | x [A (D Pr) . . . ] .SI

Contexts E, F ∈ Ctxt := � | E;S | SI;E | x [A (D Pr) . . . ] .E | x [A D . . . ] † E | % [E]

Field stores σ ∈ Store = Var ⇀ Val

Machine states M ∈M :=
〈
σ,π,π,−→a ,S

〉
Inert machine states MI ∈MI := 〈σ,π,π, ·,SI〉

Figure 18: Evaluation Syntax, Contexts and Machine States

5.2 formal semantics of Syndicate/λ

Figure 18 introduces syntax for describing evaluation states of Trees of facets, as well as a
specification of what it means for such a tree to be inert, a definition of evaluation contexts
(Ctxt), field Stores, and reducible and inert machine states (M and MI).

A tree of facets may include unreduced commands drawn from Pr. Reduction interprets
these commands, applying any side effects they entail to the machine state. A tree may also
include an exception marker, ♠, which arises as a result of various run-time error conditions
and leads to abrupt actor termination. The composition operator on facet trees loses much of
the flavor of sequentiality that it enjoys in programs, and acts instead primarily to separate
(and order) adjacent sibling facets in the tree. However, evaluation contexts prefer redexes in
the left-hand side of a composition to those in the right-hand side, thus preserving the intuitive
ordering of effects.

The form x [A (D Pr) . . . ] .S describes an instantiated, running facet, with active endpoints.
It serves as an interior node in a facet tree. Any facets contained in S are considered nested
children of x. If x is later stopped, all facets in S are stopped as well.

The final two syntactic forms describing facet trees relate to shutdown of facets. First,
x [A D . . . ] † S describes a facet that is marked as terminating. The facet cannot be deleted
until S has reached inertness, but it will no longer react to incoming events, as can be seen
from the lack of Pr event handlers associated with each D. Second, % [S] marks a contour
within the tree. Contained facets and subfacets of S will transition to terminating state as soon
as they become inert. An explicit contour is necessary because a facet may create a sibling or
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child facet as a response to being terminated, and such “hail mary” facets must not be allowed
to escape termination.6

The reduction relation M −→ M ′ operates on a machine state
〈
σ,πi,πo,−→a ,S

〉
containing

five registers:

1. σ is the store, mapping field identifiers in Var to field values in Val. Higher-order values
such as procedures may not be placed in the store.

2. πi is the actor’s record of the assertions it has learned from the dataspace. As patch
events arrive from the dataspace, πi is updated.

3. πo is the actor’s record of the assertions it has placed into the dataspace. As fields are
updated and facets are created and destroyed, the actor issues patch actions and updates
πo to account for the changes.

4. −→a is an accumulator of dataspace model actions produced. As messages are sent, actors
are spawned, and changes are made to published assertions, actions are appended to this
register.

5. S is the tree of facets, the actor’s behavior and control state. Reduction drives this tree of
facets toward inertness.

evaluation of expressions and patterns . The semantics of Syndicate/λ depends
on evaluation of expressions in a number of places. Evaluation of expressions is straightfor-
ward, since no function or procedure calls (other than to primitives) are allowed. In addition,
because Syndicate/λ patterns include calls to primitive functions and references to field values,
the semantics requires a means of “evaluating” a pattern.

Definition 5.3 (Evaluation of expressions). The partial metafunction evalλ evaluates an Expr to
a Valλ, resolving field references using a Store.7

evalλ : Store× Expr ⇀ Valλ

evalλ σ b = b

evalλ σ (e, . . . ) = (evalλ σ e, . . . )

evalλ σ (p e . . . ) = deltaλ p
−−−−−−→
evalλ σ e

evalλ σ x = σ[x]

evalλ σ λ [(P.Pr) . . . ] = λ [(P.Pr) . . . ]

eval : Store× Expr ⇀ Val

eval σ e = v if v = evalλ σ e ∈ Val

6 Note, however, that stop x Pr explicitly hoists Pr out of any termination boundary associated with facet x.
7 Field references are not resolved under λ (per the last line of the definition of evalλ), because to do so would be

premature: updates to the store between the use of evalλ and subsequent invocation of the procedure would be lost.
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The metafunction eval is like evalλ, but with domain Val instead of Valλ. It is used in contexts
where procedure values are forbidden, such as values used to initialize or update a field, or
values serving as the body of a message to be transmitted. Both evalλ and eval are undefined
in cases where they depend on a use of deltaλ that is in turn undefined.

Definition 5.4 (Primitive functions). The partial metafunction deltaλ interprets applications of
primitive functions p ∈ Prim, and delta is to deltaλ as eval is to evalλ. We do not specify a fixed
Prim here, and so escape the need to fix deltaλ in any detail.

deltaλ : Prim×
−−→
Valλ ⇀ Valλ

delta : Prim×
−−→
Valλ ⇀ Val

Definition 5.5 (“Evaluation” of patterns). The metafunction snapshot “evaluates” a pattern by
computing the results of any embedded calls to primitive operations or references to field
values from the store. This “evaluation” process may fail with an exception; however, if it
succeeds, the resulting pattern does not include any primitive operations or field references,
and therefore is guaranteed not to signal an exception when used.

snapshot : Store× Pat→ PVal♠
snapshot σ ? = ?

snapshot σ b = b

snapshot σ () = ()

snapshot σ (P1,P2, . . . ) =


(P ′1,P ′2, . . . ) if P ′1 = snapshot σ P1

and (P ′2, . . . ) = snapshot σ (P2, . . . )

♠ otherwise

snapshot σ (p e . . . ) =

v if v = delta p
−−−−−−→
evalλ σ e

♠ otherwise

snapshot σ x = σ[x]

snapshot σ $x = $x

the active assertion set. As facets come and go and fields change their values, the set
of assertions to be placed into the surrounding dataspace by a Syndicate/λ actor changes. The
set must be tracked and, as it changes, corresponding patch actions must be computed and
emitted.

Definition 5.6. The metafunction assertions, which extracts the current set of assertions from a
tree of facets, is defined in figure 19.8 It is a pedestrian structural traversal of syntax except
when processing an event pattern D. In that case, it specially adds the assertion-of-interest
constructor ?· to each assertion arising from the pattern inside D.

8 For simplicity of presentation, assertions is given as a partial function; it is undefined where snapshot yields ♠.
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assertions : Store×Tree ⇀ ASet

assertions σ S =



assertions σ T ; assertions σ T ′ if S = T ; T ′

assertions σ A∪ assertions σ D∪ · · · ∪ assertions σ T if S = x [A (D Pr) . . . ] .T

assertions σ A∪ assertions σ D∪ · · · ∪ assertions σ T if S = x [A D . . . ] † T

∅ otherwise

assertions : Store× EPat ⇀ ASet

assertions σ D =


∅ if D = start or D = stop

{?c | c ∈ π} if D = asserted P, D = retracted P or D = message 〈P〉

where π = assertions ′ (snapshot σ P)

assertions ′ : PVal→ ASet

assertions ′ P =



Val if P = ? or P = $x

{b} if P = b

{()} if P = ()

{v× v ′ | v ∈ assertions ′ P ′, v ′ ∈ assertions ′ (P ′′, . . . )} if P = (P ′,P ′′, . . . )

assertions : Store×Tmpls ⇀ ASet

assertions σ A =

∅ if A = ∅

assertions σ k∪ assertions σ A ′ if A = k∪A ′

assertions : Store×Tmpl ⇀ ASet

assertions σ k = assertions ′ (snapshot σ k)

Figure 19: The (overloaded) assertions metafunction
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Definition 5.7. In situations where an actor’s assertion set may have changed, the metafunction
patch is used to compute an updated πo register as well as a patch to be appended to the
pending action accumulator.

patch : Store×ASet×Tree→ (ASet× Patch)♠

patch σ πo S =


(
π ′o, (π ′o−πo)

(πo−π ′o)

)
if π ′o = assertions σ S

♠ otherwise

Definition 5.8. The metafunction emit takes care of combining a patch action (often resulting
from patch) with an existing action queue. Any adjacent enqueued patch actions are coalesced
using a patch composition operator. By contrast, no such coalescing is desired (or possible)
when enqueueing message or actor-creation actions.

emit :
−→
Act× Patch→ −→Act

emit · ∆ = ∆

emit (−→a a ′) ∆ =

−→a (∆ ◦∆ ′) if a ′ = ∆ ′

−→a a ′ ∆ otherwise

Definition 5.9 (Patch composition). The patch composition operator is defined as follows:

· ◦ · : Patch× Patch→ Patch
π ′in
π ′out
◦ πin

πout
=
πin ∪ π ′in − π ′out
πout − π ′in ∪ π ′out

pattern matching . The Syndicate/λ semantics also makes use of pattern matching in
a number of places. Occasionally, a suite of patterns with matching continuations must be
searched for the first match for some value; at other times, matching of a single pattern with a
single value is required.

Definition 5.10. The metafunction matchInOrder searches a collection of (P.Pr) branches, often
extracted from a procedure value, to find the first that matches the argument value given. If
none of the branches match, an exception is signaled.

matchInOrder : Store×Valλ ×
−−−−−−−→
(Pat× Pr)→ Pr♠

matchInOrder σ v · = ♠

matchInOrder σ v ((P,Pr)
−−−−−→
(P ′,Pr ′)) =


♠ if snapshot σ P = ♠

Pr ′′ if match (snapshot σ P) v Pr = Pr ′′

matchInOrder σ v
−−−−−→
(P ′,Pr ′) if match (snapshot σ P) v Pr is undefined
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Definition 5.11. The partial metafunction match is defined when the given Valλ matches the
given PVal, and is otherwise undefined. The result of match is a program fragment that, when
interpreted, uses let to bind pattern variables before continuing with the Pr given to match.9

match : PVal×Valλ × Pr ⇀ Pr

match ? v Pr = Pr

match b b Pr = Pr

match () () Pr = Pr

match (P,P ′, . . . ) (v, v ′, . . . ) Pr = match P v (match (P ′, . . . ) (v ′, . . . ) Pr)

match $x v Pr = let x = v in Pr

reduction relation. The reduction relation is defined by fourteen rules,10 shown in full
in figures 20 and 21. The call rule implements procedure call, and rule let allows introduction
of immutable variables. The new-field and set-field rules manipulate fields, while rules send,
spawn and dataspace produce actions for interpretation by an actor’s surrounding dataspace.
The remainder of the rules relate to facet startup and shutdown: boot-facet instantiates a facet,
while the two stop-facet rules, three stop-child rules, and burial rule combine to handle the
process of facet termination.

Definition 5.12 (Rule call). The call rule interprets procedure calls e1 e2:〈
σ,πi,πo,−→a ,E[e1 e2]

〉
−→

〈
σ,πi,πo,−→a ,E [S]

〉
It first attempts to evaluate both e1 and e2 to elements of Valλ via the metafunction evalλ. If
both evalλ σ e1 = λ [(P.Pr) . . . ] ∈ Valλ and evalλ σ e2 = v ∈ Valλ, then S = matchInOrder σ v

−−−−→
(P,Pr)

on the right hand side of the relation; otherwise, S = ♠.

Definition 5.13 (Rule let). The first kind of let construct allows programmers to give names to
values drawn from Valλ. Machine states do not include an environment, and so our presenta-
tion makes use of hygienic substitution11 to replace references to a bound variable x with its
let-computed value while respecting the notion of free names captured by the metafunction fv
(figure 22). 〈

σ,πi,πo,−→a ,E[let x = e in Pr]
〉
−→

〈
σ,πi,πo,−→a ,E[S]

〉
If evalλ σ e = v ∈ Valλ, then S = {v/x}Pr on the right hand side; otherwise, S = ♠.

Definition 5.14 (Rule new-field). The second kind of let construct creates a new field, allocating
a fresh name y for the field and substituting y for references to the field in the body of the

9 As written, match admits repeated pattern variables, allowing later uses of a binder to shadow earlier uses. Im-
plementations of the Syndicate design may reasonably vary in their responses to this situation, depending on the
idioms of the base language.

10 The development of the reduction rules was informed by discussions with Sam Caldwell.
11 See Barendregt (1984, ch. 2). Our notation {v/x}Pr reads “replace x with v in Pr”.
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〈
σ,πi,πo,−→a ,E[e1 e2]

〉
−→

〈
σ,πi,πo,−→a ,E [S]

〉
(call)

where S =


matchInOrder σ v

−−−−→
(P,Pr) if λ [(P.Pr) . . . ] = evalλ σ e1

and v = evalλ σ e2

♠ otherwise

〈
σ,πi,πo,−→a ,E[let x = e in Pr]

〉
−→

〈
σ,πi,πo,−→a ,E[S]

〉
(let)

where S =

{v/x}Pr if v = evalλ σ e

♠ otherwise

〈
σ,πi,πo,−→a ,E[let x := e in Pr]

〉
−→

〈
σ ′,πi,πo,−→a ,E[S]

〉
(new-field)

where y fresh and
(
σ ′,S

)
=

(σ[y 7→ v], {y/x}Pr) if v = eval σ e

(σ,♠) otherwise

〈
σ,πi,πo,−→a ,E[x � e]

〉
−→

〈
σ ′,πi,π ′o, emit −→a ∆,E[S]

〉
(set-field)

where x ∈ dom(σ)

(
σ ′,S,π ′o,∆

)
=


(σ[x 7→ v], 0,π ′o,∆) if v = eval σ e

and (π ′o,∆) = patch σ πo E[0](
σ,♠,πo, ∅∅

)
otherwise

〈
σ,πi,πo,−→a ,E[send e]

〉
−→

〈
σ,πi,πo,−→a −→a ′,E[S]

〉
(send)

where
(−→a ′,S) =

(〈v〉, 0) if v = eval σ e

(·,♠) otherwise

〈
σ,πi,πo,−→a ,E[spawn Pr]

〉
−→

〈
σ,πi,πo,−→a (actor (setup (σ,Pr)) ∅),E[0]

〉
(spawn)〈

σ,πi,πo,−→a ,E[dataspace Pr]
〉
−→

〈
σ,πi,πo,−→a a ′,E[0]

〉
(dataspace)

where a ′ = dataspace (actor (setup (σ,Pr)) ∅)

Figure 20: Syndicate/λ reduction rules (procedure call, variables, fields, actions)
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〈
σ,πi,πo,−→a ,E[x [A (D Pr) . . . ]]

〉
−→

〈
σ,πi,π ′o, emit −→a ∆,E

[
S ′
]〉

(boot-facet)

where S = (y [A (D ({y/x}Pr)) . . . ] .T)

(S ′,π ′o,∆) =

(S,π ′o,∆) if (π ′o,∆) = patch σ πo E [S](
♠,πo, ∅∅

)
otherwise

Tstart = handle ∅ πi σ start
−−−−→
(D,Pr)

Tasserted = handle ∅ πi σ
πi
∅
−−−−→
(D,Pr)

T = {y/x} (Tstart; Tasserted)

y fresh

〈
σ,πi,πo,−→a ,E[x [A (D Pr) . . . ] .F[stop x Pr ′]]

〉
−→

〈
σ,πi,πo,−→a ,E[% [x [A (D Pr) . . . ] .F[0]] ;Pr ′]

〉
(stop-facet-1)

where x /∈ bv(F)

〈
σ,πi,πo,−→a ,E[x [A D . . . ] † F[stop x Pr ′]]

〉
−→

〈
σ,πi,πo,−→a ,E[x [A D . . . ] † F[0];Pr ′]

〉
(stop-facet-2)

where x /∈ bv(F)

〈
σ,πi,πo,−→a ,E[% [0]]

〉
−→

〈
σ,πi,πo,−→a ,E[0]

〉
(stop-child-1)〈

σ,πi,πo,−→a ,E[% [SI; TI]]
〉
−→

〈
σ,πi,πo,−→a ,E[% [SI] ; % [TI]]

〉
(stop-child-2)〈

σ,πi,πo,−→a ,E[% [x [A (D Pr) . . . ] .SI]]
〉
−→

〈
σ,πi,πo,−→a ,E[x [A D . . . ] †% [SI; T ]]

〉
(stop-child-3)

where T = handle πi πi σ stop
−−−−→
(D,Pr)

〈
σ,πi,πo,−→a ,E[x [A D . . . ] † 0]

〉
−→

〈
σ,πi,π ′o, emit −→a ∆,E[S ′]

〉
(burial)

where (S ′,π ′o,∆) =

(0,π ′o,∆) if (π ′o,∆) = patch σ πo E[0](
♠,πo, ∅∅

)
otherwise

Figure 21: Syndicate/λ reduction rules (facet startup and shutdown)



88 computational model ii : Syndicate

fv : Tree→ P(Var) bv : Ctxt→ P(Var)

fv(0) = ∅ bv(�) = ∅
fv(S;T) = fv(S)∪ fv(T) bv(E;S) = bv(E)

fv(e1 e2) = fv(e1)∪ fv(e2) bv(SI;E) = bv(E)

fv(let x := e in Pr) = fv(e)∪ (fv(Pr)− {x}) bv(x [A (D Pr) . . . ] .E) = {x}∪ bv(E)

fv(let x = e in Pr) = fv(e)∪ (fv(Pr)− {x}) bv(x [AD . . . ] †E) = {x}∪ bv(E)

fv(x � e) = {x}∪ fv(e) bv(% [E]) = bv(E)

fv(spawn Pr) = fv(Pr)

fv(dataspace Pr) = fv(Pr)

fv(stop x Pr) = {x}∪ fv(Pr)

fv(x [A (D Pr) . . . ]) = (fv(A)∪ (fv(D)∪ (fv(Pr)− formals(D)))∪ . . . )− {x}

fv(x [A (D Pr) . . . ] .T) = (fv(A)∪ (fv(D)∪ (fv(Pr)− formals(D)))∪ · · · ∪ fv(T))− {x} fv : Tmpls→ P(Var)

fv(x [AD . . . ] † T) = (fv(A)∪ fv(D)∪ · · · ∪ fv(T))− {x} fv(∅) = ∅
fv(% [S]) = fv(S) fv(k∪A) = fv(k)∪ fv(A)

fv : Expr→ P(Var) fv : Tmpl→ P(Var)

fv(b) = ∅ fv(?) = ∅
fv((e, . . . )) = fv(e)∪ . . . fv(b) = ∅
fv(p e . . . ) = fv(e)∪ . . . fv((k, . . . )) = fv(e)∪ . . .

fv(x) = {x} fv(p e . . . ) = fv(e)∪ . . .
fv(λ [(P.Pr) . . . ]) = (fv(P)∪ (fv(Pr)− formals(P)))∪ . . . fv(x) = {x}

fv : EPat→ P(Var) formals : EPat→ P(Var)

fv(asserted P) = fv(P) formals(asserted P) = formals(P)

fv(retracted P) = fv(P) formals(retracted P) = formals(P)

fv(message 〈P〉) = fv(P) formals(message 〈P〉) = formals(P)

fv(start) = fv(stop) = ∅ formals(start) = formals(stop) = ∅

fv : Pat→ P(Var) formals : Pat→ P(Var)

fv(?) = ∅ formals(?) = ∅
fv(b) = ∅ formals(b) = ∅

fv((P, . . . )) = fv(P)∪ . . . formals((P, . . . )) = formals(P)∪ . . .
fv(p e . . . ) = fv(e)∪ . . . formals(p e . . . ) = ∅

fv(x) = {x} formals(x) = ∅
fv($x) = ∅ formals($x) = {x}

Figure 22: Free and bound names
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let. The store σ in the machine state is updated with the initial value of the field, which is
constrained to be drawn from Val.〈

σ,πi,πo,−→a ,E[let x := e in Pr]
〉
−→

〈
σ ′,πi,πo,−→a ,E[S]

〉
If eval σ e = v ∈ Val then σ ′ = σ[y 7→ v] and S = Pr on the right hand side; otherwise, σ ′ = σ

and S = ♠.

Definition 5.15 (Rule set-field). In rule set-field, we see the first production of an action for
transmission to the surrounding dataspace. Updating a field affects any assertions depending
on the field, and a patch action must be issued to communicate any changed assertions to the
actor’s peers.〈

σ,πi,πo,−→a ,E[x � e]
〉
−→

〈
σ ′,πi,π ′o, emit −→a ∆,E[S]

〉
where x ∈ dom(σ)

If eval σ e = v ∈ Val, then σ ′ = σ[x 7→ v], S = 0, and (π ′o,∆) = patch σ πo E[0]. Otherwise,
σ ′ = σ, S = ♠, and (π ′o,∆) = (πo, ∅∅).

Definition 5.16 (Rule send). The send rule is entirely straightforward:〈
σ,πi,πo,−→a ,E[send e]

〉
−→

〈
σ,πi,πo,−→a −→a ′,E[S]

〉
If eval σ e = v ∈ Val, then S = 0 and −→a ′ = 〈v〉; otherwise, S = ♠ and −→a ′ is the empty sequence.

Definition 5.17 (Rules spawn and dataspace). The spawn and dataspace rules are also uncompli-
cated, but depend on the setup metafunction, which we will not discuss until section 5.4.〈

σ,πi,πo,−→a ,E[spawn Pr]
〉
−→

〈
σ,πi,πo,−→a (actor (setup (σ,Pr)) ∅),E[0]

〉
〈
σ,πi,πo,−→a ,E[dataspace Pr]

〉
−→

〈
σ,πi,πo,−→a (dataspace (actor (setup (σ,Pr)) ∅)) ,E[0]

〉
The remaining reduction rules (figure 21) all relate to various stages of a facet’s lifecycle.

Definition 5.18. Rule boot-facet interprets a facet template x [A (D Pr) . . . ], renaming it, trans-
forming it to an interior node in the facet tree and delivering two synthetic events to it.〈

σ,πi,πo,−→a ,E[x [A (D Pr) . . . ]]
〉
−→

〈
σ,πi,π ′o, emit −→a ∆,E

[
S ′
]〉

where S = (y [A (D ({y/x}Pr)) . . . ] .T)

(S ′,π ′o,∆) =

(S,π ′o,∆) if (π ′o,∆) = patch σ πo E [S](
♠,πo, ∅∅

)
otherwise

Tstart = handle ∅ πi σ start
−−−−→
(D,Pr)

Tasserted = handle ∅ πi σ
πi
∅
−−−−→
(D,Pr)

T = {y/x} (Tstart; Tasserted)

y fresh
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First, a start event allows the facet to execute any startup actions necessary following the es-
tablishment of its assertions and endpoints by the action ∆. Second, a synthetic patch πi

∅ is
delivered to the new facet, intended to “catch it up” on events preceding its instantiation. The
patch conveys to the facet the sum total of the assertions that the actor has already learned
from its dataspace. This latter event is necessary because otherwise any event-handlers in the
new facet do not have a chance to react to existing assertions; the dataspace is economical with
its events, never repeating itself unnecessarily, as shown by theorem 4.53. The final effect of
boot-facet is to update πo and issue a patch ∆ to account for the assertions of the new facet.

Definition 5.19 (The stop-facet rules). Rules stop-facet-1 and stop-facet-2 handle explicit facet
termination requests:〈
σ,πi,πo,−→a ,E[x [A (D Pr) . . . ] .F[stop x Pr ′]]

〉
−→

〈
σ,πi,πo,−→a ,E[% [x [A (D Pr) . . . ] .F[0]] ;Pr ′]

〉〈
σ,πi,πo,−→a ,E[x [A D . . . ] † F[stop x Pr ′]]

〉
−→

〈
σ,πi,πo,−→a ,E[x [A D . . . ] † F[0];Pr ′]

〉
The nested context F is used to connect the containing facet named x with the redex requesting
its termination, stop x Pr ′. A side-condition x /∈ bv(F) applies (see figure 22); it ensures that
the facet name x is not captured by any node in F sitting between the identified facet x and the
termination request. In the first of the two rules, stop-facet-1, facet x is an ordinary running
facet that has not yet begun its termination process. The rule encloses it in % [·] to trigger
termination. In the second, stop-facet-2, facet x is an already-terminated facet that is awaiting
final tear-down, and no additional % [·] is required. In each case, the Pr ′ is hoisted to a position
adjacent to facet x, just inside the outer context E, but outside the scope of the % [·] termination
contour corresponding to x.

Definition 5.20 (The stop-child rules). Termination boundaries % [·] are moved leafward through
a facet tree by rules stop-child-1, stop-child-2, and stop-child-3.〈

σ,πi,πo,−→a ,E[% [0]]
〉
−→

〈
σ,πi,πo,−→a ,E[0]

〉〈
σ,πi,πo,−→a ,E[% [SI; TI]]

〉
−→

〈
σ,πi,πo,−→a ,E[% [SI] ; % [TI]]

〉〈
σ,πi,πo,−→a ,E[% [x [A (D Pr) . . . ] .SI]]

〉
−→

〈
σ,πi,πo,−→a ,E[x [A D . . . ] †% [SI; T ]]

〉
where T = handle πi πi σ stop

−−−−→
(D,Pr)

The first two of the three are simple structural rules. It is stop-child-3 where a termination
boundary and a running facet interact. The rule applies only when the facet is inert; that
is, where any previously-triggered event handlers have run their course. As the termination
boundary passes by the facet’s node, the node is converted from the form x [A (D Pr) . . . ] .S
to the form x [A D . . . ] † S and a stop event is synthesized and delivered to the facet’s event-
handling endpoints. Any resulting commands are inserted adjacent to the existing (inert) chil-
dren, but remain inside the termination contour.

Definition 5.21 (Rule burial). The final tear-down of a terminated facet does not take place until
all of its children have not only become inert but have actually reduced to a literal 0. The burial
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rule takes care of this case. It is here that we finally see a patch action issued to remove the
assertions of the terminating facet from the actor’s aggregate assertion set.〈

σ,πi,πo,−→a ,E[x [A D . . . ] † 0]
〉
−→

〈
σ,πi,π ′o, emit −→a ∆,E[S ′]

〉
If patch σ πo E[0] yields a pair (π ′o,∆), then S ′ = 0; otherwise, patch yields ♠ and we set S ′ = ♠,
π ′o = πo and ∆ = ∅∅ .

5.3 interpretation of events

Several of the reduction rules appeal to a metafunction handle to compute the consequences of
a reaction to an event by a collection of event-handling endpoints. As we will see in section 5.4,
the same metafunction is used to distribute events arriving from the containing dataspace
among the facets in an actor’s facet tree.

Definition 5.22. The handle function itself is straightforward:

handle : ASet×ASet× Store× Evt+ ×
−−−−−−−−→
(EPat× Pr)→ Tree

handle πi π ′i σ ε
+ · = 0

handle πi π ′i σ ε
+ ((D,Pr)

−−−−−−→
(D ′,Pr ′)) = S; handle πi π ′i σ ε

+
−−−−−−→
(D ′,Pr ′)

where S in the second clause is defined by cases:

• if D = asserted P and ε+ =
πin

πout
, then S = project πi π ′i σ πin P Pr; otherwise,

• if D = retracted P and ε+ = πin
πout

, then S = project πi π ′i σ πout P Pr; otherwise,

• if D = message 〈P〉 and ε+ = 〈c〉, then S = matchInOrder σ c ((P,Pr) (?, 0)); otherwise,

• if D = start and ε+ = start, then S = Pr; otherwise,

• if D = stop and ε+ = stop, then S = Pr; otherwise,

• S = 0.

The sequence of event-handling endpoints becomes a composition of programs. Each endpoint
becomes 0 if the given event does not apply. Patch events apply to asserted and retracted
endpoints; message events to message endpoints; and start and stop events to start and stop
endpoints. The interesting cases are message delivery and patch handling. Message delivery
delegates to matchInOrder with the event-handler’s pattern P and continuation Pr augmented
with a catch-all 0 clause to handle the case where the incoming message does not match P.
Patch processing delegates to the metafunction project.

Definition 5.23. The project metafunction extracts a finite sequence of assertions matching pattern
P from an assertion set carried in a patch. Each relevant assertion should generate one instance
of the event handler program Pr. It is clearly an error to attempt to iterate over an infinite set;
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therefore, project yields an exception in cases where the assertion set π being projected contains
an infinite number of individual assertions that happen to match the pattern P.

project : ASet×ASet× Store×ASet× Pat× Pr→ Tree

project πi π ′i σ π P Pr =


♠ if P ′ = ♠

unroll m if |m| ∈N (i.e., m is finite)

♠ otherwise

where

P ′ = snapshot σ P

m =
{

match P ′ I Pr | I ∈ {inst P ′ v | v ∈ π}, known(I,πi) 6= known(I,π ′i)
}

known(I,π ′′) = 1, if some c ∈ π ′′ exists s.t. match I c 0 is defined; 0, otherwise

unroll
{
S,S ′, . . .

}
= S;S ′; . . . ; 0

The first step in project’s operation is to filter the set π using metafunction inst, retaining only
those assertions that match P ′.

Definition 5.24. The partial function inst is similar to match (definition 5.11), in that it is defined
only where the structure of the pattern matches the assertion; however, it is different in that it
yields a PVal as a result that includes detail only where it is relevant to the supplied pattern.

inst : PVal×Val ⇀ PVal

inst ? c = ?

inst b b = b

inst (P, . . . ) (v, . . . ) = (inst P v, . . . )

inst $x v = v

Where the pattern is ?, meaning “any value is acceptable”, the precise value that was given is
obscured in the output of inst. This causes irrelevant detail to be eliminated from consideration.
By gathering together results from inst, project collapses together assertions from π that are
identical up to “uninteresting” positions in the syntax of P.

Returning to the operation of project, the next step after filtering and partial transformation of
the input set π is to take each I ∈ PVal drawn from the set of inst results and use the arguments
πi and π ′i given to project to decide whether I is novel or not.

The set πi denotes the set of known assertions just prior to the arrival of the event that project
is processing. The set π ′i denotes the result of updating πi with the contents of the arriving
event. That is, πi is “what the actor knew before”, and π ′i is “what the actor knows now.”

If a particular I corresponds to some assertion in πi, but not to any in π ′i, or conversely
corresponds to some assertion in π ′i but none in πi, then the actor has learned something new,
and the handler program Pr should be instantiated for this I. However, if I corresponds to
some assertion in both or neither of πi and π ′i, then nothing relevant has changed for the actor,
and Pr should not be instantiated.
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Example 5.25. Consider the presence-management portion of a chat service with multiple
rooms. Assertions (userName, in, roomName) denote presence of the named user in the named
room. Rooms are said to “exist” only when inhabited by at least one user. Users joining the
system are presented with a list of currently-extant rooms to choose from. A program for cal-
culating this list might be written (assuming suitable data structures and primitive operations
for sets):

let rooms := ∅ in

track

 ∅(asserted (?, in, $r) (rooms � rooms∪ {r}))
(retracted (?, in, $r) (rooms � rooms − {r}))


Imagine now that two users, Alice and Bob, arrive and join the room Lobby simultaneously.

This results in delivery of a patch event ∆ = π+

∅ where π+ = {(Alice, in, Lobby), (Bob, in, Lobby)}
to our list-management actor. Ultimately, a call to handle takes place:

handle ∅ π+ σ ∆ ((asserted (?, in, $r), (rooms � rooms∪ {r})) (retracted (?, in, $r), (rooms � rooms− {r})))

For the retracted endpoint, handle delegates to project:

project ∅ π+ σ ∅ (?, in, $r) (rooms � rooms − {r})

which yields 0. The situation for the asserted endpoint is more interesting:

project ∅ π+ σ π+ (?, in, $r) (rooms � rooms∪ {r})

Because the pattern ignores the first component of matching triples, we have that

{(?, in, Lobby)} = {inst (?, in, $r) v | v ∈ π+}

Now, known((?, in, Lobby), ∅) 6= known((?, in, Lobby),π+), so match is invoked and the actor
processes the new knowledge of the room Lobby. ♦

Example 5.26. Imagine now that Alice leaves the room, while Bob stays on. This results in
a patch event ∆ = ∅

π− where π− = {(Alice, in, Lobby)}. At the time of the event, the total
knowledge of the actor is πi = {(Alice, in, Lobby), (Bob, in, Lobby)}. Updating πi with the patch
yields π ′i = {(Bob, in, Lobby)}. This time, the asserted endpoint has nothing to do, but the
retracted endpoint triggers:

project πi π ′i σ π
− (?, in, $r) (rooms � rooms − {r})

Again, the pattern ignores the first component of matching triples in π−, so

{(?, in, Lobby)} = {inst (?, in, $r) v | v ∈ π−}

However, this time, known((?, in, Lobby),πi) = known((?, in, Lobby),π ′i) since in each case some
assertion matching the pattern is contained in the assertion set. Therefore, this event does not
lead to our list-tracking actor updating its rooms field. This is what we want: Bob is still present
in Lobby. Even though Alice left, the room itself has not vanished yet. ♦
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Example 5.27. Finally, Bob leaves the room. The patch event is ∆ = ∅
π− again but with π− =

{(Bob, in, Lobby)} this time. At the time of the event, πi = {(Bob, in, Lobby)}, and so π ′i = ∅. The
retracted endpoint triggers again, as before; and, as before, inst leaves us a single value for I,
namely (?, in, Lobby). This time, however, known((?, in, Lobby),πi) 6= known((?, in, Lobby),π ′i)
because π ′i is empty, and so (rooms � rooms − {r}) is instantiated with r = Lobby, and the actor
removes Lobby from rooms. ♦

5.4 interfacing Syndicate/λ to the dataspace model

Thus far, we have discussed the internal operation of Syndicate/λ actors, but have not ad-
dressed the question of their interface to the wider world. The path to an answer begins with
the way Syndicate/λ constructs actor actions. To start an actor with store σ and code Pr,
Syndicate/λ issues the dataspace model action actor (setup (σ,Pr)) ∅. This term appears in
rules spawn and dataspace, as well.

Definition 5.28. The function setup produces a boot function of type Boot (figure 12) which in
turn describes the behavior function and initial state of a new actor. Every Syndicate/λ actor
has behavior function interp and a state value drawn from set MI (fig. 18).

setup : Store× Pr→ Boot

setup (σ,Pr) = λ().

init(−→a , pack 〈MI, (interp, 〈σ ′, ∅,πo, ·,S〉)〉) if S ∈ TreeI and S 6= 0

exit(−→a ) otherwise

where 〈σ, ∅, ∅, ·,Pr〉 −→∗
〈
σ ′, ∅,πo,−→a ,S

〉
6−→

The initial state value contains information extracted from a use of the reduction relation, start-
ing from σ and Pr. If reduction stops in an exception-signaling configuration or fails to generate
at least one running facet, setup instructs the dataspace to terminate the nascent actor.

Definition 5.29. The operator ± incorporates changes described by an incoming event to a pre-
vious record of the contents of the surrounding dataspace. When given a patch event, it updates
the assertion set. By contrast, a message event is treated as an infinitesimally-brief assertion of
its carried value, as discussed in section 4.4, and the assertion set remains unchanged.

· ± · : ASet× Evt→ ASet

π± πin

πout
= π∪ πin − πout

π± 〈c〉 = π

Definition 5.30. The inject function traverses a facet tree, using handle to deliver an incoming
event to the event-handler endpoints of every running facet.

inject : ASet×ASet× Store× Evt×TreeI → Tree

inject πi π ′i σ ε 0 = 0

inject πi π ′i σ ε (SI; TI) = inject πi π ′i σ ε SI; inject πi π ′i σ ε TI

inject πi π ′i σ ε x [A (D Pr) . . . ] .SI = x [A (D Pr) . . . ] .(inject πi π ′i σ ε SI; handle πi π ′i σ ε
−−−−→
(D,Pr))
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Definition 5.31. The behavior function interp integrates an event arriving from the dataspace
with the machine state held in the actor’s private state value, reduces the result, and returns.
If the actor terminates all its facets or if reduction yields an exception, interp instructs the
dataspace to terminate the actor.

interp : FMI

interp (ε, 〈σ,πi,πo, ·,SI〉) =

continue(emit −→a ∆,
〈
σ ′,π ′i,π

′′
o , ·,S ′′

〉
) if S ′′ ∈ TreeI and S ′′ 6= 0

exit(−→a ) otherwise

where π ′i = πi ± ε〈
σ,π ′i,πo, ·, inject πi π ′i σ ε SI

〉
−→∗

〈
σ ′,π ′i,π

′
o,−→a ,S ′

〉
6−→

(S ′′,π ′′o ,∆) =

(S ′,π ′′o ,∆) if (π ′′o ,∆) = patch σ ′ π ′o S ′(
♠,π ′o, ∅∅

)
otherwise

Remark. Syndicate/λ is an untyped language, and can express nontermination:

λ [($x. (x x))] λ [($x. (x x))]

−→ let x = λ [($x. (x x))] in (x x)

−→ λ [($x. (x x))] λ [($x. (x x))]

−→ · · ·

Despite this, we have equipped it with the behavior function interp for interfacing it with the
dataspace model, even though, strictly speaking, the dataspace model demands a terminating
leaf actor language.12 Syndicate/λ thus shares with its extant implementations the flaw that
programmers must take care to ensure their programs terminate.

5.5 well-formedness and errors

Reduction of Syndicate/λ programs can stop for many reasons. First of all, as in practically
all interesting uses of λ-calculus-like machinery, certain primitive operations may be partial
functions. The classic example is arithmetic division, undefined at a zero denominator. This
partiality manifests via deltaλ and delta yielding no answer. In turn, this affects most of the
other core metafunctions as well as the lion’s share of the reduction rules.

More interesting are type errors. Certain errors, such as attempts to call a non-procedure or
invoke an arithmetic primitive with a non-numeric value, may be prevented by developing a
conventional type system (Pierce 2002). Standard techniques also exist for enforcing exhaustive
pattern-matching in procedures. Other errors are peculiar to Syndicate/λ. Figures 23 and 24

sketch a “well-formedness” judgment Γ ` Pr wf intended to catch three kinds of scope error:
reference to an unbound variable, field, or facet; update to a name that is non-existent or not a

12 Ongoing collaborative work includes the development of a type system which ensures termination of Syndicate/λ
programs, among other benefits (Caldwell, Garnock-Jones and Felleisen 2017).
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τ ::= var | field | facet

Γ ::= · | Γ , x : τ

prune(·) = · pruneUpTo(x, ·) = ·
prune(Γ , x : var) = prune(Γ), x : var pruneUpTo(x, Γ , z : var) = pruneUpTo(x, Γ), z : var

prune(Γ , x : field) = prune(Γ), x : field pruneUpTo(x, Γ , z : field) = pruneUpTo(x, Γ), z : field

prune(Γ , x : facet) = prune(Γ) pruneUpTo(x, Γ , z : facet) = pruneUpTo(x, Γ) (x 6= z)
pruneUpTo(x, Γ , x : facet) = Γ

extend(Γ , {−→x }) = Γ−−−−→, x : var

Figure 23: ”Types”, type environments, and their metafunctions

field; and inappropriate use of a facet name in a stop command. For an example of the latter,
consider the two programs

x [∅ (start (stop x (stop x 0)))]

x [∅ (start y [∅ (start (stop x (stop y 0)))])]

In the first, the outer stop terminates the facet x, effectively replacing it with stop x 0, which is
stuck because it is not contained in an x [· · · ] .� context. Similarly, in the second, the outer stop
terminates x but also all its child facets, including y. Ultimately, reduction becomes stuck at
stop y 0 for lack of a y [· · · ] .� context.13 The well-formedness judgment aims to prevent such
errors by removing all facet names from the type environment when checking the bodies of
spawn and dataspace commands and by removing facet names at or below a certain name when
checking the continuation of each stop command.

Going beyond simple scope errors, Syndicate/λ programs can fail in two important ways
relating to the assertions they exchange with peers via the shared dataspace. First, programs
may make simple data-type errors in their assertions and subscriptions. For example, a par-
ticular protocol may require that peers interact by asserting and expressing interest in tuples
(square,n,m), where n,m ∈ N and m = n2. It is an error, then, for a program to assert
(square, "a", "aa"), to misspell square, or to assert a tuple such as (square, 10, 1000). Second, the
metafunction project signals an exception when the set of relevant matches to a given pattern is
infinite. Consider the following program, which computes and asserts squares in response to
detected interest:14

spawn squareServer

[
∅

(
asserted ? (square, $x, ?) ans

[
∅ ∪ (square, x, x× x)
(retracted ? (square, x, ?) (stop ans 0))

])]

13 As a matter of practicality, the Syndicate prototypes, both untyped, ignore this error, treating it as a no-op.
14 In section 5.7 we will introduce a more elegant approach to programming such services.



5.5 well-formedness and errors 97

Γ ` Pr wf
Γ ` 0 wf

Γ ` Pr1 wf Γ ` Pr2 wf
Γ ` Pr1;Pr2 wf

Γ ` e1 wf Γ ` e2 wf
Γ ` e1 e2 wf

Γ ` e wf Γ , x : var ` Pr wf
Γ ` let x = e in Pr wf

Γ ` e wf Γ , x : field ` Pr wf
Γ ` let x := e in Pr wf

Γ(x) = field Γ ` e wf
Γ ` x � e wf

Γ ` e wf
Γ ` send e wf

prune(Γ) ` Pr wf
Γ ` spawn Pr wf

prune(Γ) ` Pr wf
Γ ` dataspace Pr wf

Γ ′ = Γ , x : facet Γ ′ ` A wf (Γ ′ ` D wf ∧ extend(Γ ′, formals(D)) ` Pr wf) · · ·
Γ ` x [A (D Pr) . . . ] wf

Γ(x) = facet pruneUpTo(x, Γ) ` Pr wf
Γ ` stop x Pr wf

Γ ` e wf
Γ ` b wf

Γ ` e wf · · ·
Γ ` (e, . . . ) wf

Γ ` e wf · · ·
Γ ` p e . . . wf

Γ(x) = var or Γ(x) = field
Γ ` x wf

(Γ ` P wf ∧ extend(Γ , formals(P)) ` Pr wf) · · ·
Γ ` λ [(P.Pr) . . . ] wf

Γ ` A wf
Γ ` ∅ wf

Γ ` k wf Γ ` A wf
Γ ` k∪A wf

Γ ` P wf
Γ ` ? wf Γ ` b wf

Γ ` P wf · · ·
Γ ` (P, . . . ) wf

Γ ` e wf · · ·
Γ ` p e . . . wf

Γ(x) = var or Γ(x) = field
Γ ` x wf Γ ` $x wf

Γ ` k wf (like Γ ` P wf but without the case for $x)

Γ ` D wf
Γ ` start wf Γ ` stop wf

Γ ` P wf
Γ ` asserted P wf

Γ ` P wf
Γ ` retracted P wf

Γ ` P wf
Γ ` message 〈P〉 wf

Γ ` S wf
Γ ` S wf

Γ ` % [S] wf
Γ ` S1 wf Γ ` S2 wf

Γ ` S1;S2 wf

Γ ′ = Γ , x : facet Γ ′ ` A wf (Γ ′ ` D wf ∧ extend(Γ ′, formals(D)) ` Pr wf) · · · Γ ′ ` S wf
Γ ` x [A (D Pr) . . . ] .S wf

Γ ′ = Γ , x : facet Γ ′ ` A wf Γ ′ ` D wf · · · Γ ′ ` S wf
Γ ` x [A D . . . ] † S wf

Figure 24: Well-formedness judgments
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〈·, ∅, ∅, ·,Pr〉 −→∗
〈
σ, ∅,πo,−→a ,SI

〉
〈σ,πi,π ′o, ·,S〉 −→∗

〈
σ ′,πi,π ′′o ,−→a ′,S ′I

〉
↓ ↑ ↓

−→a∆, 〈σ, ∅,π ′o, ·,SI〉 99K ε, 〈σ, ∅,π ′o, ·,SI〉 −→a ′∆ ′,
〈
σ ′,πi,π ′′′o , ·,S ′I

〉
99K

Figure 25: Internal reduction and external interaction

All is well if some peer includes an endpoint (asserted (square, 3, $nine) Pr). But if a program-
mer makes an error, violating our square-computing protocol by attempting to enumerate
all squares using an endpoint (asserted (square, ?, $v) Pr), the resulting assertion of interest,
? (square, ?, ?), causes squareServer to signal an exception as it projects that infinite set against the
pattern ? (square, $x, ?). Even though the client was at fault, the server is the component which
crashes, since the server is the component relying upon the finiteness of a certain subspace
of assertions. Ongoing research investigates type-system-based approaches to ruling out these
forms of assertion-set-related error (Caldwell, Garnock-Jones and Felleisen 2017).

In order to use our well-formedness judgment to work towards a statement of overall sound-
ness, we need to account for the way an actor transmits actions to its environment and receives
events in reply. Figure 25 illustrates the alternation between the reduction relation explored in
this chapter (upper row) and the exchange of information with an actor’s surrounding data-
space, as explored in chapter 4 (lower row). Setting aside cases where an actor exits because of
a signaled exception or termination of all of its facets, we can abbreviate the excursions to the
lower row of the figure as a pseudo-reduction-rule. From the actor’s perspective, it is as if an
oracle supplies a fresh (relevant) event ε at just the right moment, as the actor achieves an inert
configuration:

Definition 5.32 (Pseudo-rule interact).〈
σ,πi,πo,−→a ,SI

〉
−→

〈
σ,π ′i,π

′
o, ·, inject πi π ′i σ ε SI

〉
(interact)

where (π ′o,∆) = patch σ πo SI
π ′i = πi ± ε

The uses of ± (definition 5.29), patch (definition 5.7) and inject (definition 5.30) here show that
the rule is effectively an “inlining” of interp (definition 5.31).

Definition 5.33 (Extended reduction relation). We will write −→IO to mean the reduction rela-
tion −→ extended with the interact pseudo-rule.

Conjecture 5.34. If · ` Pr wf and 〈·, ∅, ∅, ·,Pr〉 −→∗IO
〈
σ,πi,πo,−→a ,S

〉
, then either

1. S ∈ TreeI; or

2. S = E [♠] for some E; or

3. S /∈ TreeI and there exists a unique M ′ such that
〈
σ,πi,πo,−→a ,S

〉
−→M ′.

That is, at every step in a reduction chain, one of three conditions holds. First, the facet tree
S may be inert, in which case the actor terminates (S = 0) or yields to its dataspace (S 6= 0).
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Second, the facet tree may have a signaled exception as its selected redex, in which case it is
terminated abruptly. Third, the tree may be neither inert nor in an exception state, in which
case there is always another non-interact reduction step that may be taken.

Examination of the reduction rules and metafunctions shows that ♠ is signaled in two sit-
uations: when use of a primitive function yields no result, either due to intrinsic partiality
or a type error, and when project encounters an infinite set of matching assertions. The well-
formedness judgment rules out stuckness from misuse of names. If a program makes a simple
data-type error in the content of an assertion, a number of consequences may unfold: the actor
may simply sit inert forever, having failed to solicit events from peers; the actor may later re-
ceive events containing information it is not prepared to handle, resulting in an exception; or
the actor may unintentionally trigger crashes in its peers, having supplied them with incoherent
information.

5.6 atomicity and isolation

With fields, we have introduced mutable state, opening the door to potential unpredictability.
Syndicate mitigates this unpredictability by limiting the scope of mutability to individual
actors. In addition, Syndicate’s facet model enforces three kinds of atomicity that together
help the programmer in reasoning about field updates. First, an actor’s behavior function is
never preempted. As a result, events internal to an actor occur “infinitely quickly” from the
perspective of the surrounding dataspace. This yields “synchrony” similar to that of languages
such as Esterel (Berry and Gonthier 1992) and Céu (Sant’Anna, Ierusalimschy and Rodriguez
2015). Second, each actor’s private state is not only isolated but threaded through its behavior
function in a linear fashion. This yields a natural boundary within which private state may
safely be updated via mutation. Third, exceptions during event processing tear down the
entire actor at once, including its private state. The same happens for deliberate termination
of an actor. Termination is again instantaneous, and damaged private state cannot affect peers.
This yields a form of “fail-stop” programming (Schlichting and Schneider 1983). Together,
these forms of atomicity allow facet fields to be mutable, while events continue to be handled
with sequential code, resolving all questions of internal consistency in the face of imperative
updates.

By coalescing adjacent patch actions with emit during reduction, the Syndicate/λ semantics
hides momentary “glitches” from observers. This allows actors to stop one facet and start
another publishing the same assertion(s) without observers ever detecting the change, and
without being forced to explicitly indicate that a smooth changeover is desired. Contrast this
automatic ability to seamlessly delegate responsibility to a new facet with the equivalent ability
for glitch-free handover of assertions to a new actor. In the latter case, programmers must
explicitly make use of the “initial assertion set” field in the actor action describing the new
actor as described in section 4.2.

Events are dispatched to facets all at once: the metafunction inject matches each event against
all endpoints of an actor’s facets simultaneously. Actors thus make all decisions about which
event-handlers are to run before any particular event-handler begins execution. This separation
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of a planning phase from an execution phase helps reduce dependence on order-of-operations
(cf. section 2.6) by ensuring no field updates can occur during planning.15

5.7 derived forms : during and select

Examples 5.2 and 5.25 highlight two common idioms in Syndicate programming worthy of
promotion to language feature. In example 5.2, we saw a scenario in which appearance of an
assertion led to creation of a resource—in this case, a separate actor—and disappearance of the
same assertion led to the resource’s release. In example 5.25, we saw a scenario in which an
actor aggregated specific information from a set of assertions into a local set data structure held
in a field. Syndicate offers support for the former scenario via a new form of endpoint called
during, and support for the latter via a family of forms called select.16

“during” endpoints . In a facet template x [A (D Pr) . . . ], each (D Pr) declares a single
event-handling endpoint. We add during to the language by extending the class of event pat-
terns:

Event patterns D ∈ EPat := . . . | during P

We interpret the new construct in terms of existing syntax. An endpoint (during P Pr) is
interpreted as if the programmer had written

(asserted P x
[
∅ (start Pr)

(
retracted P ′ (stop x 0)

)]
)

where x is fresh and P ′ is P with each binder $z rewritten to z, a reference to the specific value
bound at that position during the firing of the asserted event pattern. As an example, a program
that asserts (room, roomName) whenever some assertion (userName, in, roomName) exists in the
dataspace might be written

listRooms [∅ (during (?, in, $r) entry [∅ ∪ (room, r)])]

Concrete syntax aside, during is reminiscent of a form of logical implication

∀u, r. (u, in, r) =⇒ (room, r)

where assertions are interpreted as ground facts.
A related derived event pattern, during P spawn, is able to help us with our demand-matcher

example 5.2, where during is not directly applicable. In contrast to during P, the event pattern
during P spawn does not create a facet but instead spawns an entire sibling actor to handle each
assertion matching P. The critical difference concerns failure. While a failure in a during P
endpoint tears down the current actor, a failure in a during P spawn endpoint terminates the

15 Both Syndicate/rkt and Syndicate/js fastidiously maintain this phase distinction. However, as each integrates
Syndicate features with an imperative host language, a loophole remains where field updates during computation
of pattern expressions evaluated during planning may affect later stages. In practice, this seems not to occur.

16 The new forms during and select can be compared to similar features of the fact space model, namely its rule-based
sub-language and its reactive context-aware collections (Mostinckx et al. 2007; Mostinckx, Lombide Carreton and De
Meuter 2008).
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separate actor, leaving its siblings and parent intact. Equipped with this new construct, we
may reformulate example 5.2 as just

spawn demandMatcher [∅ (during (hello, $x) spawn . . . )]

“select” expressions . The ability of facets to automatically update published assertions
in response to changes in fields provides a unidirectional link from the local state of an actor to
the shared state held in its dataspace. To establish a bidirectional link, we require a construct
describing a local data structure to maintain in response to changes in observed assertions:

Programs Pr ∈ Pr := . . . | select P into x := {e} in Pr

Like during, the new select construct is interpreted in terms of existing syntax. A program
select P into x := {e} in Pr is interpreted as if it were written

let x := ∅ in

y
 ∅(asserted P (x � x∪ {e}))

(retracted P (x � x− {e}))

 ;Pr


where y is fresh. The expression e may refer to bindings introduced by pattern P.

The new construct allows us to recast example 5.25 as just

select (?, in, $r) into rooms := {r} in 0

We may usefully generalize select from maintenance of fields containing sets to fields contain-
ing hash-tables, counts of matching rows, sums of matching rows, and other forms of aggregate
summary of a set of assertions:

Hash table: select P into x := {e 7→ e} in Pr

Count: select P into x := count (e) in Pr

Sum: select P into x := sum (e) in Pr
...

The interpretations of these forms in terms of asserted and retracted endpoints should follow
that of the form for sets, mutatis mutandis.

Finally, while event-handling endpoints in Syndicate/λ allow a program to react to changes
in shared assertions, there is no general symmetric ability in this minimal language for a pro-
gram to directly react to changes in local fields. The only such reaction available is the auto-
matic republication of assertions depending on field values. We will see in chapter 6 a more
general form of reaction to field changes that allows the programmer to express dataflow-style
dependencies on and among fields. In our example here, this ability might find use in reacting
to changes in the set-valued field rooms, updating a graphical display of the room list.
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5.8 properties

While Syndicate/λ is a mathematical fiction used to explain a language design, it highlights
a number of properties that a Syndicate implementation must enjoy in order to satisfy a
programmer’s expectations. First of all, when extending a host language with Syndicate

features, care must be taken to reconcile the host language’s own soundness property with
the invariants demanded by constructs such as facet creation and termination, field allocation,
reference and update, and so on. If the errors discussed in section 5.5 cannot be ruled out
statically, they should be checked for dynamically. Of particular importance is the check for
a finite result set in project; experience writing Syndicate programs thus far suggests that
programmer errors of this kind are not uncommon while designing a new protocol.

Second, with the introduction of mutable state and sequencing comes the obligation to offer
programmers a comprehensible model of order-of-evaluation and of visibility of intra-actor
side-effects from the perspective of an actor’s peers. As section 5.6 explains, Syndicate/λ
supports reasoning about various kinds of atomicity preserved during evaluation. Whichever
guarantees about order-of-evaluation and transactionality a host language offers should be
extended to Syndicate features so as to preserve these forms of atomicity.

Finally, programmers rely on theorem 4.35’s promise of the conversational cooperation of
the dataspace connecting a group of actors. In the same way, they rely on an extension of this
promise to include Syndicate/λ’s endpoints. An implementation of Syndicate must ensure
that the event-handling code associated with an endpoint runs only for relevant events, for every
relevant event, and never redundantly for the same piece of knowledge. In particular, the notion
of necessity developed in lemma 4.42 must be adapted in the setting of facets and endpoints to
account for the way in which inst elides irrelevant detail from incoming patch events.



Part III

P R A C T I C E





Overview

In order to evaluate the Syndicate design, we must be able to write programs using it. In
order to write programs, we need three things: algorithms, data structures and implementation
techniques allowing us to realize the language design; a concrete instance of integration of the
design with a host language; and a number of illustrative examples.

Chapter 6 builds on the formal models of chapters 4 and 5, presenting Syndicate/rkt, an
extension of the Racket programming language with Syndicate features.

Chapter 7 then discusses general issues related to Syndicate implementation. First, it
presents a new data structure, the assertion trie, important for efficient representation and ma-
nipulation of the sets of assertions ubiquitous to the dataspace model. Second, it turns to
techniques for implementation and integration of Syndicate with a host language. Third, it
describes some experimental tools for visualization and debugging of Syndicate programs.

Finally, chapter 8 presents a large number of examples demonstrating Syndicate idioms.





6
Syndicate/rkt Tutorial

Now that we have explored the details of the Syndicate design in the abstract, it is time to
apply the design ideas to a concrete language. This chapter introduces Syndicate/rkt, a lan-
guage which extends Racket (Flatt and PLT 2010) with Syndicate language features. The aim
of the chapter is to explain Syndicate/rkt in enough detail to allow the reader to appreciate
the implementation ideas of chapter 7 and engage with the examples of chapter 8.1

6.1 installation and brief example

The Racket-based Syndicate implementation is supplied as a Racket package.2 After installing
Racket itself, use the command-line or DrRacket-based interactive package management tool
to install the syndicate package. For example, on a Unix-like system, run the command

raco pkg install syndicate

The implementation uses Racket’s #lang facility to provide a custom language dialect with
Syndicate language features built-in. A Racket source file starting with

#lang syndicate

declares itself to be a Syndicate program. Before we examine details of the language, a brief
example demonstrates the big picture.

Example 6.1. Figure 26 shows a complete Syndicate/rkt program analogous to the box-and-
client programs shown in previous chapters (examples 4.2 and 5.1). Typing it into a file and
loading it into the DrRacket IDE or running it from the command line produces an unbounded
stream of output that begins

client: learned that box's value is now 0

box: taking on new-value 1

client: learned that box's value is now 1

box: taking on new-value 2

...

1 A brief overview of Syndicate/js is given in appendix A.
2 It is also available for download separately. See http://syndicate-lang.org/ for details.

http://syndicate-lang.org/
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1 #lang syndicate

2 (message-struct set-box (new-value))
3 (assertion-struct box-state (value))

4 (spawn (field [current-value 0])
5 (assert (box-state (current-value)))
6 (on (message (set-box $new-value))
7 (printf "box: taking on new-value ~v\n" new-value)
8 (current-value new-value)))

9 (spawn (on (asserted (box-state $v))
10 (printf "client: learned that box’s value is now ~v\n" v)
11 (send! (set-box (+ v 1)))))

Figure 26: Syndicate/rkt box-and-client example

Line 1 declares that the module is written using Syndicate/rkt. Lines 2 and 3 declare Racket
structures: set-box is declared as a structure to be used as a message, and box-state to be used
as an assertion. Lines 4–8 and 9–11 start two actors together in the same dataspace. The first
actor provides a mutable reference cell service, and the second accesses the cell.

The cell initially contains the value 0 (line 4). It publishes its value as a box-state record in
the shared dataspace (line 5). When it hears a set-box message (line 6), it prints a message to
the console and updates its current-value field. This leads to automatic update of the assertion
of line 5. The cell actor is the only party able to alter the box-state assertion in the dataspace:
peers may submit requests to change the assertion, but cannot themselves change the value.

The client actor begins its life waiting to hear about the assertion of box-state records. When
it learns that a new record has been asserted, it prints a message to the console and sends a
set-box message, which causes the cell to update itself, closing the loop. ♦

6.2 the structure of a running program : ground dataspace , driver actors

Figure 27 shows a schematic of a running Syndicate/rkt program. The main thread drives
execution of the Syndicate world, dispatching events to actors and collecting and interpreting
the resulting actions. All actors and dataspaces are gathered into a single, special ground data-
space which connects Syndicate to the “outside world” of plain Racket and hence, indirectly,
to the underlying operating system.

The figure shows actors relating to the program itself—some of which are running in a
nested dataspace—as well as actors supplying services offered by library modules. Two driver
actors are shown alongside these. The role of a driver actor in Syndicate/rkt is to offer an
assertion- and message-based Syndicate perspective on some external service—the “hardware”
to the actor’s “driver”. Such driver actors call ordinary Racket library code, spawning Racket-
level threads to perform long-lived, CPU-intensive or I/O-heavy tasks. Such threads may
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Figure 27: The structure of a running Syndicate/rkt program

inject events—“hardware interrupts”—to the ground dataspace as if they were peers in some
surrounding dataspace.

For example, the Syndicate/rkt TCP driver interacts with peers via a protocol of assertions
and messages describing TCP/IP sockets and transmitted and received TCP segments. When a
socket is requested, the driver spawns not only a Syndicate/rkt actor but also a Racket-level
thread. The thread uses Racket’s native event libraries to wait for activity on the TCP/IP socket,
and sends Syndicate messages describing received packets, errors, or changes in socket state.
These messages are delivered to the Syndicate/rkt actor corresponding to the socket, which
translates them and forwards them on to the driver’s peers.

Similarly, the Timer driver responds to Syndicate/rkt messages requesting its services by
updating a priority-queue of pending timers which it shares with a Racket-level thread. The
thread interfaces with Racket’s native timer mechanisms. Each time it is signaled by Racket, it
delivers an appropriate event to the ground dataspace, which is picked up by the Timer driver
and forwarded to the original requesting actor.

Syndicate/rkt’s driver model is inspired by Erlang’s “ports” model for I/O (Erlang/OTP
Design Principles 2012). The layer of indirection that a driver actor introduces between a user
program and some external facility serves not only to isolate the external facility from user
program failures and vice versa but also to separate concerns. The driver actor’s responsibility
is to implement the access protocol for the external service, no matter how complex and stateful,
exposing its features in terms of a Syndicate protocol. The user program may thus concentrate
on its own responsibilities, delegating management of the external service to the driver. If either
party should fail, the other may gracefully shut down or take some compensating action.
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6.3 expressions , values , mutability, and data types

Expressions in Syndicate/rkt are ordinary Racket expressions. While Syndicate/λ main-
tains a strict separation between commands and expressions, Syndicate/rkt inherits Racket’s
expression-oriented approach. Racket’s functions replace Syndicate/λ’s procedures. Ordinary
Racket side-effects are available, and Racket’s sequencing and order-of-evaluation are used
unchanged.

Values in Syndicate/rkt are ordinary Racket values. This includes values used as assertions
and message bodies. While Syndicate/λ forbids higher-order and mutable values in fields
and assertions, Syndicate/rkt makes no such restriction, trusting the programmer to avoid
problematic situations.3 Actors may exchange mutable data or use Racket’s mutable variables
as required, though programmers are encouraged to design protocols that honor the spirit of
Syndicate by eschewing mutable structures.

The Syndicate/rkt implementation of the dataspace model must be able to inspect the
elements of compound data types such as lists, vectors and records in order to fulfill its pattern-
matching obligations. Racket’s struct record facility defaults to creation of “opaque” records
which cannot be inspected in the necessary way. While Syndicate/rkt does not forbid use
of such struct definitions—in fact, their opacity is beneficial in certain circumstances (see
section 7.2.1)—it is almost always better to use Racket’s “prefab” structures, which allow the
right kind of introspection.

The special dataspace model observation constructor ?· and the cross-layer constructors � ·
and � · are represented in Syndicate/rkt as instances of structs named observe, outbound
and inbound, respectively.

Mathematical notation (figure 12) ?c � c � c

Syndicate/rkt notation (observe c) (outbound c) (inbound c)

6.4 core forms

Each of the constructs of the formal model in chapter 5 maps to a feature of the implementation.
In some cases, a built-in Racket language feature corresponds well to a Syndicate feature, and
is used directly. In others, a feature is provided by way of a Racket library exposing new
functions and data structures. In yet others, new syntax is required, and Racket’s syntax-parse
facility (Culpepper and Felleisen 2010) is brought to bear. Figure 28 summarizes the core
forms added to Racket to yield Syndicate/rkt; figure 29 sketches a rough rubric allowing
interpretation of the syntax of Syndicate/λ in terms of Syndicate/rkt.

programs and modules . A module written in the syndicate dialect not only provides
constants, functions, and structure type definitions to its clients, as ordinary Racket modules do,
but also offers services in the form of actors to be started when the module is activated. Thus,
each module does double duty, serving as either or both of a unit of program composition

3 In this, Syndicate/rkt follows many implementations of the actor model for previously-existing languages.
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module-level-form := ...

| (require/activate require-spec ...)
| struct-declaration
| spawn

struct-declaration := ...

| (message-struct name (field ...))

| (assertion-struct name (field ...))

spawn := (spawn {#:name expr} facet-setup-expr ...)
| (spawn* {#:name expr} script-expr ...)
| (dataspace {#:name expr} script-expr ...)

facet-setup-expr := expr
| field-declaration
| endpoint-expr

field-declaration := (field [field-name initial-value] ...)

expr := ...

| (current-facet-id)

| (observe expr)
| (outbound expr)
| (inbound expr)

script-expr := expr
| (react facet-setup-expr ...)
| (stop-facet expr script-expr ...)
| (stop-current-facet)

| field-declaration
| spawn
| (send! script-expr)

endpoint-expr := (assert {#:when test-expr} pattern)
| (on-start script-expr ...)
| (on-stop script-expr ...)
| (on {#:when test-expr} event-pattern script-expr ...)

event-pattern := (asserted pattern)
| (retracted pattern)
| (message pattern)

Figure 28: Core Syndicate/rkt forms
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0 (void)

Pr1; · · · ;Prn (begin Pr1 · · · Prn)
e1 e2 (e1 e2)

let x = e in Pr (let ((x e)) Pr)

let x := e in Pr (begin (field [x e]) Pr)

x � e (x e)

send e (send! e)

spawn Pr (spawn* Pr)

dataspace Pr (dataspace CPr)

x [A (start Prstart) (stop Prstop) (D Pr) · · · ] (react (define x (current-facet-id))

(assert A)
(on-start Prstart)

(on-stop Prstop)

(on D Pr) · · · )
stop x Pr (stop-facet x Pr)

Figure 29: Approximate translation from Syndicate/λ syntax to Syndicate/rkt syntax

and a unit of system composition. In order to start a Syndicate/rkt program running, a
user specifies a module to serve as the entry point. That module is activated in a fresh, empty
dataspace, along with any actors created during activation of service modules it depends upon.

The nonterminal module-level-form in figure 28 specifies the Syndicate/rkt extensions to
Racket’s module-level language. A client may require a module, as usual, or may require
and activate it by using the require/activate form. Activation is idempotent within a given
program: a particular module’s services are only started once.

The module-level language is also extended with two new structure-definition forms (non-
terminal struct-declaration), message-struct and assertion-struct. The former is intended to
declare structures for use in messages, while the latter declares structures for assertions.4 Each is
a thin veneer over Racket’s “prefab” structure definition facility.

abstraction facilities . In order to remain minimal, Syndicate/λ includes little in the
way of abstraction facilities. However, in Syndicate/rkt, we wish to permit abstraction over
field declaration, assertion- and event-handling endpoint installation, and facet creation and
tear-down, as well as the usual forms of abstraction common to Racket programming. There-
fore, we make abstraction facilities like define, let, define-syntax and let-syntax available
throughout the Syndicate/rkt language.

However, not all Syndicate constructs make sense in all contexts. For example, it is nonsensi-
cal to attempt to declare an endpoint outside a facet. Syndicate/λ includes special syntactic po-

4 The current implementation does not enforce the distinction: in fact, the definitions of message-struct and
assertion-struct are identical. They are both equivalent to (struct name (field ...) #:prefab).
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sitions for declaration of endpoints, keeping them clearly (and statically) distinct from positions
for specifying commands. This approach conflicts with the desire to reuse Racket’s abstraction
facilities in all such syntactic positions. Syndicate/rkt therefore brings most Syndicate con-
structs into a single syntactic class—that of expressions—and relies on a dynamic mechanism to
rule out inappropriate usage of Syndicate constructs. An internal flag keeps track of whether
the program is in “script” or “facet setup” context.

Figure 28 reflects this dynamic context in its use of nonterminals script-expr and facet-setup-
expr. Script expressions may only be used within event-handlers and in ordinary straight-line
Racket code. They include expressions which perform side effects such as spawning other
actors or sending messages. Facet setup expressions may only be used in contexts where a
new facet is being configured. They include expressions which construct both assertion and
event-handling endpoints.5

sending messages . The send! form broadcasts its argument to peers via the dataspace.
That is, a message action is enqueued for transmission to the dataspace when the actor’s be-
havior function eventually returns. Message sending, like all other actions, is thus asynchronous
from the perspective of the Syndicate/rkt programmer.

spawning actors and dataspaces . The nonterminal spawn in figure 28 is available not
only at the module level but also anywhere a script-expr is permitted within a running actor.
The three forms spawn, spawn*, and dataspace correspond to the Syndicate/λ commands spawn
and dataspace. Each of the first two, like Syndicate/λ’s spawn, constructs a sibling actor in
the current dataspace; the third, a nested dataspace whose initial actor runs the script-exprs
specified. The two variations spawn and spawn* relate to each other as follows:

(spawn facet-setup-expr ...) , (spawn* (react facet-setup-expr ...))

Initially, Syndicate/rkt included only spawn* (written, at the time, “spawn”); a survey of pro-
grams showed that the overwhelming majority of uses of spawn* were of the form that the
current spawn abbreviates, namely an actor with a single initial facet.

If a spawn, spawn*, or dataspace is supplied with a #:name clause, the result of the correspond-
ing expr is attached to the created actor as its name for debugging and tracing purposes. The
name is never made available to peers via assertions or messages in the dataspace.

facet creation and termination. The react form causes addition of a new facet to
the currently-running actor, nested beneath the currently-active facet, or as the root of the
actor’s facet tree if used immediately within spawn*. The body of the react form is in “facet
setup” context, and declares the new facet’s endpoints. Unlike in Syndicate/λ, the facet’s
name is not manifest in the syntax. Instead, a facet may retrieve its system-generated name
with a call to the procedure current-facet-id. Facet IDs may be freely stored in variables,
passed as procedure arguments, and so on.

5 The script/facet distinction is reminiscent of, and partially inspired by, the “step/process” distinction of Hancock’s
FLOGO II language (Hancock 2003, chapter 5).
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A facet ID must be supplied as the first argument to a stop-facet form, which is the
Syndicate/rkt analogue of Syndicate/λ’s stop. For example, the following program starts
an actor whose root facet immediately terminates itself:

(spawn (on-start (stop-facet (current-facet-id))))

The program is analogous to the Syndicate/λ program

spawn root [∅ (start (stop root 0))]

The shortcut

(stop-current-facet script-expr ...) , (stop-facet (current-facet-id) script-expr ...)

captures a common form of use of stop-facet and current-facet-id.
A stop-facet form includes an optional sequence of script-exprs. These are executed outside

the stopping facet, once its subscriptions and assertions have been completely withdrawn, in
the context of the facet’s own containing facet (if any). That is, an expression such as

(react (on (message ’x) (stop-facet (current-facet-id) (react ...))))

(1) creates a facet, which upon receipt of a message ’x (2) terminates itself, and (3) effectively
replaces itself with another facet, whose body is shown as an ellipsis. Compare to

(react (on (message ’x) (react ...)))

which upon receipt of each ’x creates an additional, nested subfacet; and

(react (on (message ’x) (stop-current-facet) (react ...)))

which not only terminates itself when it receives an ’x message but also creates a nested
subfacet, which is shortly thereafter destroyed as a consequence of the termination of its parent.

field declaration, access and update . Syndicate/rkt allows declaration of fields
in both “script” and “facet setup” contexts. The field form borrows its syntactic shape from
Racket’s support for object-oriented programming; it acts as a define of the supplied field-names,
initializing each with its initial-value.

Fields are represented as procedures in Syndicate/rkt. When called with no arguments, a
field procedure returns the field’s current value; when called with a single argument, the field
procedure updates the field’s value to the given argument value.

endpoint declaration. In facet setup context, the forms assert, on-start, on-stop, and
on are available for creation of assertion and event-handling endpoints.

The assert form allows a facet to place assertions into the shared dataspace. For example,
given the following structure definitions,

(assertion-struct user-present (user-name))

(message-struct say-to (user-name utterance))
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the endpoint

(assert (user-present ’Alice))

asserts a user-present record, keeping it there until the endpoint’s facet is terminated.
The on form allows facets to react to events described by the event-pattern nonterminal. Each

possibility corresponds to the analogous event-pattern in Syndicate/λ. For example,

(on (asserted (user-present $name))

(send! (say-to name "Hello!")))

reacts to the assertion of (user-present ’Alice) with a message, (say-to ’Alice "Hello!").
Both assert and on forms take a pattern, within which most Racket expressions are permitted.

Use of the discard operator (_) in a pattern corresponds to Syndicate/λ’s ?; that is, to a wildcard
denoting the universe of assertion values. In an on form, it acts to accept and ignore arbitrary
structure in matched assertions or messages. Variables x introduced via binders $x embedded
in an on form’s pattern are available in the form’s script-exprs; it is an error to include a binder
in a pattern in an assert form. Patterns may make reference to current field values, and any
fields accessed are called the endpoint’s dependent fields.

A pattern is evaluated to yield a set of assertions, both initially and every time a dependent
field is updated. For on forms, an observe structure constructor is added to each assertion in
the denoted set. This process of assertion-set extraction is analogous to Syndicate/λ’s use of
the assertions metafunction of figure 19.

Whenever an endpoint’s pattern is re-evaluated, the resulting assertions are placed in the
surrounding dataspace by way of a state-change notification action. However, if a #:when

clause is present in the assert or on form, the corresponding test-expr is evaluated just before
actually issuing the action. If test-expr yields a false value, no action is produced. This allows
conditional assertion and conditional subscription. In particular, a #:when clause test-expr may
depend on field values; if it does, the fields are considered part of the dependent fields.

The on-start and on-stop forms introduce facet-startup and -shutdown event handlers. The
former are executed once the block of facet-setup-exprs has finished configuring the endpoints of
the facet and after the facet’s new assertions (including its subscriptions) have been sent to the
surrounding dataspace. The latter are executed just prior to withdrawal of the facet’s endpoint
subscriptions during the facet shutdown process.

An on-start form may be used to send a message in a context where a corresponding reply-
listener is guaranteed to be active and listening; for example, in

(react (on-start (send! 'request))

(on (message 'reply ...)))

the ’request is guaranteed to be sent only after the subscription to the ’reply has been es-
tablished, ensuring that the requesting party will receive the reply even if the replying party
responds immediately.6

6 In fact, on-start is the only way to send a message or spawn an actor during facet startup. Both send! and spawn

are script-exprs, not facet-setup-exprs.
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An on-stop form may be used to perform cleanup actions just prior to the end of the conver-
sational context modeled by a facet; for example, in

(react (on (retracted 'connection) (stop-current-facet))

(on-stop (send! 'goodbye)))

the ’goodbye message is guaranteed to be sent before the subscription to ’connection assertions
is withdrawn. Any number of on-start and on-stop forms may be added during facet setup.

6.5 derived and additional forms

Figure 30 summarizes derived forms that build upon the core forms to allow concise expression
of frequently-employed concepts.

facet termination. A common idiom is to terminate a facet in response to an event. The
abbreviation stop-when is intended for this case:

(stop-when P E ...) , (on P (stop-facet (current-facet-id) E ...))

The script-exprs (E ...) are placed inside the stop-facet command, and so are executed outside
the stopping facet. The example from above could be written

(react (stop-when (message ’x) (react ...)))

This style of use of stop-when gives something of the flavor of a state-transition in a state
machine, since the script-exprs are in a kind of “tail position” with respect to the stopping facet.

sub-conversations and subfacets . A second, even more common idiom is that of
Syndicate/λ’s during (section 5.7), which introduces a nested subfacet to an actor for the dura-
tion of each assertion matching a given pattern. The triggering assertion acts as a conversational
frame, delimiting a sub-conversation. The Syndicate/rkt during form corresponds to a stereo-
typical usage of core forms:

(during P E ...) , (on (asserted P) (react (stop-when (retracted P ′)) E ...))

where P ′ is derived from P by replacing every binder $x in P with the corresponding x.
Just as Syndicate/λ’s during had a spawning variant, so Syndicate/rkt has during/spawn.

The variant form spawns an actor in the dataspace instead of creating a subfacet, confining
the scope of failure to an individual sub-conversation rather than allowing a crashing sub-
conversation to terminate the actor as a whole.

streaming queries . The assert form allows actors to construct shared assertions from
values of local fields. To operate in the other direction, updating a field based on some aggre-
gate function over a set of assertions, Syndicate/rkt offers a suite of define/query-* forms.
For example, given a structure definition

(assertion-struct mood (user-name description))
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script-expr := ...

| blocking-facet-expr

facet-setup-expr := ...

| derived-endpoint-expr
| dataflow-expr

derived-endpoint-expr := (stop-when {#:when expr} event-pattern script-expr ...)
| (stop-when-true expr script-expr ...)
| (during pattern facet-setup-expr ...)
| (during/spawn pattern {#:name expr} script-expr ...)
| query-endpoint-expr

query-endpoint-expr :=

(define/query-value field-name expr pattern script-expr add/remove)
| (define/query-set field-name pattern script-expr add/remove)
| (define/query-hash field-name pattern script-expr script-expr add/remove)
| (define/query-hash-set field-name pattern script-expr script-expr add/remove)
| (define/query-count field-name pattern script-expr add/remove)

add/remove := {#:on-add script-expr} {#:on-remove script-expr}

blocking-facet-expr := (react/suspend (id) facet-setup-expr ...)
| (until event-pattern facet-setup-expr ...)
| (flush!)

| immediate-query

dataflow-expr := (begin/dataflow script-expr ...)
| (define/dataflow field-name script-expr {#:default expr})

immediate-query := (immediate-query query-spec ...)

query-spec := (query-value expr pattern script-expr)
| (query-set pattern script-expr)
| (query-hash pattern script-expr script-expr)
| (query-hash-set pattern script-expr script-expr)
| (query-count pattern script-expr)

Figure 30: Derived and additional Syndicate/rkt forms
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representing a user’s mood, we may declare a field that tracks the set of all user names that
have an associated mood via

(define/query-set moody-users (mood $n _) n)

or a field that collects all available mood descriptions into a local hash table via

(define/query-hash all-moods (mood $n $m) n m)

The resulting fields contain ordinary Racket sets and hash tables. In cases where only a
single assertion matching a given pattern is expected, the define/query-value form extracts
that single value, falling back on a default during periods when no matching assertion exists
in the shared dataspace:

(define/query-value alice-mood ’unknown (mood ’Alice $m) m)

If an #:on-add or #:on-remove clause is supplied to a define/query-* form, the correspond-
ing expressions are evaluated immediately prior to updating the form’s associated field upon
receiving a relevant change notification.

general-purpose field dependencies . The Syndicate/rkt implementation uses a
simple dependency-tracking mechanism to determine which endpoint patterns depend on
which fields, and exposes this mechanism to the programmer. Each begin/dataflow form in a
facet setup context introduces a block of code that may depend on zero or more fields. Like
an endpoint’s pattern, it is executed once at startup and then every time one of its dependent
fields is changed. For example, the following prints a message each time Alice’s mood changes
in the dataspace:

(react (define/query-value alice-mood 'unknown (mood 'Alice $m) m)

(begin/dataflow

(printf "Alice's mood is now: ~a\n" (alice-mood))))

Of course, for a simple example like this there are many alternative approaches, including use
of during with an on-start handler:

(react (during (mood 'Alice $m)

(on-start (printf "Alice's mood is now: ~a\n" (alice-mood)))))

or use of an #:on-add clause in define/query-value:

(react (define/query-value alice-mood 'unknown (mood 'Alice $m) m

#:on-add (printf "Alice's mood is now: ~a\n" (alice-mood))))

An important difference between the latter two and the first variation is that only the first
variation prints a message if some other piece of code updates the alice-mood field. It is this
ability to react to field changes specifically, rather than to dataspace assertion changes generally,
that makes begin/dataflow useful.

The form define/dataflow is an abbreviation for definition of a field whose value directly
depends on the values of other fields and that should be updated whenever its dependents
change:
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(define/dataflow F E) , (begin (field [F #f]) (begin/dataflow (F E)))

and the form stop-when-true is an abbreviation useful for terminating a facet in response to a
predicate over a collection of fields becoming true:

(stop-when-true test-expr E ...) ,
(begin/dataflow (when test-expr (stop-facet (current-facet-id) E ...)))

blocking expressions . The uniformly event-driven style of Syndicate can make it dif-
ficult to express certain patterns of control-flow involving blocking requests. Absent special
support, the programmer must fall back on manual conversion to continuation-passing style
followed by defunctionalization of the resulting continuations, yielding an event-driven state
machine (Felleisen et al. 1988). Fortunately, Racket includes a rich library supporting delimited
continuations (Felleisen 1988; Flatt et al. 2007). Syndicate/rkt allows event-handlers to cap-
ture their continuation up to invocation of the event-handler body and no further, replacing
it by a nested subfacet. The subfacet may, in response to a later event, restore the suspended
continuation, resuming its computation. This allows the programmer to use a blocking style to
describe remote-procedure-call-like interactions with an actor’s peers, reminiscent of the style
made available by a similar use of continuations in the context of web applications (Queinnec
2000; Graunke et al. 2001).

The react/suspend form suspends the active event-handler, binds the suspended continua-
tion to identifier id, and adds a new subfacet configured with the form’s facet-setup-exprs. If one
of the new subfacet’s endpoints later invokes the continuation in id, the subfacet is terminated,
and the arguments to id are returned as the result of the react/suspend form. For example,

(printf "Received: ~a" (react/suspend (k) (on (message (say-to ’Alice $v) (k v))))

waits for the next message sent to ’Alice, and when one arrives, prints it out.
The until form is built on react/suspend, and allows temporary establishment of a set of

endpoints until some event occurs. It is defined as

(until E F ...) , (react/suspend (k) (stop-when E (k (void))) F ...)

As an example of its use, the following Syndicate/rkt library procedure interacts with a
timer service and causes a running event-handler to pause for a set number of seconds:

(define (sleep sec)

(define timer-id (gensym 'sleep))

(until (message (timer-expired timer-id _))

(on-start (send! (set-timer timer-id (* sec 1000.0) 'relative)))))

An important consideration when programming with react/suspend and its derivatives is
that the world may change during the time that an event-handler is “blocked”. For example,
the following actor has no guarantee that the two messages it prints display the same value:
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(message-struct request-printout ())

(message-struct increment-counter ())

(spawn (field [counter 0])

(on (message (increment-counter))

(counter (+ (counter) 1))))

(on (message (request-printout))

(printf "Counter (before sleep): ~a\n" (counter))

(sleep 1)

(printf "Counter (after sleep): ~a\n" (counter))))

point-in-time queries . The define/query-* forms allow an actor to reflect a set of asser-
tions into a local field on an ongoing basis. However, some programs call for sampling of the
set of assertions present at a given moment in time, rather than establishment of a long-running
streaming query. For these programs, Syndicate/rkt offers the immediate-query form, built
atop a construct called flush!. The latter is approximately defined as

(flush!) , (let ((x (gensym))) (until (message x) (on-start (send! x))))

and acts to force all preceding actions to the dataspace and allow them to take effect before
proceeding. In particular, if new endpoints have established subscriptions to some set of as-
sertions, then flush! allows the dataspace a chance to transmit matching assertions to those
endpoints before execution of the continuation of flush! proceeds.7

The immediate-query form makes use of flush! by establishing a temporary subfacet using
react/suspend, creating temporary fields tracking the requested information, and performing
a single flush! round in an on-start handler before releasing its suspended continuation. For
example,

(immediate-query [query-value 'unknown (mood 'Alice $m) m])

= (react/suspend (k)

(define/query-value v 'unknown (mood 'Alice $m) m)

(on-start (flush!) (k (v))))

retrieves the current mood of ’Alice without setting up a facet to track it over the long term.
Likewise,

(immediate-query [query-set (mood $n _) n])

= (react/suspend (k)

(define/query-set v (mood $n _) n)

(on-start (flush!) (k (v))))

7 The notion can usefully be generalized to perform a round-trip to some other distinct locus of state than the data-
space. For example, consider an actor managing a connection to an external SQL database. A form of “flush” that
performed a round-trip communication with that actor would assure the caller that all previous commands for the
actor had been seen and (presumably) interpreted. Further examples that aim at connected but distinct loci of state
can be seen in 80x86 MFENCE instruction, the fflush(3), fsync(2) and sync(2) POSIX library routines, and the “force
unit access” variations on SATA write commands (IEEE 2009; INCITS T13 Committee 2006).
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retrieves the names of all users with some mood recorded at the time of the query.
Users of immediate-query should remain aware that the world may change during the time

the query is executing, since it is based on react/suspend. Because immediate-query yields
to the dataspace, other events may arrive between the moment the query is issued and the
moment it completes.

Example 6.2. Figure 31 demonstrates a number of the language features just introduced. The
program starts four actors: a printer (line 6), which displays messages on the standard out-
put; a flip-flop (line 9), which transitions back and forth between active and inactive states
in response to a toggle message, and which asserts an active record only when active; a
monitor-flip-flop actor (line 18), which displays a message (via the printer) every time the
flip-flop changes state; and a periodic-toggle actor (line 21), which interfaces to the system
timer driver and arranges for delivery of a toggle message every second. Figure 32 shows the
structure of the running program.

The flip-flop actor makes use of Syndicate/rkt’s abstraction facility to define two local
procedures, active-state and inactive-state (lines 10 and 14, respectively). When called,
active-state constructs a facet that asserts the active record (line 11) and waits for a toggle

message (line 12). When such a message arrives, the facet terminates itself using stop-when

and performs the action of calling the inactive-state procedure. In effect, when toggled, an
active facet replaces itself with an inactive facet, demonstrating the state-transition-like nature
of stop-when endpoints. The inactive-state procedure is similar, omitting only the assertion
of the active record.

Despite its lack of explicit fields, the flip-flop actor is stateful. Its state is implicit in its facet
structure. Each time it transitions from inactive to active state, or vice versa, the facet tree that
forms part of the actor’s implicit control state is updated.

Only one of the four actors, periodic-toggle, maintains explicit state. Its next-toggle-time

field keeps track of the next moment that a toggle message should be transmitted. Each time
the field is updated (line 25), Syndicate/rkt’s change-propagation mechanism ensures that
the assertion resulting from the subscription of line 23, namely

(observe (later-than (next-toggle-time)))

is updated in the dataspace. The service actor started by the timestate driver,8 activated by the
require/activate form on line 2, is observing observers of later-than records, and coordinates
with the underlying Racket timer mechanism to ensure that an appropriate record is asserted
once the moment of interest has passed. ♦

6.6 ad-hoc assertions

From time to time, it is convenient to augment the set of assertions currently expressed by an
actor without constructing an endpoint or even a whole facet to maintain the new assertions.

8 See the implementation of the timestate protocol in example 8.12 in section 8.4.
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1 #lang syndicate

2 (require/activate syndicate/drivers/timestate)

3 (assertion-struct active ())
4 (message-struct toggle ())
5 (message-struct stdout-message (body))

6 (spawn #:name ’printer
7 (on (message (stdout-message $body))
8 (displayln body)))

9 (spawn* #:name ’flip-flop
10 (define (active-state)
11 (react (assert (active))
12 (stop-when (message (toggle))
13 (inactive-state))))
14 (define (inactive-state)
15 (react (stop-when (message (toggle))
16 (active-state))))
17 (inactive-state))

18 (spawn #:name ’monitor-flip-flop
19 (on (asserted (active)) (send! (stdout-message "Flip-flop is active")))
20 (on (retracted (active)) (send! (stdout-message "Flip-flop is inactive"))))

21 (spawn #:name ’periodic-toggle
22 (field [next-toggle-time (current-inexact-milliseconds)])
23 (on (asserted (later-than (next-toggle-time)))
24 (send! (toggle))
25 (next-toggle-time (+ (next-toggle-time) 1000))))

Figure 31: Flip-flop example
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Figure 32: The structure of the running flip-flop example
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1 (assertion-struct file (name content))
2 (message-struct save (name content))
3 (message-struct delete (name))

4 (spawn (field [files (hash)])
5 (during (observe (file $name _))
6 (assert (file name (hash-ref (files) name #f))))
7 (on (message (save $name $content))
8 (files (hash-set (files) name content)))
9 (on (message (delete $name))

10 (files (hash-remove (files) name))))

Figure 33: “File system” using during

Syndicate/rkt provides two imperative commands, assert! and retract! which allow ad-
hoc addition and removal of assertions. While most programs will never use these commands,
they occasionally greatly simplify certain tasks.

Consider figure 33, which implements a simple “file system” abstraction using the protocol
structures defined on lines 1–3. Clients assert interest in file records, and in response the
server examines its database (the hash table held in its files field) and supplies the record of
interest. Because the server uses during (line 5), each distinct file name results in a distinct sub-
conversation responsible for maintaining a single assertion (line 6). Subsequent save or delete

requests (lines 7–10) update the files table, which automatically causes recomputation of the
assertions resulting from different instances of line 6.

An alternative approach is shown in figure 34. Here, conversational state is explicitly main-
tained in a new field, monitored, which holds a set of the file names known to be of current
interest. In response to a newly-appeared assertion of interest (line 2), the server updates
monitored (line 4) but also uses assert! to publish an initial response record in the dataspace.
Subsequent save or delete requests (lines 8–17) replace this record by using retract! followed
by assert!, but only do so if the modified file is known to be of interest.

A second example of the use of assert! and retract! is shown in figure 35. The program
implements something like a counting semaphore. Here, assert! and retract! are used to
maintain up to total-available-leases separate lease-assignment records describing parties
requesting use of the semaphore. The first-in, first-out nature of the lease assignment process
does not naturally correspond to a nested facet structure; no obvious solution using during

springs to mind. A remarkable aspect of this program is the use of retract! on line 15, in
response to a withdrawn lease request. The party withdrawing its request may or may not
currently hold one of the available resources. If it does, the retract! corresponds to a previous
assert! (on either line 8 or line 21) and so results in a patch transmitted to the dataspace and
a corresponding triggering of the endpoint on line 16; if it does not, then the retract! has no
effect on the actor’s assertion set, since set subtraction is idempotent, and therefore the lease
request vanishes without disturbing the rest of the state of the system.
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1 (spawn (field [files (hash)] [monitored (set)])
2 (on (asserted (observe (file $name _)))
3 (assert! (file name (hash-ref (files) name #f)))
4 (monitored (set-add (monitored) name)))
5 (on (retracted (observe (file $name _)))
6 (retract! (file name (hash-ref (files) name #f)))
7 (monitored (set-remove (monitored) name)))
8 (on (message (save $name $content))
9 (when (set-member? (monitored) name)

10 (retract! (file name (hash-ref (files) name #f)))
11 (assert! (file name content)))
12 (files (hash-set (files) name content)))
13 (on (message (delete $name))
14 (when (set-member? (monitored) name)
15 (retract! (file name (hash-ref (files) name #f)))
16 (assert! (file name #f)))
17 (files (hash-remove (files) name))))

Figure 34: “File system” using assert! and retract!

The assert! and retract! commands manipulate a “virtual” endpoint which is considered
to exist alongside the real endpoints within the actor’s facets. The effects of the commands are
therefore only visible to the extent they do not interfere with assertions made by other facets
in the actor. For example, if an actor has an existing facet that has an endpoint (assert 1), and
it subsequently performs (assert! 1) and (assert! 2) in response to some event, the patch
action sent to the dataspace contains only 2, since 1 was previously asserted by the assertion
endpoint. If, later still, it performs (retract! 1) and (retract! 2), the resulting patch action
will again only mention 2, since 1 remains asserted by the assertion endpoint.

Very few programs make use of this feature; it is not implemented at all in Syndicate/js.
Usually, given freedom to design a protocol appropriate for Syndicate, pervasive use of asser-
tions over messages allows during and nested facets in general to be used instead of assert!
and retract!. Setting aside the unusual case of the “semaphore” of figure 35, there are two
general areas in which the two commands are helpful:

1. They can be used to react to the absence of particular assertions in the dataspace (as seen
in the “loading indicator” example discussed in section 9.6).

2. They are useful in cases where Syndicate implements a protocol not designed with datas-
paces in mind, where messages in the foreign protocol update conversational state that
corresponds to assertions on the Syndicate side.

An example of this latter is the IRC client driver.9 When a user joins an IRC channel, the IRC
protocol requires that the server send a list of existing members of the channel to the new user

9 Source code file racket/syndicate/drivers/irc.rkt in the Syndicate repository.
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1 (assertion-struct lease-request (resource-id request-id))
2 (assertion-struct lease-assignment (resource-id request-id))

3 (define (spawn-resource resource-id total-available-leases)
4 (spawn (field [waiters (make-queue)]
5 [free-lease-count total-available-leases])

6 (on (asserted (lease-request resource-id $w))
7 (cond [(positive? (free-lease-count))
8 (assert! (lease-assignment resource-id w))
9 (free-lease-count (- (free-lease-count) 1))]

10 [else
11 (waiters (enqueue (waiters) w))]))

12 (on (retracted (lease-request resource-id $w))
13 (waiters (queue-filter (lambda (x) (not (equal? w x)))
14 (waiters)))
15 (retract! (lease-assignment resource-id w)))

16 (on (retracted (lease-assignment resource-id $w))
17 (cond [(queue-empty? (waiters))
18 (free-lease-count (+ (free-lease-count) 1))]
19 [else
20 (define-values (w remainder) (dequeue (waiters)))
21 (assert! (lease-assignment resource-id w))
22 (waiters remainder)]))))

Figure 35: “Semaphore” protocol, suitable for implementing Dining Philosophers

using special syntax—zero or more 353 messages containing nicknames, followed by a 366 mes-
sage to signal the end of the list—before transitioning into an incremental group-maintenance
phase, where separate JOIN and PART messages signal the appearance and disappearance of
channel members. The Syndicate protocol for participating in an IRC channel, however, main-
tains assertions describing the membership of each channel. The mismatch between the IRC
protocol’s use of messages and the Syndicate protocol’s use of assertions is addressed by
trusting the server to send appropriate messages, and reflecting each 353, JOIN, and PART into
appropriate assert! and retract! actions.





7
Implementation

So far, our discussion of Syndicate has been abstract in order to concentrate on the essence
of the programming model, with just enough concrete detail provided to allow us to examine
small, realistic examples. Now it is time to turn to techniques for making implementations of
Syndicate suitable for exploration of the model using practical programs.

The notion of sets of assertions is at the heart of the dataspace model. The formal models pre-
sented in chapters 4 and 5 rely on representations of potentially-infinite assertion sets that are
amenable to efficient implementations of set union, intersection, complement, and subtraction.
These operations are the foundations of the set comprehensions used extensively in the meta-
functions used throughout chapter 4. For these reasons, I will begin by examining a trie-based
data structure I have developed, that I call an assertion trie (section 7.1), which represents and
allows efficient operation on assertion sets. After presenting the data structure in the abstract,
I will turn to concrete details of its implementation.

With a suitable data structure in hand, producing an implementation of the dataspace model
can be as simple as following the formal model of chapter 4. Section 7.2 gives an overview of
the core of an implementation of the dataspace model.

In addition, Syndicate offers not only a means of structuring interactions among groups of
components, but also features for structuring state and reactions within a single component, as
presented in chapter 5. Section 7.3 describes implementation of the full design.

Finally, by directly representing structures from the formal model in an implementation, we
unlock the possibility of reflecting on running programs in terms of the concepts of the formal
model. Section 7.4 describes initial steps toward programming tools that exploit this connection
to assist in visualization and debugging of Syndicate programs.

While it is both intuitively apparent and borne out by experience that assertion tries are able
to faithfully reflect the semantics of a certain kind of sets, and that the prototype Syndicate

implementations as a whole live up to the formal models of previous chapters, this chapter will
not go beyond making informal claims about these issues. The level of rigor of the implemen-
tation work thus far is the usual informal connection to what is proposed to be an underlying
formal model. To get to the level of rigor of, say, VLISP (Oliva, Ramsdell and Wand 1995), we
would have to formalize the claims and prove them; to get to the level of CompCert (Leroy
2009), we would have to mechanize the claims and proofs.1

1 The formal claims and proofs from previous chapters do not depend on anything in this chapter. Instead, the proofs
there use the semantics of sets directly, and remain agnostic to concrete representations of the sets concerned.
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7.1 representing assertion sets

As the model shows, evaluation of Syndicate programs involves frequent and complex ma-
nipulation of sets of assertions. While the grammar and reduction rules of the calculus itself
depend on only a few elements of the syntax of assertions, namely the unary constructors �,
�, and ?, much of the power of the system comes from the ability to use a wildcard ? in user
programs specifying sets of assertions to be placed in a dataspace. The wildcard symbol is
interpreted as the infinite set of all possible assertions. This leads us to a central challenge: the
choice of representation for assertion sets in implementations of Syndicate.

There are a number of requirements that must be satisfied by our representation.

efficient computation of metafunctions . Metafunctions such as bc∆, inp, and out
(section 4.6) must have efficient and accurate implementations in order to deliver correct
SCN events to the correct subset of actors in a dataspace in response to a SCN action, with-
out wasting time examining assertions made by actors that are not interested in the change
represented by the SCN action.

efficient message routing . Some Syndicate programs make heavy use of message send-
ing. For these programs, it is important to be able to quickly discover the set of actors
interested in a given message.

compactness . The representation of the dataspace must not grow unreasonably large as time
goes by. In particular, many Syndicate programs assert and retract the same assertions over
and over as they proceed, and it is important that the representation of the dataspace not
grow without bound in this case.

generality. Assertions are the data structures of Syndicate programming. The representa-
tion of assertion sets must handle structures rich enough to support the protocols designed
by Syndicate programmers. Likewise, it must support embedding wildcards in assertions
in a general enough way that common uses of wildcard are not ruled out.

In this section, I will present Assertion Tries. An Assertion Trie is a data structure based on a trie
that satisfies these requirements, offering support for semi-structured S-expression assertions
with embedded wildcards, sufficient for the examples and case studies presented in this dis-
sertation. In an implementation of Syndicate, these tries are used in many different contexts.
First and foremost, they are used to index dataspaces, mapping assertions to actor identities,
but they are also used to represent sets of assertions alone, mapping assertions to the unit
value, and therefore to represent both monolithic and incremental SCNs (patches).

7.1.1 Background

A trie (de la Briandais 1959; Fredkin 1960), also known as a radix tree or prefix tree, is a kind of
search tree keyed by sequences of symbols. Each edge in the trie is labeled with a particular
symbol, and searches proceed from the root down toward a leaf, following each symbol in
turn from the sequence comprising the key being searched for. Tries are commonly used
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in applications such as phone switches for routing telephone calls, and in publish/subscribe
messaging middleware (Ionescu 2010, 2011) for routing messages to subscribers. In the former
case, the phone number is used as a key, and each digit is one symbol; in the latter, some
property of the message itself, commonly its “topic”, serves as the key. In both cases, tries
are a good fit because they permit rapid discarding of irrelevant portions of the search space.
Standard data structures texts give a good overview of the basics (for example, Cormen et al.
2009, section 2-12).

Each trie node logically has a finite number of edges emanating from it, making tries directly
applicable to tasks such as phone call routing, where the set of symbols at each step is finite
and small. They also work well for cases of message routing where, while the set of possible
symbols at each step is not finite, each subscription involves a specific sequence of symbols
without wildcards.

Given two tries, interpreting each as the set of keys that it matches, it is straightforward and
efficient to compute the trie corresponding to the set union, set intersection, or set difference
of the inputs. However, set complement poses a problem: tries cannot represent cofinite sets of
edges emanating from a node. This poses a difficulty for supporting wildcards, since a wildcard
is supposed to correspond to the set of all possible symbols, a special case of a cofinite set.

Finally, tries work well where edges are labeled with unstructured symbols. Tries cannot
easily represent patterns over semi-structured data such as S-expressions.

The data structure must be adapted in order to properly handle both semi-structured keys
and wildcards.

7.1.2 Semi-structured assertions & wildcards

While a trie must use sequences of tokens as keys, we wish to key on trees. Hence, we must map
our tree-shaped assertions, which have both hierarchical and linear structure, to sequences of
tokens that encode both forms of structure.2 To this end, we reinterpret assertions as sequences
of tokens by reading them left to right and inserting a distinct tuple-marker token �n labeled
with the arity of the tuple it introduces to mark entry to a nested subsequence.

Let us limit our attention to S-expressions over atoms, sometimes extended with a wildcard
marker, ? /∈ Atom:

Atoms x,y, z ∈ Atom = Z∪ String∪ Symbol∪ . . .
S-expressions v,w ∈ Sexp := x | (v,w, . . . )

Wild S-expressions v+,w+ ∈ Sexp+ := x | (v+,w+, . . . ) | ?

Sets of S-expressions V ∈ P(Sexp)

Wildcards are not the only option for matching multiple values. In principle, any (decid-
able) predicate can be used, so long as it can be indexed suitably efficiently. As examples of
something narrower than wildcard, but more general than matching specific values, consider
range queries over integers and type predicates. Range queries such as λx. (10 6 x∧ x < 20) can

2 This approach is inspired by Alur and Madhusudan’s work on nested-word automata (Alur and Madhusudan 2009).
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be used in protocols involving contiguous message identifiers for bulk acknowledgement as well
as for flow control. Type predicates such as Racket’s number? and string? can extend our lan-
guage of assertion patterns with something reminiscent of occurrence typing (Tobin-Hochstadt
and Felleisen 2008).

Definition 7.1 (Meaning of wild S-expressions). Each element of Sexp+ has a straightforward
interpretation as a set of Sexps:

meaning : Sexp+ → P(Sexp)

meaning(x) = {x}

meaning((v+,w+, . . . )) = {(v ′,w ′, . . . ) | v ′ ∈ meaning(v+),w ′ ∈ meaning(w+), . . . )

meaning(?) = Sexp

The alphabet of tokens we will use, Tok, consists of the atoms, plus a family of tuple-markers
(not themselves Atoms), each subscripted with its arity: �0 is the token introducing a 0-ary
tuple, �1 a unary tuple, �2 a pair, and so on. Matching � “pop” tokens are not included:
they follow implicitly from arities used on tuple-markers in sequences of tokens. We will write
#t for the arity of a given token: for all atoms, #x = 0; for all tuple-markers, #�n= n. We will
sometimes want to extend the set of tokens with our wildcard marker; we will write Tok+ for
this set.

Tokens s, t ∈ Tok = Atom∪ {�0,�1,�2, . . . }

Wild tokens s+, t+ ∈ Tok+ = Tok∪ {?}

Definition 7.2 (Serialization of S-expressions). We now have the ingredients we need to read
S-expressions as sequences of tokens using the following definition, and the analogous J·K+
extended to wild S-expressions and wild tokens by J?K+ = ?:

J·K : Sexp→
−−→
Tok

JxK = x

J(v,w, . . . )K =�n JvK JwK . . . where n = |(v,w, ...)|

Example 7.3. The S-expression (sale, milk, (1, pt), (1.17, usd)) translates to the following token
sequence:

J(sale, milk, (1, pt), (1.17, usd))K

=�4 sale milk �2 1 pt �2 1.17 usd

♦

The correctness of some of our operations on assertion tries depends on the idea of a well-
formed sequence of tokens; namely, one that corresponds to some Sexp.

Definition 7.4 (Parsing of token sequences). We define the (partial) function L·M (and its obvi-
ous extension L·M+, L? t . . .M+ = (?, t . . . )) to parse a sequence of tokens into a Sexp and an
unconsumed portion of the input:
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L·M :
−−→
Tok ⇀ Sexp×

−−→
Tok

Lx t . . .M = (x, t . . . )

L�n t0 . . .M = ((v1, v2, . . . , vn), tn . . . )

where (v1, t1 . . . ) = Lt0 . . .M

(v2, t2 . . . ) = Lt1 . . .M
...

(vn, tn . . . ) = Ltn−1 . . .M

We extend L·M and L·M+ to sequences of tokens representing an n-tuple of Sexps with Lt . . .Mn =

L�n t . . .M and Lt . . .M+n = L�n t . . .M+.

Definition 7.5 (Well-formed token sequences). Exactly those token sequences for which L·Mn is
defined and yields an empty remainder are the n-well-formed token sequences:

WFn(t . . . ) ⇐⇒ ∃v. Lt . . .Mn = (v, ·)
WF+

n(t
+ . . . ) ⇐⇒ ∃v+. Lt+ . . .M+n = (v+, ·)

We write WF(t . . . ) to mean WF1(t . . . ) and WF+(t+ . . . ) to mean WF+
1 (t

+ . . . ).

Proposition 7.6. For all v, LJvKM = (v, ·) and likewise for v+, mutatis mutandis.

Proof. By induction on v (respectively v+).

Proposition 7.7. For all (t . . . ), if Lt . . .M = (v, ·) then JvK = (t . . . ), and likewise for (t+ . . . ), mutatis
mutandis.

Proof. By induction on Lt . . .M (respectively Lt+ . . .M+).

7.1.3 Assertion trie syntax

Tries T themselves are polymorphic in the values carried at their leaves, and consist of the
following recursive definitions:

Tries T ,W ∈ TrieA := mt | ok(α) | br(W,M) where α ∈ A

Branch nodes M ∈ NodeA = Tok→finite TrieA

There are three types of node: mt denotes an empty trie, a failing match; ok(α) denotes a leaf
node carrying a value, a (potentially) successful match; and br(W,M) an internal node with
a default branch W and a finite collection of token-labeled branches (s 7→ T) ∈ M. Key to the
interpretation of this syntax is that the wildcard branch W represents the trie to be associated
with any token s ′ not mentioned, s ′ /∈ dom(M). A sequence of tokens stretching from the root
of a trie to one of its leaves represents an assertion, if every followed edge is token-labeled, or
a set of assertions, if any default branches are taken.
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meaning : WFn(T) =⇒ n : N× T : TrieA → P(Sexp×A)

meaning (n, T) = collect (n, ·, ∅, T)

collect : N×
−−−→
Tok+ ×P(Sexp)×TrieA → P(Sexp×A)

collect
(
n, t+ . . . ,V ,mt

)
= ∅

collect
(
n, t+ . . . ,V , ok(α)

)
= (meaning(v+) − V)× {α} where (v+, ·) = Lt+ . . .M+n

collect
(
n, t+ . . . ,V , br(W,M)

)
= collect

(
n, t+ · · · ?,

(
V ∪ prefixes(n, t+ . . . ,M)

)
,W
)
∪
⋃

s∈dom(M)

collect
(
n, t+ . . . s,V ,M(s)

)
prefixes : N×

−−−→
Tok+ ×NodeA → P(Sexp)

prefixes(n, t+ . . . ,M) =
{
v | v ∈ meaning(v+), (v+, ·) = Lt+ . . . s s ′ . . .M+n , s ∈ dom(M)

}
Figure 36: Interpretation of assertion tries

The notion of well-formedness developed for token sequences generalizes to assertion tries
by reading token sequences along the edges in a trie stretching from the root to each leaf. The
intuition is that if a path in an n-well-formed trie ends at an ok() node, then the tokens labeling
that path denote exactly n Sexp+s. In addition, all paths in an n-well-formed trie should be
no longer than necessary. That is, if we traverse n Sexp+s’ worth of edges from the root of an
n-well-formed trie, we will either arrive “early” at an mt node, or “exactly on time” at an ok()
or an mt node, but will never end up at a br node.

Definition 7.8 (Well-formed tries). We reuse the notation WFn for tries. We will again write
WF(T) for WF1(T). The predicate WFn(T) is defined by structural induction on T by three
cases:

1. WFn(mt); that is, mt is n-well-formed for all n.

2. WF0(ok(α)); that is, an ok(α) trie is only ever 0-well-formed.

3. WFn+1(br(W,M)) if both WFn(W) and ∀s ∈ dom(M).WFn+#s(M(s)); that is, br(W,M)

is (n+ 1)-well-formed if W is n-well-formed and every M(s) is (n+ #s)-well-formed for
every s-labeled edge leading away from the br node.

This definition deserves an illustration. Following our intuition, the trie

br(mt, {�2 7→ br(mt, {X 7→ br(mt, {Y 7→ ok(α)})})})

should be WF1 because the token sequence �2 X Y along the path leading to ok(α) denotes
one Sexp, (X, Y). Following the definition of WFn, however, it is WF1 because WF0(mt) and
WF2(br(mt, {X 7→ br(mt, {Y 7→ ok(α)})})). As we traversed the �2 edge, we added # �2 = 2 to
n, taking into account the nesting structure implied by the tuple-marker.

Definition 7.9 (Meaning of WF tries). Each element T of TrieA such that WFn(T) has an in-
terpretation as a set of pairs of n-tuples of Sexps and elements of A, meaning (n, T), defined
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patA(·, ·) : A→ Sexp+ → TrieA

patA(α, v+) = pat′A(ok(α), Jv
+K+)

pat′A(·, ·) : TrieA →
−−−→
Tok+ → TrieA

pat′A(T , ·) = T
pat′A(T , ? t+ . . . ) = br(pat′A(T , t+ . . . ), {})

pat′A(T , s t+ . . . ) = br(mt, {s 7→ pat′A(T , t+ . . . )})

Figure 37: Compilation of wild S-expressions to tries

in figure 36. Intuitively, collect traverses the trie, accumulating not only token sequences along
paths but also a set of Sexps that are “handled elsewhere”; when it reaches an ok() node, it in-
terprets the sequence, and then rejects any Sexps in the “handled elsewhere” set. When A = 1,
a WFn trie represents a set of n-tuples of Sexps.

7.1.4 Compiling patterns to tries

Equipped with syntax for tries, we may define a function patA(α, v+) which translates wild
S-expressions to tries (figure 37).

Claim 7.10. If T = patA(α, v+), then WF(T) and meaning (1, T) = meaning(v+)× {α}.

Example 7.11. Consider the wild S-expression (sale, milk, ?, ?), representing the infinite set of
all 4-ary tuple S-expressions with first element sale and second element milk. To translate this
into an equivalent trie, also representing a simple set of assertions, we choose to instantiate
Trie with A = 1:

pat1((), (sale, milk, ?, ?)) = pat′1(ok(()),�4 sale milk ? ?)

= br(mt, {�4 7→ pat′1(ok(()), sale milk ? ?)})

· · · = br(mt, {�4 7→ br(mt, {sale 7→ br(mt, {milk 7→ br(br(ok(()), {}), {})})})})

♦

7.1.5 Representing Syndicate data structures with assertion tries

Syndicate implementations use assertion tries in two ways. The first application is to represent
a set of assertions. We use Trie1, where trie leaves are placeholders ok(()), for this purpose. For
example, such tries represent assertion sets in patch events and actions. The second application
is to represent the contents of a dataspace; namely, a set of pairs of assertions and actor IDs,
or equivalently a map from assertions to sets of actor IDs. Here, we use TrieP(Loc), and leaves
carry sets of actor IDs.
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A common operation in Syndicate implementations is relabeling, used among other things
to convert back-and-forth between Trie1 and TrieP(Loc) instances:

relabel : (A→ B)→ TrieA → TrieB

relabel f mt = mt

relabel f ok(α) = ok(f α)

relabel f br(T , {s 7→ T ′, . . . }) = br(relabel f T , {s 7→ relabel f T ′, . . . })

Claim 7.12. If WFn(T), then T ′ = relabel f T implies (v,α) ∈ meaning (n, T) iff (v, f α) ∈
meaning (n, T ′).

7.1.6 Searching

A straightforward adaptation of the usual trie-searching algorithm to take wildcards into ac-
count (figure 38) allows discovery of the set of actors interested in receiving a copy of a given
message. Given a candidate message and a trie representing a dataspace, we first convert the
message to an equivalent sequence of tokens, and then walk the trie using the token-sequence
as a key:

R : TrieP(Loc)

m : Sexp

ids : P(Loc)

ids =

locs if searchP(Loc)(JmK,R) = found(locs)

∅ if searchP(Loc)(JmK,R) = notfound

The key distinction from the normal trie-searching algorithm is the case where a token is not
found in the trie. Normally, the search would yield failure at this point. Instead, we fall back
on the wildcard case, following that branch as if the sought token had been present all along.

Claim 7.13 (Sound searching). If WF(s . . . ), meaning that Ls . . .M = (v, ·) for some v, and WF(T),
then both (a) searchA(s . . . , T) = notfound iff there is no α such that (v,α) ∈ meaning (1, T), and
(b) searchA(s . . . , T) = found(α) iff some unique α exists such that (v,α) ∈ meaning (1, T).

The algorithm can be further adapted to support wildcards embedded in messages, represent-
ing simultaneous searching for a particular infinite set of keys. This extended version of search

has signature
−−−→
Tok+ → TrieA → (A → A → A) → notfound+ found(A), not only allowing ? in

the input token sequence but also demanding a function used to combine As when a wildcard
input matches more than one branch of the trie. Allowing wildcards in messages gives a flavor
of broadcast messaging dual to the normal type: where usually a pattern declaring interest
in messages admits multiple possible messages, and each delivery includes a single message,
here we may use a group of patterns each declaring interest in a single message, while each
delivery includes multiple messages, by way of the wildcard mechanism.

Hybrids are also possible and useful. For example, consider an instant-messaging system
where each connected user has asserted interest in the pair of their own name and the wildcard,
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searchA(·, ·) :
−−→
Tok→ TrieA → notfound+ found(A)

searchA(s . . . ,mt) = notfound

searchA(·, ok(α)) = found(α)

searchA(s t . . . , ok(α)) = notfound

searchA(·, br(T ,M)) = notfound

searchA(s t . . . , br(T , {s ′ 7→ T ′, . . . })) =

searchA(t . . . , T ′′) if (s 7→ T ′′) ∈ {s ′ 7→ T ′, . . . }

searchA(t . . . , makeTail #s T) otherwise

makeTail n T = br(br(. . . br(T , {}) . . . , {}), {})︸ ︷︷ ︸
n layers of br

Figure 38: Searching an assertion trie

for example (Alice, ?) and (Bob, ?). Sending a wildcard message 〈?, "Hello!"〉 delivers a greeting
to all connected users, and sending a specifically-addressed message 〈Alice, "Hello, Alice!"〉
delivers the greeting to a single participant.

The prototype Syndicate implementations use search in a few different ways. First, as dis-
cussed, to route a message to a set of actors. Here, the extension of search to wildcard-carrying
messages is natural. Second, in Syndicate facets, search is used in the implementation of project
(definition 5.23) to interrogate the actor’s memory when a patch arrives, to see whether a given
assertion of interest was “already known” or whether it is new to the actor concerned. Finally,
search finds use in filtering of messages by “firewall” proxies; see section 11.3.

7.1.7 Set operations

Algorithms for computing set union, intersection, and difference on well-formed tries carrying
various kinds of data in their ok() nodes can be formulated as specializations of a general
combine function (figure 39).

We are careful to specify that combine may only be used with well-formed tries. This has an
important consequence for the operation of the algorithm: during traversal of the two input
tries, if one of the tries is an ok() node, then at the same moment, the other trie is either an
ok() or an mt node. Since the function f is called only when one or both of the tries is ok(),
we know that f need only handle ok() and mt inputs, leaving treatment of br nodes entirely to
the combine/foldKeys functions. The effect of combine is to walk the interior nodes of the tries
it is given, delegating processing of leaf nodes to the f passed in. In addition, combine itself
produces a well-formed output, given a well-formed input and an f that answers only ok() or
mt nodes.
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combine : WF(TL) =⇒ WF(Tr) =⇒ (WF(Tans)∧

(TrieL → TrieR → TrieA)

→ (TrieL → TrieA)

→ (TrieR → TrieA)

→ (TL : TrieL)→ (TR : TrieR)→ (Tans : TrieA))

combine f eL eR TL TR = g TL TR

where g ok(α) TR = f ok(α) TR
g TL ok(α) = f TL ok(α)

g mt TR = collapse (eR TR)

g TLmt = collapse (eL TL)

g br(WL,ML) br(WR,MR) = collapse (foldKeys g br(WL,ML) br(WR,MR))

foldKeys : (TrieL → TrieR → TrieA)

→ TrieL → TrieR → TrieA

foldKeys g br(WL,ML) br(WR,MR) = br(W,M)

where W = g WL WR

M = {s 7→ h(s) | s ∈ dom(ML)∪ dom(MR),

h(s) 6= makeTail #s W}

h(s) = g (lookup ML s WL) (lookup MR s WR)

lookup M s T =

T ′ if (s 7→ T ′) ∈M

makeTail #s T otherwise

collapse T =

mt if T = br(mt, {})

T otherwise

Figure 39: The combine function for performing set operations on assertion tries.
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The three set operations on Trie1 instances are:

T1 ∪ T2 = combine fun id id T1 T2

T1 ∩ T2 = combine fint (λx.mt) (λx.mt) T1 T2
T1 − T2 = combine fsub id (λx.mt) T1 T2

fun ok(()) ok(()) = ok(())

fun mt T = T

fun T mt = T

fint ok(()) ok(()) = ok(())

fint mt T = fint T mt = mt

fsub ok(()) ok(()) = mt

fsub mt T = mt

fsub T mt = T

The same operations have similar definitions for TrieP(Loc) instances used to represent data-
space contents, with f computing various functions over the sets carried in ok() nodes. It is also
possible to use combine asymmetrically, operating on a Trie1 instance and a TrieP(Loc) instance
in various ways.

Claim 7.14. For each R ∈ {∪,∩,−}, meaning (1, T1 R T2) = (meaning (1, T1)) R (meaning (1, T2)).

In addition, complements of sets represented as Trie1 can be computed by exchanging mt
nodes for ok() nodes:

neg(·) : Trie1 → Trie1

neg(mt) = ok(())

neg(ok(())) = mt

neg(br(T , {s 7→ T ′, . . . })) = br(neg(T), {s 7→ neg(T ′), . . . })

Example 7.15. Consider the set of all tuples not matching (?, 1)—that is, any assertion that is
either not a tuple, not a pair, or has something other than 1 as its second element (figure 40):

neg(pat1((), (?, 1)))

= neg(br(mt, {�2 7→ br(br(mt, {1 7→ ok(())}), {})}))

= br(ok(()), {�2 7→ br(br(ok(()), {1 7→ mt}), {})})

♦

Claim 7.16. If WFn(T) and T ′ = neg(T) then meaning (n, T ′) = Sexpn − meaning (n, T).
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MT*

<<2
*

MT
*

OK

1

(a) Trie representing all tuples
matching (?, 1).

OK*

<<2
*

OK
*

MT

1

(b) Trie representing the comple-
ment of (a).

Figure 40: A trie and its complement

projectspec : Proj→ P(Sexp)→ P(Sexp)

projectspec p π = {w | v ∈ π,w = match p v}

match : Proj→ Sexp+ ⇀ Sexp+

match x x = ()

match x ? = ()

match (p0, . . . ,pn) (v+0 , . . . , v+n) = match p0 v+0 × · · · ×match pn v+n
match (p0, . . . ,pn) ? = match p0 ?× · · · ×match pn ?

match _ v+ = ()

match $ v+ = (v+)

Figure 41: Specification of project in terms of sets of Sexps.

7.1.8 Projection

A key operation on assertion sets is projection, guided by a pattern with embedded binders.
Projection is relevant both for the raw dataspace model and Syndicate’s proposed language
extensions. Projection is to pattern-matching as sets are to elements of sets, and allows pro-
grams to specify and extract relevant portions of assertion sets for later processing.

We call the patterns used in projection specifications. Projection specifications over Sexp+s
include capture marks, $, and a discard operator, _, both analogous to wildcard:

Projection specifications p,q ∈ Proj = x | (p,q, . . . ) | _ | $

A projection specification both filters and reshapes a given assertion set: it discards entire asser-
tions if they fail to match its structure, and retains only the portions of assertions corresponding
to its embedded capture marks.

Figure 41 specifies the desired behavior of projection as a function projectspec, in terms of
mathematical sets and a partial function match that performs both filtering and reshaping. It is
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walk : [Proj]→ Trie1 → (Trie1 → Trie1)→ Trie1

walk [] T k = k T

walk [p, . . . ] mt k = mt

walk [p, . . . ] ok(()) k = mt

walk [x,p, . . . ] br(T ,M) k = walk (lookup M x T) [p, . . . ] k

walk [(q0, . . . ,qn),p, . . . ] br(T ,M) k = walk (lookup M �n T) [q0, . . . ,qn,p, . . . ] k

walk [_,p, . . . ] br(T ,M) k = walk [p, . . . ] T k ∪
⋃

s∈dom(M)

walk [_, _, . . .︸ ︷︷ ︸
#s discards

,p, . . . ] (lookup M s T) k

walk [$,p, . . . ] br(T ,M) k = capture 1 br(T ,M) (λT ′. walk [p, . . . ] T ′ k)

Figure 42: Skipping of unwanted structure during projection

defined only for Sexp+s that have the specified shape, and yields a tuple with an element for
each capture mark. For example,

match (present, $) (present,a) = (a)

match (present, $) (says,a, "hello") is not defined

match (says, $, $) (present,a) is not defined

match (says, $, $) (says,a, "hello") = (a, "hello")

projectspec (says, $, $) {(present,a), (present,b), (says,a, "hello")} = {(a, "hello")}

projectspec (present, $) {(present,a), (present,b), (says,a, "hello")} = {(a), (b)}

The implementation of projection is not quite so succinct as the specification. While the main
function is simple, its helpers walk and capture (figures 42 and 43) are more complex:

project : WF(T) =⇒ Proj→ T : Trie1 → Trie1

project p T = walk [p] T (λT ′. T ′)

A precondition to project is that the input trie be WF; however, the trie that results from the
projection is WFn where n is the number of capture marks in the projection specification given
to project. The helper function walk follows the structure of the projection specifications in its
first argument, discarding portions of the input trie that do not match. When it encounters a
capture mark, it transitions to the capture helper function, which copies one Sexp+’s worth of
structure from the input trie to the result. Both functions terminate early in cases of mismatch.

Claim 7.17. If WF(T) and T ′ = project p T , then meaning (n, T ′) = projectspec p (meaning (1, T))
and WFn(T

′), where n is the number of capture marks in p.

The implementations in Syndicate/rkt and Syndicate/js extend the algorithm in two ways:
first, they support TrieA for any A rather than just Trie1, by allowing customization of the
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capture : N→ Trie1 → (Trie1 → Trie1)→ Trie1

capture 0 T k = k T

capture (n+ 1) mt k = mt

capture (n+ 1) ok(()) k = mt

capture (n+ 1) br(T ,M) k = collapse br(T ′, {s 7→ h(s) | s ∈ dom(M),h(s) 6= makeTail #s T ′})

where T ′ = capture n T k

h(s) = capture (n+ #s) (lookup M s T) k

Figure 43: Capturing of structure during projection

union-function used in the discard case of walk; and second, they incorporate “and-patterns” in
projection specifications, thus allowing the placement of structural conditions on the fragments
of assertions to be captured by a capture mark. This latter mainly affects the structure of capture,
making it more similar to walk.

7.1.9 Iteration

We often want to examine the assertions in the set represented by some WFn assertion trie,
one at a time, accumulating some result as we go. This is only possible when the set is finite,
corresponding to a structurally finite trie:

Definition 7.18 (Structurally finite tries). A trie with every br node of the form br(mt,M) for
some M is called structurally finite.

Claim 7.19. If a trie T is structurally finite and WFn(T), then meaning (n, T) is a finite set.

The partial function keySet shown in figure 44 traverses a WF trie, reconstructing Sexps
from the tokens laid out along paths in the trie. Tuple-marker tokens cause construction of a
nested Sexp tuple in the output. The function is defined only for structurally finite input tries.
The well-formedness of the input ensures that take and k0 are exhaustively defined despite
appearances:

• ok(α) cannot appear as second argument to take except when the first argument is 0,
because that would imply that the trie was “short”: that paths from the root to the ok(α)
node were not long enough for the original trie to be WF.

• no br node can appear as argument to k0, because that would imply that the trie was
“long”: that paths from the root included too many tokens for the original trie to be WF.

7.1.10 Implementation considerations

just-in-time tokenization. As presented, search requires any sought Sexp to have been
converted to a token sequence up-front. The implementations perform this conversion just-in-
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keySet : WF(T) =⇒ T : TrieA ⇀ P([Sexp])

keySet T = take 1 T [] k0

where k0 [v, . . . ] mt = ∅
k0 [v, . . . ] ok(α) = [v, . . . ]

take : N→ TrieA → [Sexp]

→ ([Sexp]→ TrieA ⇀ P([Sexp]))

⇀ P([Sexp])

take 0 T vs[v, . . . ] k = k [v, . . . ] T

take (n+ 1) mt [v, . . . ] k = ∅

take (n+ 1) br(mt,M) [v, . . . ] k =
⋃

(s7→T)∈M

h(s, T)

where h(x, T) = take n T [v, . . . , x] k

h(�m, T) = take m T [] k ′

k ′([w, . . . ], T ′) = take n T ′ [v, . . . , (w, . . . )] k

Figure 44: Conversion of finite, WF tries to sets of (lists of) Sexps.

time, thereby avoiding the need to examine uninteresting portions of input Sexps and the need
to embed a trie in variable numbers of br wrappers in the case when a tuple-marker is not
explicitly catered for in a br node.

examination of only the smaller input. The version of foldKeys shown in figure 39

captures the essence of the algorithm, but suffers from an inefficiency that is both avoidable and
critically important to an efficient implementation of Syndicate. Consider a situation where a
Syndicate program encodes actor-like point-to-point message delivery semantics, where each
actor is addressed by a unique integer, and expresses interest in messages addressed to it by
asserting {?(id, ?)}. In situations with a large number n of running actors, the resulting tree is
wide but shallow (figure 45a). Imagine now spawning a new actor with id = n+ 1. The new
actor asserts {?(n+ 1, ?)} by issuing a patch containing the assertion trie

patP(Loc)({n+ 1}, ("?", (n+ 1, ?)))

shown in figure 45b.
Computing the union of these tries in order to update the containing dataspace involves

consideration of every edge leading away from the node following the "?" edge in figure 45a—a
total of O(n) work. However, nothing along any of the existing branches changes. An efficient
Syndicate implementation demands that it be possible to combine a smaller with a larger trie
doing only an amount of work proportional to the size of the smaller trie.
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Figure 45: Wide, shallow assertion tries

The key is to alter foldKeys so that it treats the larger of its two arguments as a base against
which the smaller of the two is applied. Accordingly, combine is modified to accept an additional
pair of functions which, given the larger trie, determine the starting point for foldKeys. After
these changes, set operations on tries take time at each step proportional to the number of
edges leading away from the smaller of the two given br nodes.

One consequence of this requirement is that it must be possible to efficiently count the num-
ber of edges leading away from a node. Not all hash-table or dictionary-like data structures
offered by programming languages satisfy this requirement; some care must be taken in these
cases.

canonical constructors . We use canonicalizing constructors extensively to enforce
invariants that would otherwise be distributed throughout the codebase. For example, the uses
of collapse in combine are implicit in our functions for constructing and extending br instances.

hash-consing for cheap equality testing . Naively implemented, the side condition
h(s) 6= makeTail #s W in the definition of foldKeys may examine a large amount of the structure
of the tries on each side of the inequality. The time to decide this inequality is unacceptable,
because the test is on the “hot” path of every set operation on assertion tries. Implementations
must provide a cheap yet accurate way of testing equality between tries. In Syndicate/rkt, we
hash-cons (Ershov 1958; Goubault 1994; Filliâtre and Conchon 2006) to force pointer-equality
(eq?) to hold exactly when set equality (equal?) holds for our tries.3

Unfortunately, however, Syndicate/js cannot currently provide this optimization. If we
implemented hash-consing in JavaScript, we would forfeit proper garbage-collection behavior
because JavaScript lacks suitable hooks into the garbage-collection subsystem. The WeakMap

and WeakSet objects provided by ECMAScript 6 are unsuited to the task, since they are keyed
by object identity, not object structure. Therefore, Syndicate/js simply uses naive recursive

3 According to Baker (1992), “Hash consing was invented by Ershov (1958) for the detection of common subexpres-
sions in a compiler and popularized by Goto (1976) for use in a Lisp-based symbolic algebra systems.”
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structural comparison of tries in foldKeys. The Syndicate/js programs we have written to date
have performed well enough to be usable, despite the performance penalty.

efficiently canonicalizable dictionaries . Even when hash-consing can ensure
that the results of eq? and equal? are identical, care must be taken in choosing a represen-
tation for br nodes. Initially, we used Racket’s built-in hash tables. However, for nodes with
many edges, the hash table itself grew large, resulting in a large amount of time spent in
canonicalize. To avoid this problem we need a representation of collections of edges that
can be efficiently searched, efficiently counted, and efficiently updated, while also admitting
a canonical representation suitable for hash-consing. An ideal data structure for the situation
where tokens can be represented as bit strings is the crit-bit tree (Bernstein 2004; Finch 2016);
however, rather than force repeated conversion back-and-forth between Racket values and bit
strings, we chose instead to use treaps (Seidel and Aragon 1996; Cormen et al. 2009, problem 13-
4). Treaps are trees which augment each node with a randomly-chosen priority, used to ensure
a balanced tree. However, we require deterministic, canonical tree shapes for each unique set
of key-value pairs. A deterministically-chosen priority can easily lead to unbalanced trees. The
compromise that we have settled on is to use a fragment of a strong hash function to compute
a deterministic pseudo-random priority from the key associated with each tree node. Experi-
mental results (chapter 10) show that the results are acceptable, though questions remain as to
whether this deterministic pseudo-random function leads to well-balanced trees in general.4

efficiently canonicalizable sets . Care must also be taken to ensure that the sets of
actor IDs used in ok() nodes when representing values from TrieP(Loc) are efficiently canonical-
izable. The implementation reuses canonicalized treaps (mapping keys to #t) for this purpose.

compound data structures . Our Sexps include n-tuples as the only compound, repre-
sented with special �n tokens when converted to token sequences. By contrast, both Racket
and JavaScript enjoy a rich variety of compound data structures. Racket offers the programmer
structures, lists, and vectors, while JavaScript offers arrays and objects.

Racket’s structures may be interrogated to determine their struct type, which in turn can
be examined to determine its arity. This suggests replacing generic tuple-markers �n with a
tuple-marker for each struct type. For example, a structure type present with a single field
would appear in an assertion trie as a tuple-marker present1; and a structure type says with
two fields would appear as says2. Lists and vectors are represented with tuple-markers listn
and vectorn, for arbitrary n, respectively. Improper lists are disallowed: an alternative is to
support pairs natively, and then to represent lists as nested pairs.

JavaScript arrays are treated roughly as Racket’s vectors, and for programmer convenience,
Syndicate/js includes a crude struct-like facility, as well, allowing rough parity and reason-
ably smooth interoperability with Syndicate/rkt’s assertions. JavaScript objects present a

4 Sundar and Tarjan (1989) discuss the unique representation problem for binary search trees; Andersson and Ottmann
(1995) improve on Sundar and Tarjan’s solution. The property of canonicity in our setting is also known as history-
independence. Pugh’s skip lists built with a deterministic hash function offer a potential alternative to our pseudo-
randomized treaps (Pugh 1990; Golovin 2010), though their pure-functional implementation may be challenging.
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1 ;; A Question is a
2 ;; (question DomainName QueryType QueryClass QuestionContext)
3 ;; representing a DNS question: "What are the RRs for the given name,
4 ;; type and class?" as well as a possible parent question that the
5 ;; answer to this question is to contribute to the answer to.

(a)

1 (struct: (TName TType TClass TContext)
2 question-repr
3 ([name : TName] [type : TType] [class : TClass] [context : TContext])
4 #:transparent)
5 (pseudo-substruct: (question-repr DomainName
6 QueryType
7 QueryClass
8 QuestionContext)
9 Question question question?)

10 (pseudo-substruct: (question-repr (U Wild DomainName)
11 (U Wild QueryType)
12 (U Wild QueryClass)
13 (U Wild QuestionContext))
14 QuestionPattern question-pattern question-pattern?)

(b)

1 (struct question (name type class context) #:transparent)

(c)

Figure 46: Typed Racket and Racket code describing a structure type, Question, used in Syndicate

messages and assertions. (a) The comment remained the same in both implementations. (b)
The Typed Racket implementation. (c) The untyped Racket implementation.

problem, however. There is no “natural” interpretation of an object with an embedded wild-
card as a pattern over assertions: should fields not mentioned in the “pattern” be ignored for
the purposes of matching, or should they cause a mismatch? There is no clear “best” design
option; for now, inclusion of assertions containing objects is forbidden. Similar problems occur
in Racket’s own built-in pattern-matcher, racket/match, when it comes to hash tables; patterns
over hash tables come in many varieties. It may be possible to support objects and object
patterns in an ergonomic way in future by taking inspiration from the use of the “interleave”
operator as seen in pattern languages for XML (Clark and Murata 2001).

representing wildcard. In languages like Typed Racket (Tobin-Hochstadt and Felleisen
2008), the types of values that may appear in fields of structures are precisely specified. Our
trick of representing patterns over structures by embedding a special marker value does not
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work in this setting. Early experiments with a Typed Racket implementation of Syndicate

required painstaking work to specify

• the structure type itself with type parameters for all fields that could potentially carry a
wildcard; plus

• an auxiliary type definition that instantiated the basic type with concrete types, for use
in value contexts; and

• another that instantiated it again, with concrete types plus a Wild type, for use in pattern
contexts.

The result proved awkward, verbose and brittle, as demonstrated by the example shown in
figure 46. The “hack” of representing wildcard as an ordinary value does not work well for
typed languages; instead, I suspect that deeper integration of wildcards with the type system
is indicated.

Despite the poor ergonomics of the experimental approach explored in Typed Racket, the
ability of the system to forbid wildcard from appearing in certain positions was useful. Future
work on type systems for Syndicate should support this feature: it allows static encoding of
restrictions on the kinds of patterns that may be placed into the shared dataspace. For example,
one application is to forbid actors from asserting ?(?, ?) in situations where they should only
be allowed to subscribe to messages explicitly addressed to them, ?(id, ?).

7.1.11 Evaluation of assertion tries

At the beginning of the subsection, we listed a handful of requirements that a worthy assertion
set representation must satisfy. Let us revisit them in light of the presented design:

efficient computation of metafunctions . The set operations needed by the core meta-
functions of Syndicate can be effectively implemented in terms of assertion trie operations.
By careful choice of data structure and implementation technique (section 7.1.10), we can
efficiently update our dataspace structures as changes are made; that is, without having to
traverse the entirety of the dataspace.

efficient message routing . Assertion tries can efficiently route messages to sets of actors
(section 7.1.6).

compactness . Use of hash-consing and elimination of redundant branches in trie br nodes
ensures that dataspace representations stay compact (section 7.1.10).

generality. Assertion tries support semi-structured data well, including local variations
such as structs (Racket) and arrays (JavaScript). Support for hash-tables and objects remains
future work, along with improved techniques for specifying allowable wildcard positions
in assertions in typed languages.



146 implementation

7.1.12 Work related to assertion tries

The routing problem faced by Syndicate is a recurring challenge in networking, distributed
systems, and coordination languages. Tries matching prefixes of flat data find frequent ap-
plication in IP datagram routing (Sklower 1991) and are also used for topic-matching in in-
dustrial publish-subscribe middleware (Eugster et al. 2003; Baldoni, Querzoni and Virgillito
2005). I do not know of any other uses of tries exploiting visibly-pushdown languages (Alur
and Madhusudan 2009; Alur 2007) (VPLs) for simultaneously evaluating multiple patterns over
semi-structured data (such as the language of our assertions), though Mozafari et al. (Moza-
fari, Zeng and Zaniolo 2012) compile single XPath queries into NFAs using VPLs in a complex
event processing setting. A cousin to the technique described in this section is YFilter (Diao
et al. 2003), which uses tries to aggregate multiple XPath queries into a single NFA for routing
XML documents to collections of subscriptions. Depth in their tries corresponds to depth in
the XML document; depth in ours, to position in the input tree.

More closely related to our tries are the tries of Hinze (2000), keyed by type-directed pre-
order readings of tree-shaped values. Hinze’s tries, like those presented here, have implicit
“pop” tokens; however, they rely on types, where our tries rely merely on arity, which may be
computed either dynamically (as we do) or statically, and they furthermore lack wildcards in
any form.

Ionescu (2010) presents a trie including a form of wildcard, and compiles it to a DFA via an
equivalent NFA that corresponds directly to the trie. He reports that backtracking is the chief
disadvantage of the naive trie representation they chose, and that compilation to DFA avoided
this problem. However, the DFA representation is no panacea: he writes that “it occupies
significantly more memory than the trie; there is a significant cost for adding new bindings,
since the entire DFA has to be dropped and rebuilt; and it is more complex and therefore
harder to implement and maintain.” Furthermore, it is not clear how to extend it to more
general forms of predicate over tokens, as sketched above for our tries.

In previously-published work (Garnock-Jones and Felleisen 2016), we introduced our trie
structure, but used distinct “push” and “pop” tokens, � and �, which were not labeled with
the arity of the tuple nested between them. Here, we use a family of “push” tokens with
an associated arity instead, leaving the “pop” implicit. While using an explicit “pop” token
allows prefix-matching of sequences (via a special tl() trie constructor representing a arbitrary
number of balanced tokens, followed by a “pop” token), there are a number of disadvantages
that leaving “pop” tokens implicit ameliorates. Most importantly, Syndicate relies heavily on
extracting sets of assertions labeled with constructors such as � or ? from larger assertion sets.

For example, it is common to wish to compute the set of assertions {c | � c ∈ π} to be relayed
to an outer dataspace from some local set of assertions π; or to compute the set of current
assertions in some dataspace R that are relevant to some j-labeled actor, {c | (c,k) ∈ R, (?c, j) ∈ R}.
To do so using explicit “pop” tokens, we must extract the portion of the trie between the “push”
and “pop” tokens surrounding the structured terms � c and ?c, as shown in figure 47. By
omitting the “pop” token and instead labeling the “push” token with an arity, we are able to
simply discard two tokens,�2 and ?, thereby avoiding traversal of the remainder of the trie, as
shown in figure 48. A secondary benefit is simplicity: the algorithm presented in our previous
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Figure 47: Extracting assertions labeled by some constructor, using explicit “pop” tokens
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Figure 48: Extracting assertions labeled by some constructor, using implicit “pop” tokens and arity-
labelled “push” tokens.

publication involved the tl() constructor mentioned above, while the presentation we choose
here avoids this complication.

7.2 implementing the dataspace model

The prototype implementations of Syndicate closely follow the formal model described in
chapter 4. Syndicate/rkt is written in a pure functional style, taking the signature of behavior
functions as its central organizing principle. Syndicate/js is written in a more imperative style,
making use of object-oriented idioms appropriate to JavaScript programming.

There are two important differences between the model as described and as implemented.
First, where the model treats dataspaces specially, the implementation treats them just like any
other kind of actor. To do this, the interface to behavior functions is altered slightly. Second,
the compactness of the model hides a number of useful abstractions, and the implementation
benefits from explicitly recognizing these. In particular, the implementation separates repre-
sentation of dataspace contents from the implementation of dataspace actors, and introduces
a data structure that corresponds to the existential packages ∃τ.(Fτ × τ) ⊂ Beh of the model
(figure 14), precisely capturing the state of a running actor. The former allows reuse of the data-
space structure in other code, and the latter not only allows decomposition of the dataspace
behavior into simpler components but also provides a useful interface to general reflective
manipulation of actors.

The implementation is layered. The innermost layer (section 7.2.1) consists of the implemen-
tation of assertion tries along with utilities for hash-consing and implementations of (canonical-
ized) maps and sets. It is at this level that the mapping between host-language data structures
and Syndicate assertions is made. The second layer (section 7.2.2) comprises two central data-
structures. First, patches describe changes in assertion sets. Second, multiplexors or muxes form
the central structure of each Syndicate dataspace; namely, the map between assertions and ac-
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tor IDs. The final layer (sections 7.2.3–7.2.5) contains the data-structures and behavior functions
implementing the semantics of the dataspace model itself.

7.2.1 Assertions

An implementation of assertion tries in a given language must map that language’s data struc-
tures onto the tokens Tok that label edges in br nodes. Each token must have an arity as-
sociated with it. It must also be possible to map backwards from a sequence of tokens to an
implementation-language value. This means making choices about the representation of con-
tainers such as pairs, lists, vectors, sets, hash tables, structs, reference cells, and objects, as
well as about non-container data such as numbers, strings, symbols, and procedures.

The prototype implementations include non-container data directly in Tok, each with ar-
ity 0. The reverse mapping from such tokens to host-language data is immediate. Objects
in Racket (Flatt, Findler and Felleisen 2006) are also treated as non-compound in order to
sidestep difficulties generically analyzing such objects as well as generically reconstructing
them from token sequences. Racket’s procedures are also treated as atomic data. Likewise,
Racket’s “boxes”, mutable reference cells, are treated as opaque atoms, following Baker’s egal

design (Baker 1993). For simplicity, Syndicate/js restricts the range of assertions able to be
placed within its dataspaces, limiting them to atoms (including procedures, as for Racket), ar-
rays, and “structs”. In particular, JavaScript objects (dictionaries) are forbidden entirely; to see
why, consider the many different possible patterns one might wish to write over unordered
key-value dictionaries, and the demands that each places on our trie data structure.5

Lists are handled with a family of tokens {list0, list1, . . . } for marking the beginning of a
container in a token sequence. Arrays and vectors are similar. The arity of listn is just n.6

Sets and hash tables pose a problem. The relevant equivalences for sets and tables do not
coincide with the natural notion of equivalence for sequences of tokens. Therefore, the imple-
mentations treat sets and hash tables as opaque atoms when part of an assertion.

Racket’s structs are the primary means by which programmers extend the data types of
the language, and as such are prominent in Syndicate/rkt protocols. JavaScript does not
include a native struct-like facility, and so Syndicate/js makes heavy use of a small support
library providing a rough equivalent. In both languages, we may retrieve a structure type object
describing the arity of a given structure instance, plus a sequence of the structure’s field values.
Furthermore, given a structure type and a sequence of field values, we may reconstruct a
structure instance. We include these structure type objects in Tok. Each struct definition of
the form

(struct S (x0 x1 . . . xn))

(and its JavaScript equivalent) leads to inclusion of S in Tok with arity n. The encoding of
instances of S is

J(S v0 v1 . . . vn)K = S Jv0K Jv1K . . . JvnK

5 It is left to future work to incorporate patterns over objects into Syndicate and its trie data structures.
6 Racket pairs that are not part of a proper list may not be used in assertions, since modern Racket style eschews

non-list uses of pairs, and accommodating both list and non-list uses would significantly complicate matters.
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If we are to strictly follow the Syndicate design principles laid out in section 2.6, then higher-
order data such as procedures, objects and mutable data structures should be forbidden from
appearing in assertions. However, given that Syndicate is not yet distributed and so does not
suffer the associated restriction to first-order data, and that interoperability with some libraries
demands trafficking in higher-order data, the implementations turn a blind eye to these cases.7

It is usually an advantage that Syndicate can see deeply into data structures: without such
deep destructuring, subscriptions matching on fields of a compound datum are impossible to
construct. However, from time to time, a protocol will involve a compound datum that could
be destructured but that should be treated as an atomic value. It may be very large, taking an
unreasonable amount of space and time to convert to a token sequence and back; or it may
be able to be converted to a token sequence, but not back to a host-language value; or the
relevant notion of equality for the value may not coincide with the notion of equality entailed
by conversion to a token sequence, as already seen for sets and hash tables. For these cases, the
implementation offers a simple remedy: a predefined standard struct type called seal with a
single field:

(struct seal (contents))

Its equivalence predicate is pointer-equality and it is treated as completely opaque by the
assertion trie code. Examples of its use include the transport of Racket picts (Felleisen et al. 2009)
in the Syndicate assertions describing 2D graphics for display by Syndicate/rkt’s OpenGL
driver, and transport of HTML fragments in assertions describing portions of a web page for
display by Syndicate/js’s user-interface driver.

7.2.2 Patches and multiplexors

A patch represents a concrete change to be made to an assertion set or dataspace. As defined
in section 4.6, each patch consists of a pair of assertion sets: one containing assertions to be
removed, and the other assertions to be added. This becomes a structure or object with two
members, each an instance of an assertion trie. Tries representing sets (Trie1) are used in most
cases, but occasionally the implementation makes use of patches carrying TrieP(Loc) instances.

Most of the functions manipulating patches are straightforward, but there is one exception:
the compute-aggregate-patch function (and its JavaScript cognate), which computes the net
effect of a patch on an existing dataspace (sets π•in and π•out in metafunction bc∆, definition 4.47).
If some actor labeled ` has produced a patch action ∆, the changes to the dataspace it carries
may be of interest to ` itself or to its peers in the dataspace. However, a newly-added assertion
is only relayed on if no other actor has already made the same assertion, and a newly-retracted
assertion likewise has no visible effect if some other actor happens to be making the same
assertion at the time of retraction. The compute-aggregate-patch function makes use of various
preconditions to optimize its calculation of the maximum visible net change to the dataspace,
given the collection of assertions made by the dataspace’s group of actors as a whole.

7 Even though JavaScript array values are pervasively mutable, they are (roughly speaking) copied into assertion
tries. This effectively forces programmers to treat arrays as immutable when communicating them via a Syndicate

dataspace.
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The implementation frequently needs to discover the IDs of actors affected by a particular
change, as well as the assertions currently being made by a particular actor. These correspond
to reading off the dataspace structure, an instance of P(Sexp× Loc), in either a forwards or a
reverse direction. A specialized object type, a multiplexor or mux, combines the necessary state
and operations along with a source of fresh Locs. A mux, then, effectively represents the core
data structures of the dataspace itself along with an ID allocator. It is useful anywhere routing
needs to be performed: to actors within dataspaces, as well as to facets within individual actors.

Each mux instance presents an interface involving a collection of named streams. The mux
allocates stream names and allows addition, removal, and update of a set of assertions associ-
ated with each stream. It also offers convenient functions for computing events to be delivered
to each stream in response to a given action or message. Within a dataspace, each actor is a
stream; within an actor, each facet is a stream.

7.2.3 Processes and behavior functions

Recall the signature of behavior functions from figure 12:

Behavior functions fbeh ∈ Fτ = Evt× τ→ continue(
−→
Act× τ) + exit(

−→
Act)

The core of the implementation builds representations of the components of this signature.
Events and actions are represented as structures; patches, in particular, make use of the patch
and assertion-trie libraries described previously. An abstraction called a transition captures
the type of the result from a behavior function. However, while the mathematical definition
offers two possibilities, continue() or exit(), the implementation offers three. A behavior function
may yield a transition structure, corresponding to continue(), bearing an updated state and a
sequence of actions to perform. Alternatively it may produce a quit structure, corresponding
to exit(), instructing the dataspace to terminate the actor following the included sequence of
final actions. The new third option is that a behavior function may return #f, signaling that the
behavior is now inert and does not need to be polled until the next event arrives. This option is
made available to ease implementation of dataspaces, and is described in the next subsection.

Around this representation of a behavior function, we introduce an abstraction called a pro-
cess. A process is a pair of a behavior function and an associated private state. Processes
correspond to the existential packages pack 〈τ, (fbeh,u)〉 ∈ ∃τ.(Fτ × τ) seen in the formalism
of chapter 4. Making processes a first-class concept not only simplifies the implementation
but allows for some reuse in situations calling for reflective representations of running actors.
There are many examples: embedding Syndicate actors in Racket’s big-bang framework; fire-
walling interactions between an actor and its dataspace; interfacing Syndicate actors to the rest
of a running Racket system; simple approaches to supervision of actors; running individual
Syndicate actors in separate Racket threads within a single dataspace; embedding dataspaces
as ordinary actors within another dataspace, translating between assertions in the outer and
the inner dataspaces appropriately; and of course embedding running actors within dataspaces
themselves.
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7.2.4 Dataspaces

While the formal model of chapter 4 treats dataspaces specially, in both Syndicate/rkt and
Syndicate/js they are implemented as ordinary actors like any other. The private state of a
dataspace actor contains a mux; a queue of pending actions, each labeled with the ID of the
actor that issued it; a set of “runnable IDs”, used to manage the distinction between quiescent
and inert actors; and a hash table mapping actor ID to process structures. Upon receipt of an
event, the event is (trivially) translated into an action, labeled with a special ID—the symbol
’meta—representing the containing context, and placed in the pending action queue. Then, the
pending action queue is atomically exchanged for an empty queue, which will gather actions
to be performed in the next event cycle, and the actions previously enqueued are interpreted.
Any events that result from processing of an action are immediately delivered to the relevant
actors during this stage, and the resulting transition structures both update the private state
associated with the transitioning actor and enqueue actions for the next round of interpretation.
Once all the queued actions from the current round have been processed, the dataspace polls
any of its children that are marked as “not provably inert”; that is, those whose IDs are stored
in the “runnable ID” set. An actor is considered not provably inert whenever its behavior
function answers anything other than #f in response to a poll or a delivered event. This is
critical for allowing some kind of approximation of fair scheduling: without such polling, the
implementation would be forced to evaluate each actor, including each dataspace, to inertness
every time a behavior function was invoked. This way, actors can choose to perform some
small amount of work and to yield to any peers that may also wish to do work, thus interleaving
stimuli from the outside world with internal reductions, while also allowing the system as a
whole to become fully inert once there genuinely remains nothing to do.8

It is here that host-language exceptions raised by behavior functions are transmuted into
synthetic quit transitions, leading to the termination of the faulting actor.

Some care must be taken to ensure that an actor that has issued a quit transition (or raised an
exception) is immediately disabled. Its behavior function must not be called again, even though
its final actions may remain to be interpreted. The dataspace cannot completely forget about a
terminated actor until all its queued actions have been performed.

7.2.5 Relays

We have been claiming that dataspaces are implemented as ordinary actors like any other,
but this is not quite accurate. A dataspace actor will, left to its own devices, never produce
any actions. This is because it treats the connection to its containing context identically to
the connections it maintains to its contained actors. Given that a contained actor will never
receive a notification about an event it did not previously declare interest in, and that the same
applies to the dataspace’s treatment of the containing context, we see that the context will never
“receive an event” (even though, syntactically, this is presented as the dataspace never performing
an action).

8 A connection can be made here to the parallel-or construct of PCF (Plotkin 1977).
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Furthermore, when one dataspace is embedded within another, we want to maintain a dis-
tinction between the two contained assertion sets. The protocol involving constructors � (“out-
bound”, “outgoing”) and � (“inbound”, “incoming”) should embody the connection between
assertions in the two spaces.

The job of a relay actor is to solve these problems. Upon startup, a relay injects a synthetic
event into its contained dataspace actor’s behavior function, expressing interest in � ? and in
? � ?. When given an event, the relay’s behavior function rewrites it, prepending � to each
contained assertion, before delivering it to its contained dataspace actor. Because the relay
previously expressed interest in certain assertions, the dataspace will from time to time produce
actions mentioning these assertions; the relay rewrites the actions it receives, translating not
only � c into c but also ? � c into ?c before transmitting the action to its own surrounding
context.9

The effect of the rewrite from ? � c into ?c is to allow expressed interest in incoming assertions
to automatically result in an outbound expression of interest in those assertions. Without it, a
contained actor would have to assert �?c as well as ? � c. The problem compounds with
multiple layers of dataspace nesting: with the approach taken by Syndicate relays, an actor
needs only assert ? ��� c in order to be informed of c three levels out; without it, it would be
necessary to assert ? ��� c, �? �� c, ��? � c, and ���?c.

By injecting a synthetic event into its contained dataspace, a relay kicks off the exchange
of information between the outer and inner dataspaces, and by carefully relabeling assertions
traveling in each direction, it maintains the correct distinction between “local” and “remote”
assertions in the inner dataspace.

7.3 implementing the full Syndicate design

The implementation of the Syndicate language atop the dataspace implementation has three
main pieces: a runtime, which provides functions and data structures implementing facets,
fields, endpoints, queries, and so forth; a syntax layer, which provides a pleasant domain-
specific language for making use of the runtime; and a simple, imperative dataflow implemen-
tation, which tracks changes to fields and schedules re-evaluation of dependent computations.
No special knowledge of intra-actor features such as fields, facets or endpoints has been added
to the implementation of the dataspace model itself.10

7.3.1 Runtime

The runtime differs from the formal model of chapter 5 primarily in its support for efficient
re-evaluation of the assertions of an actor as its fields are updated, but also in its approach to

9 As of this writing, Syndicate/js lags the Racket implementation in that its dataspaces combine the functionality of
Racket’s dataspaces and relays, fused together. This is the original design; Syndicate/rkt was initially like this. It
took some time before the benefits of separating the functions of “relay” and “dataspace” became clear.

10 It remains future work to explore potential performance advantages from making the dataspace implementation
aware of the internal structure of Syndicate actors.
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tracking facet state during facet shutdown. A simple recursive procedure is used, contrasting
with the small-step approach of the model’s stop-child rules.

An additional difference is the approach taken to representing non-inert actors: while the
formal model embeds pending statements within the facet tree, the implementation maintains
the facet tree as a data structure separate from a priority queue used to hold pending scripts. A
script is a sequence of expressions to be evaluated in-order within the context of a given facet.

While the formalism of chapter 5 runs endpoint event handlers in the order they were writ-
ten in the program, the implementations take a different approach. Endpoints are stored in
an unordered hash-table; when ordering is relevant to an application, a system of endpoint
priorities can be used. For example, the definitions of the define/query-? forms all involve two
endpoints, one for responding to relevant assertions, and one for relevant retractions. Both end-
points are run at a priority level higher than the default, ensuring that the side-effects on the
fields maintained by the queries are visible to ordinary endpoint event handlers. Furthermore,
the retraction endpoint is placed at a slightly higher priority-level still, ensuring that removal of
elements from sets, hash-tables, and so on is performed before addition of elements. For the
specific case of hash-tables mapping each key to a single value, this is crucial: given a patch
that simultaneously adds (k, vnew) and removes (k, vold), processing addition of (k, vnew) be-
fore removal of (k, vold) would result in an entirely absent entry for k. Priority levels lower
than the default also have their uses: for example, if the synthetic endpoint corresponding to a
begin/dataflow block is placed at a very low priority, then it will run after other code, toward
the end of the actor’s turn. This is a convenient time to check invariants among fields in the
actor: a form of “actor contract” analogous to a class contract in an object-oriented language.

The Syndicate/js runtime differs from the Syndicate/rkt runtime in its treatment of fields.
Fields in Syndicate/js are represented as properties on a special object used as the this object
when running facet setup code and event handler code. They are thus “second-class” entities in
the language, similar to Syndicate/λ but in contrast to Syndicate/rkt, where fields are values
in their own right. Facets are nestable in Syndicate, and code in a given facet must be able to
access not only the facet’s own fields but those in any of its parents. In Syndicate/rkt, the
“first-class” nature of fields makes it natural for there to be an actor-global collection of fields;
in Syndicate/js, the situation is different. A form of inheritance is required, with field objects
of nested facets extending the field objects of their parents. The inheritance tree is ultimately
rooted in an actor-global field object. Syndicate/js provides this by way of JavaScript’s own
prototype-based object inheritance mechanism.

7.3.2 Syntax

The syntax layer adapts syntactic forms reminiscent of the formal model into calls to functions
provided by the runtime. In the case of Syndicate/rkt, it makes use of Racket’s syntactic
extension system (Culpepper and Felleisen 2010), which greatly facilitates the addition of new
constructs to a language. However, JavaScript lacks a built-in syntactic extension facility. There-
fore, I developed a separate compiler based on Ohm (Warth, Dubroy and Garnock-Jones 2016)
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that translates the language extended with Syndicate syntax to core JavaScript. Appendix A
describes the syntactic extensions.

7.3.3 Dataflow

Sophisticated pure-functional dataflow implementations such as that of Cooper and Krishna-
murthi (2006) are well-suited to pure languages. However, idiomatic programs in the Syndicate

design presented here make extensive use of mutation. Therefore, we chose a trivially simple
imperative dataflow design with moderate efficiency and an easily-understood evaluation or-
der and cost model.

Each Syndicate actor maintains a bipartite, directed dataflow graph: source nodes represent
fields, target nodes represent endpoints, and edges represent dependencies of the endpoints
on the fields. Each endpoint contains a procedure that is used to compute the set of assertions
to be associated with the endpoint. By recording field dependencies during the execution of
such procedures, the implementation learns which endpoints must have their assertion sets
recomputed in response to a given field change. In addition, this dataflow facility is exposed
to the programmer in the form of a special begin/dataflow form,11 which creates a synthetic
pseudo-endpoint whose assertion-set procedure always returns the empty assertion set but
may perform arbitrary (side-effecting) computations. Commonly, these computations update
a field with a computed expression depending on another field, potentially triggering further
dataflow-induced recomputation.

Figure 49 sketches the interface to the Racket implementation of the dataflow library; full
source code for the library is shown in appendix D. The JavaScript implementation is similar.
The current-dataflow-subject-id parameter records the identity of the currently-evaluating
endpoint. Whenever a field is read, the runtime invokes dataflow-record-observation! with
the identity of the field, thus recording a connection between the executing endpoint and the
observed field. Whenever a field is updated, the runtime calls dataflow-record-damage!. Later
in the behavior function of the actor, the runtime calls dataflow-repair-damage! with a repair
procedure which, given an endpoint, calls its assertion-set recomputation procedure, collecting
the results into a patch action which updates the overall assertion set of the actor in the data-
space. The synthetic endpoints generated by begin/dataflow are simply a special case, where
the side-effects of the assertion-set procedure are the interesting part of the computation.

As time goes by and fields change state, the precise set of fields that a given endpoint com-
putation depends upon may change. The dataflow-repair-damage! procedure takes care to
call dataflow-forget-subject! for each endpoint, just before invoking its repair procedure for
that endpoint, in order to clear its previous memory of the endpoint’s dependencies. The re-
pair procedure, during its execution, records the currently-relevant set of dependencies for the
endpoint. Finally, when an endpoint is removed from an actor as part of the facet shutdown
process, dataflow-forget-subject! is used to remove obsolete dependency information for
each removed endpoint.

11 The analogous Syndicate/js syntax is a dataflow { ... } block.
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current-dataflow-subject-id : Parameter(Endpoint) Used by dataflow-record-observation! to implic-

itly supply a depending endpoint.

dataflow-record-observation! : DFG× Field→ 1 Records a dependency of the implicit endpoint on

the given field.

dataflow-record-damage! : DFG× Field→ 1 Marks the given field as “damaged”.

dataflow-forget-subject! : DFG× Endpoint→ 1 Removes the given endpoint (and its edges) from

the graph.

dataflow-repair-damage! : DFG× (Endpoint→ 1)→ 1 Passes endpoints depending on damaged nodes to

the given function one at a time, iterating until sta-

bility is reached.

(begin/dataflow

expr ...)

=⇒ (add-endpoint! ...

(lambda ()

(parameterize ((current-dataflow-subject-id ...))

expr ...)))

(define/dataflow id expr) =⇒ (begin

(field [id #f])

(begin/dataflow (field expr)))

Figure 49: Runtime- and programmer-level interfaces to imperative Racket dataflow library

The simple “dataflow” system described here is neither a “sibling” of nor a “cousin” to reac-
tive programming in the sense of Bainomugisha et al. (2013), or even dataflow in the sense of
Whiting and Pascoe (1994); rather, it is most similar to the simple dependency tracking approach
to object-oriented reactive programming described by Salvaneschi and Mezini (2014, section
2.3), and was in fact directly inspired by the dependency tracking of JavaScript frameworks
like Knockout12 (Sanderson 2010) and Meteor.13

7.4 programming tools

Because the prototype implementations of Syndicate are closely connected to the underlying
formal models, the programmer is able to use concepts from the model in understanding the
behavior of programs. Furthermore, points exist in the code implementing dataspace actors
that correspond closely to the reduction rules given in chapter 4, and each invocation of a
dataspace’s actor behavior function itself corresponds roughly to use of the schedule rule. This
gives us an opportunity to record trace events capturing the behavior of the program in terms
of the formal model. In turn, these events enable visualization of program execution.

12 http://knockoutjs.com/
13 https://docs.meteor.com/api/tracker.html

http://knockoutjs.com/
https://docs.meteor.com/api/tracker.html
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1 (assertion-struct one-plus (n m))

2 (spawn #:name ’add1-server
3 (during/spawn (observe (one-plus $n _))
4 #:name (list ’solving ’one-plus n)
5 (assert (one-plus n (+ n 1)))))

6 (spawn #:name ’client-process
7 (stop-when (asserted (one-plus 3 $value))
8 (printf "1 + 3 = ~a\n" value)))

Figure 50: Program generating the sequence diagram of figure 51

The lifecycle of an action can trigger multiple trace log entries from the moment of its pro-
duction to the moment the dataspace events it causes are delivered:

1. an entry for the production of the action as a result from a behavior function;

2. an entry for the moment the action is enqueued in the dataspace’s pending-actions queue;

3. an entry for its interpretation by the dataspace, which is the same moment that its effects
are applied to the state of the dataspace, and the moment any resulting dataspace events
are produced;

4. an entry for the moment such events are enqueued for delivery to an actor; and

5. an entry recording the final delivery of such events as input arguments to a behavior
function.

Different Syndicate implementation strategies may combine some of these log entries together.
For example, the prototype dataspace implementations combine entries 1 and 2 and entries 4

and 5. A hypothetical distributed implementation of Syndicate would likely maintain an
observable distinction between all of the stages.

Thus far, I have implemented three consumers of generated trace log entries. The first is
a console-based logging facility which simply displays each entry as colorized text on the
standard error file descriptor. The remainder of this section is devoted to discussion of the
other two: an offline renderer of sequence diagrams and a live display of program activity.

7.4.1 Sequence diagrams

Recorded trace events can be automatically rendered to a kind of sequence diagram displaying ac-
tor lifecycle events and causal connections between emitted actions, delivered events, and data-
space state. Any Syndicate/rkt program, if run with an environment variable SYNDICATE_MSD

naming an output file name, fills the named file with recorded trace events as the program runs.
Unix signals may be used to selectively enable and disable tracing during long executions. Once
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ground =
'ground

1 action 0

0 =
add1-server

1

1 action 2

1 =
client-process

3

1 action 4

- ::: nothing
+ <s:observe/1 <s:outbound/1 ★ {#t}
+ <s:observe/1 <s:observe/1 <s:inbound/1 ★ {#t}

5

- ::: nothing
+ <s:observe/1 <s:observe/1 <s:one-plus/2 ★ ★ {#t}

16

- ::: nothing
+ <s:observe/1 <s:one-plus/2 3 ★ {#t}

17

- ::: nothing
+ <s:observe/1 <s:one-plus/2 3 ★ {1}

18

2 actions 21

- ::: nothing
+ <s:observe/1 <s:instance/2 during/spawn27 <s:observe/1 <s:one-plus/2 3 ★ {#t}

29

2 =
(solving one-plus 3)

30

1 action 31

- ::: nothing
+ <s:observe/1 <s:observe/1 <s:instance/2 during/spawn27 <s:observe/1 <s:one-plus/2 3 ★ {#t}
+ <s:one-plus/2 3 4 {#t}
+ <s:instance/2 during/spawn27 <s:observe/1 <s:one-plus/2 3 ★ {#t}

39

- ::: nothing
+ <s:instance/2 during/spawn27 <s:observe/1 <s:one-plus/2 3 ★ {2}

40

1 action 43

- ::: nothing
+ <s:one-plus/2 3 4 {2}

44

2 actions 48

- ::: nothing
+ <s:observe/1 <s:instance/2 during/spawn27 <s:observe/1 <s:one-plus/2 3 ★ {0}

49

- ::: nothing
+ ::: nothing

63

- <s:observe/1 <s:one-plus/2 3 ★ {#t}
+ ::: nothing

64

- <s:observe/1 <s:one-plus/2 3 ★ {1}
+ ::: nothing

65

1 action 68

- ::: nothing
+ ::: nothing

69

- <s:observe/1 <s:instance/2 during/spawn27 <s:observe/1 <s:one-plus/2 3 ★ {#t}
+ ::: nothing

78

- <s:instance/2 during/spawn27 <s:observe/1 <s:one-plus/2 3 ★ {2}
+ ::: nothing

79

- <s:observe/1 <s:instance/2 during/spawn27 <s:observe/1 <s:one-plus/2 3 ★ {0}
+ ::: nothing

83

2 actions 87

- <s:observe/1 <s:observe/1 <s:instance/2 during/spawn27 <s:observe/1 <s:one-plus/2 3 ★ {#t}
- <s:one-plus/2 3 4 {#t}
- <s:instance/2 during/spawn27 <s:observe/1 <s:one-plus/2 3 ★ {#t}
+ ::: nothing

95

- ::: nothing
+ ::: nothing

96

Figure 51: Sequence diagram of the program of figure 50



158 implementation

acquired, a trace file may be rendered with a command-line tool, syndicate-render-msd, able
to display directly to the screen or produce PNG or PDF files.

The rendered trace of the program of figure 50 is shown in figure 51. On the right of the
diagram are the internal step numbers associated with displayed events.14 Each “lifeline” corre-
sponds to a single actor and is headed by a green rectangle containing the #:name of the actor,
if any. In the example, we see from left to right swimlanes corresponding to the ground data-
space itself, the add1-server actor of lines 2–5 in the source code, the client-process of lines
6–8, and finally a server process named (solving one-plus 3) which is started in response
to the client-process’s request. The vertical lines backing each lifeline are narrow and light
gray when an actor is inactive, but are covered with empty white vertical rectangles when an
actor’s behavior function is executing. More than a single actor can be “executing” at once,
because Syndicate/rkt is functional and a containing dataspace must be active in order for
one of its children to be active. As a consequence, the ground dataspace in the leftmost lifeline
is almost always executing; pauses in its execution correspond to moments when the system
polled the outside world for any pending input. White rectangles on a lifeline correspond to
actions performed by the actor, and orange rectangles correspond to events delivered to an actor.

The arrows overlaid on the diagram represent causal influence. They connect swimlanes of
actors that contributed to or caused an event to the event’s displayed rectangle. For example, at
step 30, we see that the spawning of the solving actor is caused by one of the actions emitted
by add1-server at step 21. This in turn is caused by the event of step 18, which contained
information about assertions placed in the dataspace by client-process at step 17.

A more complex example of causal influence can be seen at step 39, where the solving actor
emits a patch action asserting three groups of assertions:

1. (observe (observe (instance ’during/spawn27 (observe (one-plus 3 _)))))

2. (one-plus 3 4)

3. (instance ’during/spawn27 (observe (one-plus 3 _)))

The second in the list, (one-plus 3 4), is the only one manifest in the source code (line 5). The
others are assertions allowing add1-server to supervise the actors it spawns in its during/spawn

form. The third in the list asserts an instance record that is interpreted by add1-server as “the
child you spawned to handle the situation of (observe (one-plus 3 _)) is alive.” The first
in the list allows the child to monitor the parent. The semantics of Syndicate requires that if
a during or during/spawn endpoint disappears, all its subordinate facets or actors should also
disappear; monitoring the parent arranges for this to happen.

The action of step 39 results in three events: step 40 for add1-server, letting it know its
new child exists; step 44 for client-process, giving it the answer to the one-plus question it
asked; and step 49, for the new solving actor itself. This latter event is a response to the child’s
expressed interest in the presence of its parent. The tail of the arrow connecting step 39 to
step 49 is connected to add1-server, showing that some of the information in event 49—in this
case, all the information—came from the set of assertions produced by add1-server at moment

14 They are non-contiguous because certain administrative events are not important for this form of visualization.
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39. Looking back along the add1-server lifeline, we see that action 29, produced alongside the
spawn action that created the solving actor, is the source of the assertion conveyed in event 49.

Event 44 causes the client-process to terminate, its task complete. Step 48 marks the tran-
sition: the lifeline is solid light gray above this point, but dashed black-and-white below this
point, terminating in a crossbar just after step 69. Its final actions are implicitly computed as
part of its termination, which must retract all its assertions; the synthetic action 64 does this.
Action 64 influences add1-server, informing it that interest in (one-plus 3 _) no longer ex-
ists. In turn, this causes add1-server to terminate its internal facet responsible for expressing
interest in the existence of the solving actor, leading to action 78. Action 78 causes two events:
79, removing the record of the solving actor’s existence from add1-server, and 83, informing
the solving actor that it is no longer needed. The solving actor terminates, producing its final
actions at step 87 and being finally removed just after step 96. At the time the program ends,
only the ground dataspace and the add1-server actor remain.

The sequence diagram renderer is a recent development, but has already been useful in my
Syndicate programming, helping me find two interesting bugs. First, one program’s accidental
non-linear treatment of an accumulator led to duplicated spawn actions in response to an event.
This mistake manifested itself on the trace as two identical new actors appearing as the result of
one transaction. The fix was to treat the accumulator properly linearly.15 Second, in a separate
program, rapidly fluctuating assertions representing demand for a resource led to an actor
outliving the demand that led to its creation. The problem was visible on the trace as a missing
edge informing the new actor that its services were wanted. The fix was to ensure that the
actor supplying the demanded resource began monitoring demand for its services as part of
its initial assertions of interest (the π in the syntax of actor actions described in figure 12).

7.4.2 Live program display

An experimental visualization based on trace information is shown in figure 52. Two screen
captures are shown: on the left, only interactions between peers within a single dataspace are
highlighted, while on the right, interactions between peers both within and across dataspace
boundaries are shown. The diagrams are animated during the execution of the program whose
structure they represent. The program depicted is a simple TCP/IP chat room service with
four connected users, implemented with a nested dataspace isolating chat functionality from
generic assertions and events relating to TCP, timers, and so forth. Figure 53 shows the nesting
structure of the program.

Each of the circles in figure 52 represents an actor. The two larger circles correspond to
the two dataspaces in the program; the smaller circles represent leaf actors. Edges connecting
circles together represent recent causal influence between two actors. The thickness of an edge
varies with the recent rolling-average rate of events exchanged between the edge’s vertices;
more recent events lead to thicker edges. As time goes by, interaction patterns among actors
change, leading to changing patterns of connectivity in the visualization.

15 Such accidental reuse of “stale” values seems, in my experience, to be endemic in functional-programming sim-
ulations of mutable state. A monadic approach would have enforced the necessary invariants. An interesting
alternative is to investigate whether some form of contract could help.
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Figure 52: Two visualizations of a running chat server
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No nesting structure is represented. A simple spring-layout algorithm brings together inter-
acting actors. Thicker edges lead to higher spring constants. The result is that groups of actors
that interact with each other tend to move toward each other.

On the left of figure 52, we see two groups of interacting actors. The completely-connected
group (toward the upper-right of the screenshot) is the four actors representing users in the
inner dataspace exchanging chat messages. The other group (toward the lower-left) is the four
TCP socket actors in the outer dataspace interacting with the inner dataspace actor itself in
terms of TCP byte streams.

On the right, the same two groups are visible. However, the version on the right adds
tracking of causal influence information across dataspace boundaries, allowing detection and
display of the interactions between “Connected socket 1” and “User agent 1”, and so on. The
additional edges represent translation back and forth between chat messages and TCP byte
stream events.

In both screenshots, we see five actors not interacting with any other. These are the ground
dataspace, along with three actors directly running in the ground dataspace (“TCP listener
factory”, “TCP connection factory” and “Listener socket 5999”) and one actor running in the
inner dataspace (“Main chat room process”).

This approach to visualization of a running program is still experimental and has not been
integrated with the mainline implementation code. In future, exploration of ways of presenting
nesting relationships among actors could prove useful.





8
Idiomatic Syndicate

Having reviewed the theory of the dataspace model, the design of Syndicate’s novel language
features, and the fundamentals of programming with Syndicate/rkt, we are ready to explore
practical aspects of the construction of Syndicate programs. In this chapter, we consider rep-
resentative programs that illustrate idiomatic Syndicate programming techniques. We begin
with the central concern in Syndicate programming: the design of Syndicate protocols.

8.1 protocols and protocol design

We have been calling the sum total of the related interactions among components a protocol,
made up of conversations involving assertions and message transmissions. Each kind of conver-
sation involves one or more actors playing roles within the conversation’s context. Each role
may include responsibilities and obligations that actors performing that role must live up to. The
assertions and messages of each conversation form the shared knowledge exchanged among
participants. The strong isolation afforded Syndicate actors dovetails with epistemic concerns
about “who knows what” to force consideration of the placement of knowledge in a system.
The notions of “schema”, “role”, “conversation” and so forth are, as yet, informal: they do
not correspond either to Syndicate language features or to manifest aspects of the dataspace
model. However, these latent ideas underpin each program that we examine in this chapter.

Designing a dataspace protocol is similar to designing an actor model program, but also has
points in common with designing a relational database. Like the actor model, the focus is on
knowledge exchanged between parties and the placement of the program’s stateful components.
Where the actor model focuses on exchange of domain messages, Syndicate concentrates on
shared conversational state, represented as domain assertions in the shared dataspace. The
structure and meaning of the assertions themselves are the primary point of similarity with
relational database schema design, where interpretations of and relationships among rows in
tables are carefully described. Every dataspace protocol has the rough analogue of a schema that
describes its assertions and messages and their meanings. The schema is ontologically prior
to other elements of a protocol; conversational exchanges take place within the framework
provided by the schema. Consideration of the goals, abilities and needs of each participant in
a conversation leads in turn to the notions of roles, responsibilities and obligations.

A second point of similarity between relational databases and the dataspace model is that
both tend to construct rows from atomic data such as text, numbers, dates and domain-
specific references to other rows. It is unusual to see a database include representations of
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programming-language concepts like thread IDs, exception values, mutable variables, or file
handles. Likewise, in the dataspace model, it is rare to see such host-language implementation-
level concepts communicated via the dataspace. This same point distinguishes dataspace pro-
gramming from the actor model, which unavoidably communicates actor IDs as elements of
message structures.1

Protocol 8.1 (Toy “file system”). To demonstrate the pieces of a Syndicate protocol, we work
through an example: a simple file system protocol as sketched in example 4.4, discussed in
section 6.6, and implemented in figure 33.

Schema. Let us begin by examining the protocol’s schema. Participants communicate primarily
via assertions representing file contents:

(assertion-struct file (name content))

where name is a string denoting a file-system path and content is either #f, meaning that the
file does not exist, or a string, the contents of the file. For example, asserting

(file "novel.txt" "Call me Ishmael.")

declares that the file named “novel.txt” currently contains the text “Call me Ishmael.” In
principle, a file assertion could be maintained constantly for every file that exists, but in
practice we allow an implementation to lazily manifest these assertions in response to detected
demand. An endpoint like

(during (file "novel.txt" $text) ...)

results in an assertion of interest,

(observe (file "novel.txt" _))

and so our schema assigns an additional meaning to such assertions, beyond the intrinsic
meaning of observe in expressing subscriptions. In this setting, these assertions of interest
denote an active demand for production of a matching file record, not mere interest in any
matching records that happen to exist.

Besides file assertions, our schema includes two message types:

(message-struct save (name content))

(message-struct delete (name))

where the name fields contain path strings, as for file records, but the content field must
contain a string. The two messages denote requests to update or delete a named file, respectively.

Roles. There are three roles in our protocol: Server, Reader, and Writer.

1 The dataspace model is nameless, from the programmer’s perspective; an actor label (section 4.2) is a purely
dataspace-internal concept. Likewise, each facet name (section 5.1) is only meaningful to a single, specific actor.
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• The Server is expected to be unique within a given protocol instance. It maintains the
authoritative file store, reacts to demand by supplying file contents to Readers, and
accepts file changes from Writers.

• Any number of Readers may exist within an instance. Readers observe file contents.

• Any number of Writers may exist within an instance. Writers save and delete files.

Conversations. There are three kinds of conversation in our protocol, each working toward
satisfaction of the various goals that participants may have.

• Reading is an interaction between a Reader and the Server. The Server responds to a
Reader’s assertion of (observe (file name _)) records. Each distinct name causes the
Server to assert a file record with the current contents of the named file, if it exists, or
with #f if it does not. A Reader asserts (observe (file name _)) for some specific name,
and responds to assertion of (file name contents) according to its needs.

• Updating is an interaction between a Writer and the Server. A Writer sends (save name
content) to replace the content of the named file with content, creating the file if it does not
already exist. The Server responds to such messages by updating its store accordingly
and updating any (file name _) assertions it has previously established to reference
the new content.

• Deleting is also an interaction between a Writer and the Server. A Writer sends (delete

name) to cause the deletion of the named file. The Server responds to (delete name)
messages by removing name from its records and updating any (file name _) assertions
it has previously established to map name to #f.

An important part of the summary of a role is its expected cardinality within the dataspace.
For example, in the example we imagine a unique file server; the protocol would require
alteration to support multiple distinct file servers. Alternatively, if multiple replica servers were
to be supported, the protocol would require changes to handle the necessary conversations
among replicas. While we have described the server as unique within this protocol, we expect
the protocol to support an arbitrary number of concurrent readers and writers.

The dataspace model allows wildcards to be placed freely within compound data structures,
but not all Syndicate programs allow wildcards in all positions: families of assertions that
a program expects to be able to iterate over must be finite in every position where a pattern
variable exists (see section 5.5). Therefore, we must take care to specify which positions in
assertions themselves and in subscriptions to such assertions may contain wildcards. In the
description of the “Reading” conversation in our example, we see that the Server expects to
be able to deduce distinct names of files of interest; therefore, it is forbidden for any Reader to
subscribe with a wildcard in the name position of a file assertion. In effect, we must be able
to deduce the appropriate finiteness constraints on positions in assertions and messages (and
subscriptions to those assertions and messages) from the protocol description.
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Relatedly, certain positions in assertions may be required to be unique in the dataspace.
In the file system example, a constraint exists that the server may not publish inconsistent
information: for a given file "a", only one file assertion of its contents may be placed in the
dataspace at any given time.

8.2 built-in protocols

Central to all dataspace protocols is an embedding of the protocol describing interest (?); with-
out it, no communication takes place. Some programs also make use of cross-layer relaying (�/�).
These two protocols are special cases in that they are the only built-in protocols exposed to
programmers.

Protocol 8.2 (Interest). This protocol is the fundamental unit of conversation in Syndicate;
the smallest conversational frame that can exist. All other conversations and protocols are
constructed from it.

Schema. A single family of assertions, (observe x), describes interest in the assertion or as-
sertions x. Asserting an observe record denotes subscription to matching assertions: not only
to appearance and disappearance of assertions per se, but also to messages having a match-
ing body. There are no inherent restrictions on wildcard use within observe records; indeed,
wildcards are vital, as a wildcard used inside some x in an observe record indicates a range of
values of interest.

Roles. There are two overt, user-level roles, namely subscriber and publisher, but also a less
apparent role: that of the dataspace itself acting as a relay.2 Any actor asserting interest in x
is a subscriber to x; any actor asserting x or sending x as a message is a publisher of x. The
dataspace, of course, is the unique relay in the scenario.

Conversations. Again, at an actor-to-actor level, only one kind of conversation exists: that
between subscriber and publisher. The conversation between each actor and its dataspace is
“at right angles” to, and facilitates, publisher-to-subscriber conversational interaction.

Protocol 8.3 (Cross-layer relaying). In every case where a dataspace is nested within another,
the cross-layer relaying protocol exists to allow actors contained within the inner dataspace to
access assertions and messages in the outer dataspace.

Schema. Two general-purpose unary records, (inbound x) and (outbound x) (corresponding
to � x and � x in the formalism of section 4.1, respectively) are used for both assertions and
messages x.

Roles and Conversations. This protocol is peculiar in that the relevant actors are, first, the
actor A asserting or sending an outbound assertion or message, and second, that actor’s local
dataspace, D1. The dataspace, D1, reacts to (outbound x) assertions or messages by relaying
x to its own containing dataspace, D2.

2 A key difference between these two kinds of role is that the “relay” role performed by the dataspace has in some
sense more to do with a metalevel protocol than any kind of domain-level protocol at all.
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1 #lang syndicate
2 (assertion-struct greeting (text))

3 (spawn #:name "A" (assert (greeting "Hi from outer space!")))
4 (spawn #:name "B" (on (asserted (greeting $t))
5 (printf "Outer dataspace: ~a\n" t)))

6 (dataspace #:name "C"
7 (spawn #:name "D" (assert (outbound (greeting "Hi from inner!"))))
8 (spawn #:name "E" (on (asserted (inbound (greeting $t)))
9 (printf "Inner dataspace: ~a\n" t))))

"A" "B"

"D" "E"

"C"

Ground dataspace

Figure 54: Cross-layer relaying example.

Asserting (outbound (observe x)) leads D1 to assert (observe x) within the dataspace of
D2. This, of course, acts as a subscription to x, meaning that D1 may receive assertions or
messages x. In response to such events, D1 wraps them in an inbound record and relays them
on to its own dataspace. However, notice that actor A never asserted interest in anything. Actor
A must assert (observe (inbound x)) in order to be notified when a relevant x-event in D2’s
dataspace takes place. For this reason, every dataspace interprets (observe (inbound x)) as
if it implied (outbound (observe x)). Actors such as A need only assert the former to enjoy
the effect of the latter.3

Example 8.4 (Cross-layer relaying). The program in figure 54 creates three actors (A, B and
C) within the ground dataspace. Actor C is a dataspace itself. As C starts up, two further
actors (D and E) are spawned within it. All interaction among actors A, B, D and E takes place
via the ground dataspace; D and E communicate with the ground dataspace indirectly via C
by using inbound and outbound constructors. Two greeting records end up being asserted
within the ground dataspace, from A and D. As discussed above, E’s assertion of interest
in (inbound (greeting _)) assertions is automatically translated by C into an assertion of
(observe (greeting _)) at the ground dataspace level. The matching records are relayed up
into C’s dataspace, appearing wrapped as (inbound (greeting ...)). At the time the program
quiesces, the assertions in C’s dataspace are:

• (outbound (greeting "Hi from inner!")), courtesy of actor D.

• (observe (inbound (greeting _))), from actor E.

• (inbound (greeting "Hi from outer space!")), from actor A, relayed up into C’s data-
space by C itself.

• (inbound (greeting "Hi from inner!")), from actor D, relayed first down into the ground
dataspace, where it matched C’s own interest (on behalf of E) in greeting records and
was relayed back again by C.

3 This is apparent from the specification of out (definition 4.14), where the assertion set relayed to a containing
dataspace is given by {c | (j, � c) ∈ R}∪ {?c | (j, ? � c) ∈ R}.
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The assertions in the ground dataspace are:

• (greeting "Hi from outer space!"), from A.

• (greeting "Hi from inner!"), from C (on behalf of D).

• (observe (greeting _)), asserted by both C (on behalf of E) and B.

Figure 55 shows an execution trace of the program.4 ♦

8.3 shared, mutable state

Some protocols need assertions in the dataspace to be long-lived, outliving the actors that
produced them and actors making use of them. In these situations, the dataspace takes on even
more of the characteristics of a relational-style database. We have already seen two examples
of this idiom: the toy “file system” of protocol 8.1, where file records persist until explicitly
deleted, and the “box and client” program of example 6.1, where the box-state record persists
indefinitely. Here, we present a mutable cell protocol and program that generalizes the latter.

Protocol 8.5 (Mutable cell). This protocol describes a mutable cell service, instantiable multiple
times in a single dataspace. Cell IDs are auto-generated; a minor modification to this protocol
yields a key-value store. The protocol is similar to so-called “CRUD” protocols (standing for
Create, Read, Update and Delete). Here, creation and deletion of cells is explicit; an alternative
could be to create cells implicitly at first mention of a hitherto-unseen ID.

Schema. One assertion describes the value of each cell, and three messages create, update, and
destroy cells, respectively:

(assertion-struct cell (id value))

(message-struct create-cell (id value))

(message-struct update-cell (id value))

(message-struct delete-cell (id))

Cell IDs are arbitrary values, unique within one dataspace. At most one cell record is asserted
for a given ID.

Roles. There are four roles: CellFactory, Cell, Reader and Writer. A unique CellFactory exists
in the dataspace. A distinct Cell exists for each cell ID created. Any number of Readers
or Writers may exist. Readers observe Cell contents; Writers request creation, deletion and
update of Cells.

Conversations.

4 Unfortunately, the current tracing mechanism (section 7.4.1) does not capture the causal connection between
outbound assertions and the assertions of the containing dataspace. The reader is left to deduce the connection
between the assertions of actors D and E, and the subsequent actions of C.
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ground =
'ground

1 action

0 =
A

1 action

1 =
B

1 action

1 action

2:0 =
#f

4 actions

- ::: nothing
+ <s:observe/1 <s:outbound/1 ★ {#t}
+ <s:observe/1 <s:observe/1 <s:inbound/1 ★ {#t}

2 =
C

- ::: nothing
+ <s:observe/1 <s:outbound/1 ★ {#t}
+ <s:observe/1 <s:observe/1 <s:inbound/1 ★ {#t}

- ::: nothing
+ ::: nothing

2:1 =
D

1 action

2:2 =
E

1 action

- ::: nothing
+ ::: nothing

- ::: nothing
+ <s:greeting/1 "Hi from outer space!" {#t}

- ::: nothing
+ <s:observe/1 <s:greeting/1 ★ {#t}

- ::: nothing
+ <s:greeting/1 "Hi from outer space!" {0}

- ::: nothing
+ <s:outbound/1 <s:greeting/1 "Hi from inner!" {#t}

- ::: nothing
+ <s:observe/1 <s:inbound/1 <s:greeting/1 ★ {#t}

2 actions

- ::: nothing
+ <s:greeting/1 "Hi from inner!" {#t}

- ::: nothing
+ <s:greeting/1 "Hi from inner!" {2}

- ::: nothing
+ <s:observe/1 <s:greeting/1 ★ {#t}

- ::: nothing
+ <s:greeting/1 "Hi from outer space!" {0}
+ <s:greeting/1 "Hi from inner!" {2}

1 action

- ::: nothing
+ <s:inbound/1 <s:greeting/1 "Hi from outer space!" {#t}
+ <s:inbound/1 <s:greeting/1 "Hi from inner!" {#t}

- ::: nothing
+ <s:inbound/1 <s:greeting/1 "Hi from outer space!" {context of 2}
+ <s:inbound/1 <s:greeting/1 "Hi from inner!" {context of 2}

Figure 55: Execution trace of the cross-layer example 8.4
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• Creation (Writer/CellFactory). The Writer chooses a dataspace-unique cell ID, and sends
a create-cell message with the initial value to place in the new cell. In response, the
CellFactory creates a new Cell with the given ID and value.

• Reading (Cell/Reader). The Cell is continuously publishing a cell assertion, which the
Reader observes. The Cell updates the assertion as its value changes.

• Updating (Cell/Writer). The Writer sends an update-cell message; the Cell updates its
value (and cell assertion) accordingly.

• Deleting (Cell/Writer). The Writer sends a delete-cell message; the Cell terminates in
response.

Programming interface. A library routine, spawn-cell, allocates a fresh cell ID, sends a create-

cell message, and returns the new ID:

1 (define (spawn-cell initial-value)
2 (define id (gensym ’cell))
3 (send! (create-cell id initial-value))
4 id)

Example 8.6 (Mutable cell). The following listing shows an implementation of the Cell Factory
and Cell roles, in context of the assertion- and message-structure definitions shown above:

1 (spawn #:name ’cell-factory
2 (on (message (create-cell $id $initial-value))
3 (spawn #:name (list ’cell id)
4 (field [value initial-value])
5 (assert (cell id (value)))
6 (on (message (update-cell id $new-value)) (value new-value))
7 (stop-when (message (delete-cell id))))))

The definition of an actor implementing Cell (lines 3–7) is embedded within the definition
of the Cell Factory. Each time the Cell Factory receives a create-cell message (line 2), it
spawns a new Cell instance (line 3), with a computed name incorporating the new cell’s ID.
Each Cell has a single value field (line 4), which is continuously published into the dataspace
(line 5). Whenever an update-cell message is received, value is updated (line 6); recall that
Syndicate/rkt fields are modeled as functions (see section 6.4). The Cell terminates itself
when it receives an appropriately-addressed delete-cell message (line 7). ♦

Writers simply issue their requests by send!ing update-cell and delete-cell messages;
Readers construct endpoints monitoring cell assertions.

Example 8.7. The following procedure spawns a simple actor that monitors the changing value
of a cell:
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1 (define (spawn-cell-monitor id)
2 (spawn #:name (list ’cell-monitor id)
3 (on (asserted (cell id $value))
4 (printf "Cell ~a updated to: ~a\n" id value))
5 (on (retracted (cell id _))
6 (printf "Cell ~a deleted\n" id))))

The endpoint of lines 3–4 monitors the appearance of each distinct ID/value combination for the
ID given, thereby printing a message for each value the cell takes on. The endpoint of lines 5–6

monitors the disappearance of all cell assertions for the given ID, triggering only once: when
no more assertions remain, namely when the cell’s actor terminates itself. This is an example
of the elision of irrelevant detail—here, the specific value in the cell record is irrelevant for this
endpoint’s purpose—performed by the metafunction inst (definition 5.24) as part of projection
of incoming patch events. ♦

Example 8.8. Alternatively, a blocking read-cell routine can be constructed using flush! and
react/suspend (section 6.5, page 119):

1 (define (read-cell id)
2 (flush!)
3 (react/suspend (k) (stop-when (asserted (cell id $value)) (k value))))

The use of flush! in read-cell deserves explanation. Recall that message sending is asyn-
chronous. This means that if we send! an update-cell message, it is enqueued for transmis-
sion once the actor’s behavior function returns control to the dataspace, and execution contin-
ues. If we omit the call to flush! before accessing the cell assertion, then programs calling
read-cell multiple times in succession reuse the most-recently delivered information, without
forcing queued actions (such as update-cell messages) out to the dataspace and waiting for
new information. ♦

Example 8.9. Consider the following program, to be run alongside the definitions of proto-
col 8.5 and examples 8.6, 8.7 and 8.8:

1 (spawn* #:name ’main-actor
2 (define id (spawn-cell 123))
3 (spawn-cell-monitor id)
4 (send! (update-cell id (+ (read-cell id) 1)))
5 (send! (update-cell id (+ (read-cell id) 1)))
6 (send! (update-cell id (+ (read-cell id) 1)))
7 (send! (delete-cell id)))

With a flush! in read-cell, the output is

Cell cell27 updated to: 123

Cell cell27 updated to: 124

Cell cell27 updated to: 125

Cell cell27 updated to: 126

Cell cell27 deleted

Without a flush! in read-cell, the output is
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Cell cell27 updated to: 123

Cell cell27 updated to: 124

Cell cell27 deleted

Figure 56 shows the reason why. The trace on the left includes flush!, while the trace on the
right omits flush!. Recall that metafunction emit (section 5.2) coalesces adjacent patch actions
produced by an actor. A chain of calls to a flush!less variation on read-cell results in repeated
assertion and retraction of interest in (cell id _) assertions, which are then coalesced into no-
op, empty patches. Observe the empty patches interleaved in the “8 actions” shown on the right
in figure 56 as outputs of main-actor (center region of middle column). The version shown in
example 8.8, however, breaks up the chain of patch actions with the message sent as part of the
implementation of flush! that forces the round trip to the dataspace, leading to the (truncated)
longer sequence of interactions shown on the left in figure 56. There, the retraction of interest
in (cell id _) prior to the flush! causes the actor’s cached record of the cell’s value (stored in
the πi register in Syndicate/λ’s semantics, and an analogous location in the Syndicate/rkt

implementation) to be evicted. ♦

8.4 i/o, time , timers and timeouts

Simple I/O in Syndicate/rkt programs can be performed as normal for Racket programs, via
ordinary side-effecting function calls. If a particular I/O action could block—for example, a
write to a buffered channel such as a TCP socket, or a read from a serial port—then an alterna-
tive strategy must be chosen to allow other conversations to proceed while the program waits.
Generally speaking, identification of a blocking I/O facility results in design and construction
of a driver actor. This includes pseudo-input operations such as waiting for a certain period of
wall-clock time to elapse, exposed in Syndicate as a protocol like everything else.

Protocol 8.10 (Timer Driver). The timer driver implements this protocol.

Module to activate. syndicate/drivers/timer

Schema. The protocol involves two messages. The first is

(message-struct set-timer (label msecs kind))

where label is an arbitrary value and msecs is a count of milliseconds. If kind is ’absolute,
then msecs is interpreted as an absolute moment in time, counted in milliseconds from the
machine’s epoch; if kind is ’relative, then msecs is interpreted as milliseconds in the future,
counted from the moment the message is received by the timer driver implementation. The
second message type is

(message-struct timer-expired (label msecs))

where label is the label from a previous set-timer message, and msecs is the absolute time
that the message was sent from the timer driver implementation, counted in milliseconds
from the machine’s epoch.
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ground =
'ground

1 action

0 =
cell-factory

1 action

1 =
main-actor

5 actions

- ::: nothing
+ <s:observe/1 <s:outbound/1 ★ {#t}
+ <s:observe/1 <s:observe/1 <s:inbound/1 ★ {#t}

- ::: nothing
+ <s:observe/1 <s:create-cell/2 ★ ★ {#t}

- ::: nothing
+ ::: nothing

'#s(create-cell cell27 123)

'#s(create-cell cell27 123)

1 action

2 =
(cell-monitor cell27)

1 action

- ::: nothing
+ <s:observe/1 flush!28 {#t}

'flush!28

'flush!28

1 action

3 =
(cell cell27)

1 action

- ::: nothing
+ <s:observe/1 <s:cell/2 cell27 ★ {#t}

- <s:observe/1 flush!28 {#t}
+ <s:observe/1 <s:cell/2 cell27 ★ {#t}

- ::: nothing
+ <s:observe/1 <s:delete-cell/1 cell27 {#t}
+ <s:observe/1 <s:update-cell/2 cell27 ★ {#t}
+ <s:cell/2 cell27 123 {#t}

- ::: nothing
+ <s:cell/2 cell27 123 {3}

4 actions

- ::: nothing
+ <s:cell/2 cell27 123 {3}

- <s:observe/1 <s:cell/2 cell27 ★ {#t}
+ ::: nothing

- <s:cell/2 cell27 123 {3}
+ ::: nothing

'#s(update-cell cell27 124)

'#s(update-cell cell27 124)

1 action

- ::: nothing
+ <s:observe/1 flush!29 {#t}

'flush!29

'flush!29

1 action

- <s:cell/2 cell27 123 {#t}
+ <s:cell/2 cell27 124 {#t}

- <s:cell/2 cell27 123 {3}
+ <s:cell/2 cell27 124 {3}

- <s:observe/1 flush!29 {#t}
+ <s:observe/1 <s:cell/2 cell27 ★ {#t}

- ::: nothing
+ <s:cell/2 cell27 124 {3}

4 actions

- <s:observe/1 <s:cell/2 cell27 ★ {#t}
+ ::: nothing

- <s:cell/2 cell27 124 {3}
+ ::: nothing

'#s(update-cell cell27 125)

'#s(update-cell cell27 125)

1 action

- ::: nothing
+ <s:observe/1 flush!30 {#t}

'flush!30

'flush!30

1 action

- <s:cell/2 cell27 124 {#t}
+ <s:cell/2 cell27 125 {#t}

- <s:cell/2 cell27 124 {3}
+ <s:cell/2 cell27 125 {3}

- <s:observe/1 flush!30 {#t}
+ <s:observe/1 <s:cell/2 cell27 ★ {#t}

- ::: nothing
+ <s:cell/2 cell27 125 {3}

4 actions

- <s:observe/1 <s:cell/2 cell27 ★ {#t}
+ ::: nothing

'#s(update-cell cell27 126)

'#s(update-cell cell27 126)

1 action

'#s(delete-cell cell27)

'#s(delete-cell cell27)

2 actions

- ::: nothing
+ ::: nothing

- <s:cell/2 cell27 125 {#t}
+ <s:cell/2 cell27 126 {#t}

- <s:cell/2 cell27 125 {3}
+ <s:cell/2 cell27 126 {3}

- <s:observe/1 <s:delete-cell/1 cell27 {#t}
- <s:observe/1 <s:update-cell/2 cell27 ★ {#t}
- <s:cell/2 cell27 126 {#t}
+ ::: nothing

- <s:cell/2 cell27 126 {3}
+ ::: nothing

- ::: nothing
+ ::: nothing

ground =
'ground

1 action

0 =
cell-factory

1 action

1 =
main-actor

4 actions

- ::: nothing
+ <s:observe/1 <s:outbound/1 ★ {#t}
+ <s:observe/1 <s:observe/1 <s:inbound/1 ★ {#t}

- ::: nothing
+ <s:observe/1 <s:create-cell/2 ★ ★ {#t}

- ::: nothing
+ ::: nothing

'#s(create-cell cell27 123)

'#s(create-cell cell27 123)

1 action

2 =
(cell-monitor cell27)

1 action

- ::: nothing
+ <s:observe/1 <s:cell/2 cell27 ★ {#t}

3 =
(cell cell27)

1 action

- ::: nothing
+ <s:observe/1 <s:cell/2 cell27 ★ {#t}

- ::: nothing
+ <s:observe/1 <s:delete-cell/1 cell27 {#t}
+ <s:observe/1 <s:update-cell/2 cell27 ★ {#t}
+ <s:cell/2 cell27 123 {#t}

- ::: nothing
+ <s:cell/2 cell27 123 {3}

8 actions

- ::: nothing
+ <s:cell/2 cell27 123 {3}

- <s:observe/1 <s:cell/2 cell27 ★ {#t}
+ ::: nothing

'#s(update-cell cell27 124)

'#s(update-cell cell27 124)

1 action

- ::: nothing
+ ::: nothing

'#s(update-cell cell27 124)

'#s(update-cell cell27 124)

- ::: nothing
+ ::: nothing

'#s(update-cell cell27 124)

'#s(update-cell cell27 124)

'#s(delete-cell cell27)

'#s(delete-cell cell27)

2 actions

- ::: nothing
+ ::: nothing

- <s:cell/2 cell27 123 {#t}
+ <s:cell/2 cell27 124 {#t}

- <s:cell/2 cell27 123 {3}
+ <s:cell/2 cell27 124 {3}

- <s:observe/1 <s:delete-cell/1 cell27 {#t}
- <s:observe/1 <s:update-cell/2 cell27 ★ {#t}
- <s:cell/2 cell27 124 {#t}
+ ::: nothing

- <s:cell/2 cell27 124 {3}
+ ::: nothing

- ::: nothing
+ ::: nothing

Figure 56: Execution trace of the mutable-cell example 8.9. On the left, a flush! call ensures the effects
of update-cell messages are visible to main-actor; on the right, omitting flush! leads to
reuse of cached knowledge.
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Roles. The unique role of Driver is performed by the actor(s) started when a user program
activates the driver’s module. The roles of AlarmSetter and AlarmReceiver are performed by
user code.

Conversations.

• Setting (AlarmSetter/Driver). The AlarmSetter sends set-timer. The Driver eventually
responds with timer-expired.

• Notifying (Driver/AlarmReceiver). The Driver sends timer-expired, and the AlarmRe-
ceiver interprets it in an application-specific way.

Protocol 8.10 was the first to be implemented during the development of Syndicate and its
predecessors, and so is in some ways anachronistic. To begin with, it uses messages in place
of assertions for its functionality. This forces clients to take care with respect to ordering of
operations. In particular, they must ensure their subscriptions to timer-expired messages are
in place before the corresponding set-timer messages are sent, lest unfortunate scheduling
cause them to miss their wake-up call. A so-called “timestate” driver provides an interface to
timer functionality that is more idiomatic.

Protocol 8.11 (Timestate). The timestate driver is an ordinary Syndicate/rkt program that
exposes this protocol to clients, using protocol 8.10 internally to implement its services.

Module to activate. syndicate/drivers/timestate

Schema. The protocol involves a single assertion, (assertion-struct later-than (msecs)),
where msecs is an integer denoting an absolute moment in time counted in milliseconds from
the machine’s epoch. When asserted, it denotes a claim that wall-clock time is equal to or
later than the moment mentioned.

Roles. The unique role of Driver is performed by the actor(s) started when a user program
activates the driver’s module. The role of TimeObserver is performed by user code.

Conversations.

• Observing (TimeObserver/Driver). The TimeObserver asserts interest in a particular
later-than assertion. The Driver eventually responds by asserting it. Once the TimeOb-
server’s interest is withdrawn, the Driver retracts it again.

Example 8.12 (Timestate implementation). The “driver” is extremely simple, as it is an ordinary
program which reformulates protocol 8.10 into the more palatable form of protocol 8.11:

1 (spawn #:name ’drivers/timestate
2 (during (observe (later-than $msecs))
3 (define timer-id (gensym ’timestate))
4 (on-start (send! (set-timer timer-id msecs ’absolute)))
5 (on (message (timer-expired timer-id _))
6 (react (assert (later-than msecs))))))



8.4 i/o, time , timers and timeouts 175

The use of during (lines 2–6) creates a facet whose lifetime is scoped to a particular conversation.
Upon detection of interest in a particular later-than assertion, lines 3–6 run, creating the
endpoints necessary for the conversation and kicking off the conversation between the timestate
driver and the underlying timer driver. Line 3 uses Racket’s gensym utility to generate a fresh
symbol, unique within the running operating system process. This symbol is used on line 4 in a
set-timer message. Recall from section 6.4 that on-start forms execute once the endpoints of
a new facet are completely configured. This ensures that set-timer is transmitted in a context
where a subscription to the corresponding timer-expired message has already been established
(by lines 5–6). When triggered, that subscription creates a nested facet (line 6) which simply
asserts the requested later-than record. When the TimeObserver that started this conversation
retracts its interest in the later-than assertion, the entire during facet is terminated. Not only
is the subscription to timer-expired then retracted, but the nested facet asserting later-than

is also terminated. ♦

Example 8.13 (Use of later-than). The following program prints a message (line 2), and waits
for five seconds (lines 4 and 5). Once the time has elapsed, the facet is terminated, triggering
the message of line 3. Finally, the message of line 6 is printed.

1 (spawn #:name ’demo-later-than
2 (on-start (printf "Starting demo-later-than\n"))
3 (on-stop (printf "Stopping demo-later-than\n"))
4 (field [deadline (+ (current-inexact-milliseconds) 5000)])
5 (stop-when (asserted (later-than (deadline)))
6 (printf "Deadline expired\n")))

♦

Example 8.14 (Updating a deadline). The following program prints out ten “Tick” messages
(from line 5), waiting for one second between each, and then terminates. The endpoint of
lines 4–7 is automatically withdrawn as soon as the value of the counter field exceeds 9, and
is otherwise triggered every time the deadline is reached. After printing a “Tick” message, it
increments its counter and adjusts the deadline forward by another second. Modifying counter

causes reevaluation of the endpoint’s #:when clause; modifying deadline causes reevaluation of
the endpoint’s subscription, and triggers the transmission of a patch action into the dataspace,
which in turn informs the Timestate driver of the new state of affairs.

1 (spawn #:name ’demo-updating-later-than
2 (field [deadline (current-inexact-milliseconds)])
3 (field [counter 0])
4 (on #:when (< (counter) 10) (asserted (later-than (deadline)))
5 (printf "Tick ~v\n" (counter))
6 (counter (+ (counter) 1))
7 (deadline (+ (deadline) 1000))))

♦

Besides its primary purpose of simplifying interaction with the Timer driver, the Timestate
driver offers a pair of utilities, stop-when-timeout and sleep, that capture frequently-occurring
interaction patterns.
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Example 8.15 (Timeouts). The stop-when-timeout macro offers a new kind of endpoint which
terminates its facet after a certain number of milliseconds have elapsed. If the timeout occurs,
the body expressions are executed; if the facet has already terminated for some other reason, the
endpoint is withdrawn along with the other endpoints of the facet, and the body expressions
are not executed.

1 (define-syntax-rule (stop-when-timeout relative-msecs body ...)
2 (let ((timer-id (gensym ’timeout)))
3 (on-start (send! (set-timer timer-id relative-msecs ’relative)))
4 (stop-when (message (timer-expired timer-id _)) body ...)))

The macro expands into an expression to be executed in facet-setup-expr context. The expression
creates an on-start endpoint which arms the timer, and a stop-when endpoint which reacts to
the resulting timer-expired event by terminating the surrounding facet and executing the body

forms. ♦

Example 8.16 (Use of stop-when-timeout). The following program terminates itself after three
seconds have elapsed. During its execution, it prints the messages of lines 2, 3 and 4, in that
order.

1 (spawn #:name ’demo-timeout
2 (on-start (printf "Starting demo-timeout\n"))
3 (on-stop (printf "Stopping demo-timeout\n"))
4 (stop-when-timeout 3000 (printf "Three second timeout fired\n")))

♦

Example 8.17 (Use of sleep). We have already seen the definition of sleep in section 6.5 on
page 119. The following program uses spawn* to start a new actor in script-expr rather than
facet-setup-expr context, allowing it to perform sequential actions such as sending a message,
creating a facet, and so on. The program is a sleep-based reimplementation of example 8.14.
Where that example was written in an event-based style, this is written in a threaded style (Li
and Zdancewic 2007; Haller and Odersky 2009). It uses Racket’s built-in looping construct,
for, with a range of natural numbers (line 2). Example 8.14’s counter field is replaced with
an ordinary Racket variable, and sleep is used to cede control to neighboring actors until an
appropriate wake-up event arrives, at which point the loop is resumed. The actor terminates
once the loop finishes, since it contains no other facets.

1 (spawn* #:name ’demo-sleep
2 (for [(counter (in-range 10))]
3 (printf "Sleeping tick ~v\n" counter)
4 (sleep 1.0)))

♦

An interesting aspect of the Timestate protocol is that its purpose is to adapt messages to asser-
tions. We will see the reverse case, adapting Syndicate assertions to messages sent over a non-
Syndicate communications mechanism, in the context of a simple chat server (section 11.1).

The examples in this section so far have taken the approach of using a driver to perform
blocking operations. An alternative, suitable for simple cases, is to make use of an implicit
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driver, that responds to interest in values yielded by Racket’s CML-style events (Reppy 1999;
Flatt and PLT 2010, version 6.2.1, section 11.2.1). The protocol is available at the (notional)
dataspace surrounding the ground dataspace; that is, actors inhabiting the ground dataspace
engage with the event driver via the cross-layer protocol (protocol 8.3).

Protocol 8.18 (CML-style I/O Events). Each of Racket’s CML-style events yields zero or more
values as its synchronization result when ready. For example, if sock is a Racket TCP server
socket handle, then (tcp-accept-evt sock) is an event yielding two values, an input port
and an output port, when ready. This protocol allows Syndicate/rkt programs to express
interest in such synchronisation results.

Schema. A single assertion, external-event, pairs an event with its synchronisation results:

(assertion-struct external-event (descriptor values))

The descriptor is the event, and the values are a list containing the synchronisation results
from the event.

Roles. The implicit, unique implementation of the Driver role exists just outside the ground
dataspace. The EventConsumer role exists at or within the ground dataspace, and interacts
with the Driver via the cross-layer protocol.

Conversations.

• Subscription (EventConsumer/Driver). Assertion of interest in (external-event e _) for
some particular Racket event value e signals the Driver that e should be added to its
collection of active events. Retraction of interest withdraws e from the same collection.

• Delivery (Driver/EventConsumer). Periodically, and whenever the ground dataspace as
a whole is idle, the system will block, waiting for one of the es in the collection of active
events to become ready. The first to do so, yielding a list of results r, leads to a message
(external-event e r) being broadcast.

Example 8.19 (Terminal I/O). The program in figure 57 demonstrates the usage of protocol 8.18.
Successive lines of text input appearing on standard input are, if they conform to the syntax
for Racket numeric values, interpreted as such and added to an accumulator. Each time the
accumulator changes, its new value is printed.

Line 2 requires the read-bytes-line-evt event constructor: when given an input port, the
constructor yields an event whose synchronization result is either an end-of-file object or a byte-
vector containing a single line’s worth of text input. Line 3 constructs a single constant event
that the program uses throughout. The field declaration on line 4 initializes the accumulator,
and line 5 ensures that each time the total field is written to, its updated value is printed. Line
6 prints a message when the program terminates.

Line 7 is the point where the program interacts with the Driver role of protocol 8.18. The
actor itself is running within the ground dataspace, but the driver is notionally one layer further
out. Therefore, the actor subscribes to messages using an inbound constructor to signify that
a cross-layer subscription should be established. Each time the event is selected and ready, it
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1 #lang syndicate
2 (require (only-in racket/port read-bytes-line-evt))

3 (define e (read-bytes-line-evt (current-input-port) ’any))

4 (spawn (field [total 0])
5 (begin/dataflow (printf "The total is ~a.\n" (total)))
6 (on-stop (printf "Goodbye!\n"))
7 (on (message (inbound (external-event e (list $input))))
8 (cond
9 [(eof-object? input) (stop-current-facet)]

10 [(string->number (bytes->string/utf-8 input)) =>
11 (lambda (n) (total (+ (total) n)))]
12 [else (void)])))

Figure 57: Terminal I/O “running total” program

yields either a line of text input or an end-of-file value, available as input in lines 8–12. On
end-of-file, the program terminates itself (triggering line 6 in the process). If the input text,
interpreted as UTF-8 text, can be converted to a number, that number is added to the current
value of the total field. Otherwise, the input is ignored. ♦

Multiple subscriptions to such events may exist in a single running ground dataspace, from
different drivers, actors, and protocols. Racket’s underlying synchronization mechanism en-
sures fair (pseudo-random) selection from the set of ready events in case more than one is
available at once.

Protocol 8.18 allows Syndicate/rkt programs to respond to Racket’s CML-inspired I/O
events. However, it is also possible to use Racket’s event mechanism to transmit observations
of the interior of a Syndicate/rkt program to other portions of a larger Racket program. For
example, a Racket thread may run a Syndicate ground dataspace alongside other Racket-
level threads. Within the dataspace, actors can respond to Syndicate events by sending non-
Syndicate messages to those other Racket threads. In this way, the programmer may embed
Syndicate/rkt subprograms within existing non-Syndicate code.

8.5 logic , deduction, databases , and elaboration

We have seen that the Syndicate/λ notion of during is reminiscent of logical implication. The
analogous Syndicate/rkt during construct is no different, and allows us to write Syndicate

actors that perform deductions based on the assertions in the dataspace, expressed in a quasi-
logical style. When relevant information is held elsewhere, such as an external SQL database,
or the file system, actors may retrieve information from the external source on demand, pre-
senting the results as assertions. In this way, multiple “proof strategies”, including procedu-
ral knowledge, integrate smoothly with ordinary forward- and backward-chaining reasoning
about assertions and demand for assertions.
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1 parent(john, douglas).
2 parent(bob, john).
3 parent(ebbon, bob).
4 ancestor(A, C) :- parent(A, C).
5 ancestor(A, B) :- parent(A, C), ancestor(C, B).

Figure 58: Datalog “ancestor” program.

1 (assertion-struct parent (who of))
2 (assertion-struct ancestor (who of))

3 (spawn (assert (parent ’john ’douglas)))
4 (spawn (assert (parent ’bob ’john)))
5 (spawn (assert (parent ’ebbon ’bob)))

6 (spawn (during (parent $A $C)
7 (assert (ancestor A C))
8 (during (ancestor C $B)
9 (assert (ancestor A B)))))

Figure 59: Forward-chaining Syndicate “ancestor” program.

8.5.1 Forward-chaining

Writing a Syndicate program frequently feels similar to writing a Datalog program. Consider
the “ancestor” Datalog predicate shown in figure 58. A Syndicate encoding of the predicate is
shown in figure 59. Lines 1–2 declare the relations involved, implicit in the Datalog equivalent.
Lines 3–5 assert ground terms describing a parent relation. Lines 6–9 define an ancestor relation
in a form strongly reminiscent of a proposition involving implication:

parent(A,C) =⇒ (ancestor(A,C)∧ (ancestor(C,B) =⇒ ancestor(A,B)))

Here, the program uses forward-chaining to prove all provable conclusions from the inputs
given. The program reacts to parent assertions (line 6), immediately concluding the conse-
quences of the base case of the inductive definition of ancestor (line 7; cf. figure 58 line 4) and
enabling an additional reaction (lines 8–9; cf. figure 58 line 5) embodying the inductive step of
the ancestor definition for a specific case. Line 8 reacts to assertion—interpreted as proof —of the
inductive hypothesis for the specific case at hand, the specific binding of the variable C, and
line 9 asserts a conclusion building upon that hypothesis.

8.5.2 Backward-chaining and Hewitt’s “Turing” Syllogism

Carl Hewitt’s paper describing PLANNER includes the following quote, which seems to anticipate
the dataspace model (Hewitt 1971):
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1 (assertion-struct human (who))
2 (assertion-struct fallible (who))

3 (spawn (assert (human ’turing)))

4 (spawn (during (observe (fallible $who))
5 (during (human who)
6 (assert (fallible who)))))

7 (spawn (during (fallible ’turing)
8 (on-start (printf "Turing: fallible\n"))
9 (on-stop (printf "Turing: infallible\n"))))

Figure 60: Hewitt’s “Turing” syllogism

ASSOCIATIVE MEMORY forms the basis for PLANNER’S data space which con-
sists of directed graphs with labeled arcs. [...] Assertions are stored in buckets by
their coordinates using the associative memory in order to provide efficient retrieval.

In the same paper, he offers a syllogistic proof of Turing’s fallibility, which can be expressed
in Syndicate as shown in figure 60. Where the example of figure 59 uses a forward-chaining
strategy, our implementation of Hewitt’s syllogism uses backwards-chaining. The key differ-
ence is the monitoring of interest in fallible assertions (line 4). When interest is detected,
it is interpreted as a goal, and a small facet (lines 5–6) using a forward-chaining strategy is
constructed to attempt to satisfy the goal.

8.5.3 External knowledge sources: The file-system driver

A particularly important external database for many applications is the file system provided
by the underlying operating system.

Protocol 8.20 (File system). Syndicate/rkt’s file system driver implements this protocol,
which tracks and publishes the contents of files and directories.

Module to activate. syndicate/drivers/filesystem

Schema. The protocol involves a single assertion,

(assertion-struct file-content (name reader-proc content))

Each file-content structure represents a claim about the contents of the file system path name.
When content is #f, the claim is that no file or directory exists at that path; otherwise, some
file or directory exists at that name, and content is the output of (reader-proc name).

Roles. The unique role of Driver is performed by the actor(s) started when a user program
activates the driver’s module. The role of FileObserver is performed by user code.
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Conversations.

• Observing (FileObserver/Driver). The FileObserver asserts interest in a file-content

assertion with a specific name string and specific reader-proc. The Driver will respond
with a file-content assertion reporting the state of the named file or directory in terms
of reader-proc’s result. Each time the operating system reports a change to the file at
name, the Driver re-executes (reader-proc name) and updates the assertion. Once interest
is withdrawn, the Driver retracts the assertion and releases the operating-system-level
resources associated with notifications about changes to the file.

This protocol is unusual in that it explicitly requires inclusion of a Racket procedure value in
a field of an assertion, depending indirectly on Racket’s primitive pointer-equality to compare
such values. The reason is the large number and great variety of operations for reading or
otherwise analyzing a file system resource. Supplying different reader-proc values allows the
programmer to specify the nature of the information about the file that is of interest.

Example 8.21 (Monitoring a file’s contents). Monitoring the actual contents of a file can be done
using file->bytes as reader-proc,

(on (asserted (file-content "novel.txt" file->bytes $bytes)) ...)

In the event-handling code, bytes contains the raw bytes making up the file, or #f if the file
does not exist or was deleted. ♦

Example 8.22 (Monitoring a directory’s entries). Monitoring the list of files in a directory can
be done with directory-list as read-proc,

(on (asserted (file-content "/tmp" directory-list $files)) ...)

The files variable contains a list of the names of the files in /tmp. Each time a file is added
or removed, the file-content assertion is replaced. If the directory is deleted, files becomes
#f. ♦

Example 8.23 (Detecting whether a file’s content has changed). Given a small utility procedure
file->sha1 (shown in figure 61) to use for read-proc, we may track a secure hash of the file’s
contents with the endpoint

(on (asserted (file-content "novel.txt" file->sha1 $hash)) ...)

As usual, hash is #f if the file is not present; otherwise, it is a string containing a hexadecimal
representation of the SHA-1 hash of the file’s content. The properties of such secure hashes
allow us to treat a changed hash as a change in the underlying file content, without having to
relay the entirety of the contents via the dataspace. ♦

Commodity operating systems offer only the simplest of change-notification systems, essen-
tially nothing more than a message signifying that something changed about a given path. This
is akin to the monolithic SCN events of the dataspace model, which place the burden of de-
termining the nature of a given change on the recipient of each event. The dataspace model’s
incremental patch SCN events convey the same information, but relieve actors of this burden.
Augmenting operating systems with more fine-grained notifications would help in the same
way, improving efficiency around reacting to changes in the file system.
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1 #lang syndicate
2 (require/activate syndicate/drivers/filesystem)
3 (require racket/string racket/system file/sha1)

4 (define (file->sha1 p) (call-with-input-file p sha1))

5 (spawn (during (observe (file-content $name _ _))
6 (unless (string-suffix? name ".c")
7 (define name.c (string-append name ".c"))
8 (on (asserted (file-content name.c file->sha1 $hash)) ;; nb. $hash, not _
9 (cond [(not hash) (printf "~a doesn’t exist.\n" name.c)]

10 [else
11 (printf "~a has changed hash to ~a, recompiling\n" name.c hash)
12 (system* (find-executable-path "cc") "-o" name name.c)])))))

13 (spawn (on (asserted (file-content "." directory-list $files))
14 (for [(name-path (in-list files))]
15 (match (path->string name-path)
16 [(pregexp #px"(.*)\\.c" (list _ name))
17 (assert! (observe (file-content name file-exists? #t)))]
18 [_ (void)]))))

Figure 61: Automatic “Make”-like compiler

8.5.4 Procedural knowledge and Elaboration: “Make”

The Unix program make (IEEE 2009, “Shell and Utilities” volume) is a venerable tool for sys-
tematically producing conclusions (target files) from premises (source files) by way of procedu-
ral knowledge (rules). We may similarly combine deduction with procedural knowledge in
Syndicate.

Example 8.24 (Make-like compiler). The program of figure 61 implements a pair of actors
which, together, use the file system driver (protocol 8.20) to track the “.c” files in the current
directory, compiling them to executables each time one changes.

The first actor (lines 5–12) interprets interest in a file named name to be a request that it
should be compiled from name.c, if that file exists. Each time name.c is created or changes (cf.
example 8.23), the actor shells out to cc(1) to compile the program.5 There are two notable
features of this portion of the program. The first is the use of unless on line 6 to conditionally
add endpoints to the facet of the during of line 5. When interest is expressed in some file,
we only attempt to build it from some corresponding C source file if the file of interest is not
already a C source file. In the case that name ends with “.c”, the facet created by the activation
of during on line 5 is terminated automatically since it lacks endpoints entirely. The second
interesting feature is the use of a binding, $hash, on line 8, where one might expect to see a

5 Use of a blocking call here is suboptimal: it indicates the need for a subprocess driver for starting, managing, and
terminating subprocesses.
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discard pattern, _. Recall that inst discards irrelevant structure from observed assertions during
projection of incoming patch events. Had we used discard in place of $hash, we would have
been declaring our lack of interest in such fine detail as the hash of the file being different, and
would instead react only to the file having a hash at all. By using $hash, we convey that we
care about specific values of hash, and thus that we should react every time the file’s content
changes.

The second actor (lines 13–18) monitors the files in the current directory. Every time it sees a
file whose name ends in “.c”, it strips that extension, and asserts interest in the existence of the
resulting base filename. A more robust program would be able to retract interest in case such
a file were erased (perhaps in turn leading to deletion of the corresponding build product);
however, this program contents itself with an ever-growing collection of filenames of interest.
It uses the ad-hoc assertion form, assert!, discussed in section 6.6. ♦

The form of the actor of lines 5–12 in figure 61 is essentially the same as that of lines 4–6 in
our implementation of Hewitt’s “Turing” syllogism (figure 60). This tells us that our “Make”-
like program is also taking a backtracking strategy to goal satisfaction. The difference here is
use of procedural knowledge as the local strategy for achieving some goal. In the “Make”-like
program, we know that invoking the C compiler will achieve our goal, while in the “Turing”
syllogism, the goal is an immediate logical consequence of the premise detected on line 5 of
figure 60.

The notion of an elaboration of a formalism captures the idea of its modification to take into
account new phenomena (McCarthy 1998). A simple example of this is the need to compute
additional or derived information about a domain entity. The “Make” example can be seen
as an instance of this, augmenting information about a source file with information about
its compiled form. Such augmentation is promoted to a design pattern and given the name
of Content Enrichment by Hohpe and Woolf (2004); the examples they present can be readily
adapted to the idioms introduced in this section.

8.5.5 Incremental truth-maintenance and Aggregation: All-pairs shortest paths

In their recent paper, Conway et al. (2012) present a short program which solves the all-pairs
shortest-paths problem, written in their distributed, Datalog-based language Bloom (Alvaro
et al. 2011). An analogous Syndicate/rkt program is shown in figure 62. Each link assertion
(lines 6–10) forms part of the program’s input, describing a weighted edge in a directed graph.
The program computes path assertions as it proceeds (lines 11–16), though these are an imple-
mentation detail; it is the min-cost assertions (lines 17–26) that are the outputs of the program.
Each min-cost assertion describes a path between two nodes in the input graph, along with
the computed minimum total cost for that path. As link edges are added and removed, the
program reacts, converging on a solution and quiescing once it is achieved.

The program demonstrates two important Syndicate idioms. The first is the ability for
programs expressed in this style to incrementally maintain outputs as inputs change. Altering
the set of asserted link records leads to a corresponding update to the set of asserted min-cost
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1 #lang syndicate

2 (require racket/set)

3 (assertion-struct link (from to cost))
4 (assertion-struct path (from to seen cost))
5 (assertion-struct min-cost (from to cost))

6 (spawn (assert (link 1 3 -2))
7 (assert (link 2 1 4))
8 (assert (link 2 3 3))
9 (assert (link 3 4 2))

10 (assert (link 4 2 -1)))

11 (spawn (during (link $from $to $cost)
12 (assert (path from to (set from to) cost))))

13 (spawn (during (link $A $B $link-cost)
14 (during (path B $C $seen $path-cost)
15 (assert #:when (not (set-member? seen A))
16 (path A C (set-add seen A) (+ link-cost path-cost))))))

17 (spawn (during (path $from $to _ _)
18 (field [costs (set)] [least +inf.0])
19 (assert (min-cost from to (least)))
20 (on (asserted (path from to _ $cost))
21 (costs (set-add (costs) cost))
22 (least (min (least) cost)))
23 (on (retracted (path from to _ $cost))
24 (define new-costs (set-remove (costs) cost))
25 (costs new-costs)
26 (least (for/fold [(least +inf.0)] [(x new-costs)] (min x least))))))

Figure 62: All-pairs shortest paths program. After Figure 1 of Conway et al. (2012), but modified with a
path-seen set to ensure termination on input cycles.
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records—though intermediate states become visible as the computation proceeds back toward
consistency.6

The second idiom is aggregation of a set of assertions into a single summary of the set; here,
this is seen in the actor of lines 17–26, which computes the minimum of a set of paths from A
to B. The aggregation operator here is thus “set minimum”. The pattern (path $from $to _ _)

of line 17 scopes each computation to a particular source/sink node pair. Within this context,
two fields are maintained: the first, costs, tracks all distinct path costs, while the second, least,
contains the smallest cost in (costs). As a new distinct cost appears (line 20), it is added to
the set, and least is efficiently updated. However, when a distinct cost disappears (line 23),
we must laboriously recompute least from an updated costs. A heap or ordered-set data
structure would eliminate this problem.

This idiom of maintaining an order statistic could be abstracted into a new streaming query
form, perhaps called define/query-min by analogy with the existing aggregate query forms
introduced in section 6.5. In fact, the Bloom program of Conway et al. makes use of a built-
in operator supporting a minimum-value calculation. Setting aside the explicit, non-library
implementation of computing the minimum, our program is comparable in length to the
Bloom program, showing that Bloom-like Datalog-style programming is achievable and use-
ful in Syndicate, though of course Syndicate does not yet extend to distributed systems. An
interesting question to examine is to what extent reasoning based on logical monotonicity, as
introduced in the Bloom “CALM theorem” (Alvaro et al. 2011), translates well to Syndicate.

8.5.6 Modal reasoning: Advertisement

Earlier work on Network Calculus (NC) (Garnock-Jones, Tobin-Hochstadt and Felleisen 2014)
included only a limited form of observable, replicated, shared state: the state of subscriptions to
messages within each dataspace. The dataspace model generalizes this to allow observation of
arbitrary shared assertions, and brings messages into the new setting by reinterpreting them as
transient knowledge. However, NC included two forms of subscription. The traditional notion
of “subscription” led to actors receiving messages produced by publishers, but a symmetric
notion of “advertisement” led to publishers receiving feedback from subscribers. The dataspace
model drops the idea of feedback, and with it the idea of a distinct publisher, leaving it to
domain-specific protocols to include such notions as appropriate. Examining NC programs
shows that the primary use of feedback and observation of “publisher” endpoints was to detect
whether messages of a certain type might potentially be produced in the near future. Absence of
a “publisher” was interpreted as meaning that there was no need to prepare to receive that
publisher’s communications; its presence, by contrast, suggested that it might begin speaking
soon. Syndicate and the dataspace model captures this idea with an advertisement protocol.

Protocol 8.25 (Advertisement). The advertisement protocol decouples synchronization of con-
versational context from subsequent conversational interaction.

Module to require. syndicate/protocol/advertise

6 We discuss options for eliminating interference from intermediate states in section 8.8.
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Schema. (assertion-struct advertise (claim))

An assertion of (advertise c) denotes the potential for future assertion of c itself, across
some unspecified timescale. Other protocols will incorporate this protocol, as seen earlier
in protocols 8.2 and 8.3. No particular obligations are placed on parties asserting advertise

records, other than the loose notion that they may eventually produce an assertion of the
underlying claim.

Advertisement allows us to explore an alternative factoring of protocol 8.5.

Protocol 8.26 (Mutable cell, with advertisement). In place of explicit command messages, we
will create and destroy Cell actors in response to presence or absence of advertisements of
potential update-cell messages and potential subscription to cell assertions.

Schema. As for protocol 8.5, omitting create-cell and delete-cell, and adding (advertise

(update-cell id _)) and (advertise (observe (cell id _))).

Roles. As for protocol 8.5.

Conversations. As for protocol 8.5, but replacing Creation and Deleting as follows:

• Creation (Writer/Reader/CellFactory). In response to one of the forms of advertisement
mentioned above, the CellFactory creates a new cell, initially with no value (and thus
publishing no cell assertion).

• Deleting (Writer/Reader/Cell). Each Cell monitors both forms of advertisement (specific
to its ID) mentioned above; once all advertisements have been retracted, it terminates
itself.

Example 8.27 (Mutable cell, with advertisement).

1 (spawn #:name ’cell-factory
2 (assertion-struct cell-existence-demanded (id))
3 (during (advertise (update-cell $id _)) (assert (cell-existence-demanded id)))
4 (during (advertise (observe (cell $id _))) (assert (cell-existence-demanded id)))
5 (during/spawn (cell-existence-demanded $id)
6 (field [has-value? #f] [value (void)])
7 (assert #:when (has-value?) (cell id (value)))
8 (on (message (update-cell id $new-value))
9 (has-value? #t)

10 (value new-value))))

Line 2 declares an implementation-local structure type representing an intermediate piece of
knowledge: that a cell with a particular ID should exist. Lines 3 and 4 deduce such facts from
the two forms of relevant advertisement.7 The consequences of a cell-existence-demanded

assertion are spelled out on lines 5–10. Line 5 means that each distinct ID demanded results
in a separate actor; once the demand for cell existence is retracted, by retraction of all corre-

7 In principle, we could imagine augmenting Syndicate’s pattern language with an “or” construct that implemented
this pattern automatically: (advertise (or (update-cell $id _) (observe (cell $id _)))). There is no funda-
mental obstacle to such a feature.
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sponding advertisement assertions, the actor is automatically terminated. Lines 6–10 follow the
implementation of our earlier mutable cell protocol closely. The main differences are a lack of a
stop-when clause reacting to delete-cell messages, replaced by the action of during/spawn on
line 5, and addition of the has-value? field, which accounts for the new protocol’s cells lacking
a value initially. Line 7 publishes a cell assertion only once a value is available. ♦

Syndicate/rkt’s support for UDP communication makes use of protocol 8.25 to signal that
the socket backing a request for service is ready.8

Protocol 8.28 (UDP sockets).

Module to activate. syndicate/drivers/udp

Schema. The core of the protocol is

(assertion-struct udp-packet (source destination body))

where body is a Racket byte-vector and source and destination are instances of

(assertion-struct udp-remote-address (host port)) or

(assertion-struct udp-listener (port))

A udp-packet must either have a udp-remote-address in its source field, and a udp-listener

in its destination field, or vice versa.

Roles. There are three roles: SocketFactory, which responds to demand for sockets; Socket,
which mediates between local actors and a Racket socket resource; and Client, a local actor
making use of UDP functionality.

Conversations.

• Listening (Client/SocketFactory/Socket). The Client chooses a port number port and
asserts interest in (udp-packet _ (udp-listener port) _).

In response, the SocketFactory begins performing a corresponding Socket role (e.g. by
delegating this responsibility to a new actor). The Socket asserts

(advertise (udp-packet _ (udp-listener port) _)),

which the Client may choose to observe to detect when the underlying UDP socket
resource is ready to forward inbound packets.

The Socket also expresses interest in (udp-packet (udp-listener port) _ _), in order
to receive packets intended to be relayed to remote parties; the Client may also make
decisions based on the presence of such interest. Once a Socket actor is established and
ready, Reading and Writing conversations take place.

8 This description covers only UDP listener sockets. Much other functionality including UDP multicast is available in
the implementation.
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• Reading (Client/Socket). When the underlying UDP socket receives a datagram from
peer-host at peer-port with a certain body, it sends a

(udp-packet (udp-remote-address peer-host peer-port) (udp-listener port) body)

message. The Client, having previously declared interest in such messages, receives it.

• Writing (Client/Socket) The Client may send a

(udp-packet (udp-listener port) (udp-remote-address peer-host peer-port) body)

to deliver body to any peer-host and peer-port. The Socket will receive it and relay it
via the Racket socket resource.

• Closing (Client/Socket) The Client may withdraw its interest in inbound udp-packets.
The Socket detects this, closes the underlying UDP socket resource, and terminates,
thus withdrawing its advertisement of readiness and its interest in outbound packets.

Example 8.29 (UDP echo program). The following actor listens for packets on port 5999, echo-
ing each back to its sender as it is received; as soon as it knows packets may be forwarded to
it, it prints a message saying so.

1 (spawn (on (message (udp-packet $peer (udp-listener 5999) $body))
2 (send! (udp-packet (udp-listener 5999) peer body)))
3 (on (asserted (advertise (udp-packet _ (udp-listener 5999) _)))
4 (printf "Socket is ready and will forward datagrams.\n")))

♦

The UDP socket protocol was designed originally for our implementation of Network Cal-
culus, which explains its awkward use of advertisement in place of a more straightforward
udp-socket-ready assertion or similar. While the protocol of interest (protocol 8.2) is essen-
tial to the dataspace model, the protocol of advertisement appears to have much more limited
applicability.

Despite this limited applicability, the general interpretation of the protocol remains of interest.
Taking (advertise c) to mean “eventually c” or “possibly c” suggests a connection with the
modal logic � operator (Manna and Pnueli 1991; van Ditmarsch, van der Hoek and Kooi 2017).
We have seen that (during P (assert E)) reads as P =⇒ E; perhaps it is, in truth, closer to
some interpretation of �(P =⇒ E). It remains future work to explore this connection further.

Finally, while advertisement has limited use within domain-specific protocols, it is of great
benefit in the setting of publish/subscribe middleware, where it is used to optimize message
routing overlays (Carzaniga, Rosenblum and Wolf 2000; Pietzuch and Bacon 2002; Jayaram
and Eugster 2011; Martins and Duarte 2010; Eugster et al. 2003). Automatic, conservative
overapproximation of the assertions an actor may produce could lead to efficiency gains in
Syndicate implementations, which may become particularly useful in any attempt to scale the
design to distributed systems.
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1 (assertion-struct service-ready (name))

2 (spawn (assert (service-ready ’file-systems)) ...)

3 (spawn (stop-when (asserted (service-ready ’file-systems))
4 (react (assert (service-ready ’database-service)) ...)))

5 (spawn (stop-when (asserted (service-ready ’file-systems))
6 (react (assert (service-ready ’logging-service)) ...)))

7 (spawn (stop-when (asserted (service-ready ’database-service))
8 (react (stop-when (asserted (service-ready ’logging-service))
9 (react (assert (service-ready ’web-application-server))

10 ...)))))

Figure 63: Service dependency resolution

8.6 dependency resolution and lazy startup : service presence

Unix systems start up their system service programs in an order which guarantees that the
dependencies of each program are all ready before that program is started.9 Many current Unix
distributions manually schedule the system startup process. Because it is a complex process,
such manually-arranged boot sequences tend to be strictly sequential. Other distributions are
starting to use tools like make both to automatically compute a suitable startup ordering and to
automatically parallelize system startup.

With Syndicate, we can both ensure correct ordering and automatically parallelize system
startup where possible, by taking advantage of service presence information (Konieczny et al.
2009). Programs offer their services via endpoints; clients of these services interpret the pres-
ence of these endpoints as service availability and react, offering up their own services in turn
when a service they depend upon becomes available.

Service availability must, at some level, be expressed in a concrete style, with endpoints in-
teracting with their environment in terms of the actual messages of the protocols supported by
the service. However, availability may also be expressed at a more abstract level. Consumers of
a service may detect service presence by directly observing the presence of endpoints engaging
in a protocol of interest, or by observing the presence of assertions describing the service more
abstractly. The former corresponds to a kind of structural presence indicator, while the latter
corresponds to a form of nominal service presence.

For example, a web application server may depend on a SQL database service as well as on
the system logging service, which may in turn depend on the machine’s file systems all being
mounted. Figure 63 sketches a Syndicate realization of these service dependencies, with the
actual implementations of each service replaced by ellipses. We may arbitrarily reorder the
services in the file without changing the order in which they become available. The startup

9 At least, this is the ideal.
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1 (define-syntax await-services
2 (syntax-rules ()
3 [(_ [] body ...)
4 (begin body ...)]
5 [(_ [service more ...] body ...)
6 (stop-when (asserted (service-ready service))
7 (react (await-services [more ...] body ...)))]))

8 (define-syntax spawn-service
9 (syntax-rules (<-)

10 [(_ target <- [service ...] body ...)
11 (spawn (await-services [service ...]
12 (assert (service-ready target))))]))

13 (spawn-service ’file-systems <- [] ...)
14 (spawn-service ’database-service <- [’file-systems] ...)
15 (spawn-service ’logging-service <- [’file-systems] ...)
16 (spawn-service ’web-application-server <- [’database-service
17 ’logging-service]
18 ...)

Figure 64: Macros abstracting away details of the service dependency pattern.

procedures of the services in the sketch pause until they see the names of their dependencies
asserted. An alternative would be to wait for assertions of interest in service requests to appear;
concretely, the web application could wait until (asserted (observe (log-message ...)))

rather than waiting for (asserted ’logging-service-ready).

Examination of the sketch of figure 63 reveals a design pattern. Service actors start in a state
awaiting their first dependency. When it appears, they transition to a state awaiting their second
dependency; and so on, until all their dependencies are available, at which point the service
configures its own offerings and asserts its own availability. A pair of simple macros allows us
to abstract over this pattern; figure 64 shows an example. Having recognized and abstracted
away details of this pattern, we may take further steps, such as to rearrange the implementation
of the await-services macro to express interest in all dependencies at once rather than in one
at a time.

The notion of service dependency can be readily extended to start services only when some
demand for them exists. A service factory actor might observe (observe (service-ready x)),
arranging for the program implementing service x to be run when such an interest appears
in the dataspace. The protocol may also be enriched to allow a service to declare that it must
run before some other service is started, rather than after. The combination of such forward
and reverse dependencies, along with milestones such as “network configuration complete”
masquerading as abstract services, yields a self-configuring system startup facility rivaling
those available in many modern Unix distributions.
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The notion of service startup applies not only at the level of a whole operating system, but
also within specific applications in an arbitrarily fine-grained way. For example, a web server
that depends on a database might wish to only start accepting TCP connections once (a) the
database server itself is available, (b) a connection to the database server is established, and (c)
the schema and contents of the database have been initialized.

8.7 transactions : rpc , streams , memoization

As we have discussed as far back as chapter 2, certain assertions serve as framing knowledge in
a protocol, identifying and delimiting sub-conversations within an overarching interaction. Of-
ten, framing knowledge can be seen as statement of a goal; subsequent actions and interactions
are then steps taken toward satisfaction of the goal. Establishment of a conversational frame
is similar to establishment of a transaction boundary, and indeed various forms of transaction
manifest themselves in Syndicate as conversational frames.

The simplest possible transaction is a one-way message. The message entails establishment
and tear-down of a transactional context that lasts just long enough to process the message.
Beyond this point, a vast design space opens up. Here we consider a few points in this space.

rpc . The simplest form of transaction involving feedback from recipient to sender is re-
quest/response. Such transactions allow us to encode remote procedure call (RPC); that is, function
calls across Syndicate dataspaces.

Example 8.30 (RPC, message/message). At its simplest, a request message establishes context
for the call at the same time as making a specific request, and a corresponding response mes-
sage signals both completion of the request and discarding of the request’s context.

1 (message-struct request (body))
2 (message-struct reply (body))
3 (spawn (on (message (request ‘(square ,$x)))
4 (send! ‘(square-of ,x is ,(* x x)))))

Here, we know that computation of a square is idempotent, and so we may omit distinct request-
identifiers. If the invoked action were non-idempotent, clients would have to allocate dataspace-
unique request IDs, using them to tell otherwise-identical-seeming instances of the protocol
apart. Similarly, here we see that the argument x can be used to correlate a response with a
request, so that answers to simultaneous requests for ‘(square 3) and ‘(square 4) do not get
mixed up. In cases where simple echoing of arguments does not suffice to correlate a response
with its request, explicit correlation information should be supplied in a request and included
in the response. ♦

Example 8.31 (RPC, interest/assertion). We may take a more relational approach to RPC by
observing that a (pure) function is a relation between its argument and result. Interest in a
subset of the elements of the relation can serve to establish the necessary context; assertion of
the specific element produced by the function supplies the response; and retraction of interest
signals the end of the conversation. In cases where requests are non-idempotent, and thus
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must be distinguished by some request ID, we may use a reply message instead of an assertion,
since there is no risk of confusion in this case. Use of a reply message with idempotent request
assertions would be an error, however: the dataspace model collapses multiple simultaneous
assertions of the same request, risking a situation where a client is not supplied with an answer
to its request.

1 (assertion-struct function (argument result))
2 (spawn (during (observe (function ‘(square ,$x) _))
3 (assert (function ‘(square ,x) (* x x)))))

♦

Example 8.32 (RPC, interest/assertion/error). Error handling may be incorporated into our
RPC protocols via sum types, as is traditional for pure functional languages. Alternatively,
we may introduce a nested conversational context within which it is known to the requestor that
processing of the request is ongoing. Closure of that nested context prior to assertion of a
reply indicates abnormal termination. We may press protocol 8.25 into service as a convenient
expression of this nested context, asserting our intention to eventually answer the request.

1 (spawn #:name ’division-server
2 (during/spawn (observe (function ‘(divide ,$n ,$d) _))
3 (assert (advertise (function ‘(divide ,n ,d) _)))
4 (on-start (flush!)
5 (react (assert (function ‘(divide ,n ,d) (/ n d)))))))

On line 3, the service asserts its intention to reply.10 The flush! call of line 4 is necessary
to ensure that the patch SCN action resulting from line 3 reaches the dataspace safely before
computation of the function begins.11 Line 5 computes and publishes the answer. Once interest
is retracted, the semantics of during/spawn ensures that the actor created for the specific request
is terminated along with all its state and resources.

Naturally, a request entailing a division by zero causes a Racket exception to be signaled on
line 5, terminating the request’s actor (but not the service overall). We may take advantage
of the careful separation of the advertisement of line 3 from the response of line 5 in order to
make a positive statement of failure; a positive statement of an inference drawn from a lack of
information:

1 (assertion-struct failed (argument))
2 (spawn #:name ’failure-detector
3 (during/spawn (observe (function $req _))
4 (on (retracted (advertise (function req _)))
5 (react (assert (failed req))))))

10 An interesting generalization of this idea is to replace a simple advertise with a protocol for progress reporting; the
service can then keep the client informed as a perhaps-complex request proceeds toward completion. This makes
an RPC-like request into a kind of stream, discussed below.

11 An alternative to this use of flush! would be to use the responsibility transfer mechanism of the initial assertion set
that is included with each actor-spawn action of the dataspace model, as discussed at the end of section 4.2. The
division-server’s during/spawn would arrange for each spawned actor to be created already asserting its advertise

record. That way, there would be zero risk of either a crash before the assertion of the advertise record, or
accidentally beginning computation of the result before the advertise had safely made its way to the dataspace.
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Every time a not-previously-asserted declaration of interest in a function result appears, an
actor is spawned to monitor the situation (line 3). The during/spawn terminates the monitor as
soon as interest in the function result is retracted. If a result—assertion of a function record—is
transmitted, and the protocol is followed, the service maintains its assertion of advertisement
until after our monitoring actor has terminated. However, if the service crashes before asserting
its result, its advertise assertion is withdrawn, triggering lines 4 and 5 to report to interested
parties that the overall request failed. Clients, then, pay attention to failed assertions, rather
than observing retraction of the advertisement directly:

1 (spawn (define req ‘(divide 1 0))
2 (stop-when (asserted (failed req))
3 (printf "No answer was supplied!\n"))
4 (stop-when (asserted (function req $answer))
5 (printf "The answer is: ~a\n" answer)))

The endpoint of line 4 demands the answer to our division problem, triggering a computa-
tion in the division server. The endpoint of lines 2–3 causes the client to respond to failure
assertions, should any appear. Alternatively, a normal answer from the server triggers the
endpoint of lines 4–5. ♦

Recall the “eager” answer-production of the forward-chaining strategy of section 8.5.1 and
the “lazy” nature of the backward-chaining strategy of section 8.5.2. Each example of RPC we
have explored here combines procedural knowledge (section 8.5.4) with a lazy answer-production
strategy. However, the decoupling of control from information flow that the dataspace model
offers allows us to employ an eager strategy on a case-by-case basis, without altering any client
code or protocol details. We may go further, offering memoization of computed results without
altering callers.

Example 8.33 (RPC, automatic memoization). Here, a cache actor notices interest in answers to
a request req, and “asks the same question” itself. This strategy exploits the way the dataspace
model collapses identical assertions to maintain interest in answers to req for a certain length
of time, presumably exceeding the duration of interest expressed by the original client.

1 (spawn (on (asserted (observe (function $req _)))
2 (react (assert (observe (function req _)))
3 (stop-when (retracted (advertise (function req _))))
4 (stop-when-timeout 750))))

Because interest in a given answer is maintained without interruption, the service only per-
forms its computation once. ♦

An alternative implementation of memoization might listen in on the answer from the ser-
vice and take on responsibility for asserting that answer on its own. Then it may optionally
coordinate with the server to relieve it of the burden of redundantly asserting the answer for the
life time of the cache entry. By coordinating among different entries within a memoizing cache
actor, making the life time of a cache entry depend on the life time of previously-demanded
entries, we may achieve the effect of dynamic programming.
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Finally, in a situation where one function-like service depends on another, we may wish
to short-circuit the analogue of tail calls. Where request/reply correlation is done using the
structure of the request, this can be difficult to achieve, but where explicit, arbitrary correlation
identifiers exist distinct from request descriptions, an intermediary can reuse the identity of
the request that triggered it, effectively forwarding the request to another service.

streams . Moving beyond a single request and single response toward more long-lived
transactions takes us toward streams. A stream is a conversational frame involving multiple
interactions in either or both directions. Examples include the protocols Syndicate/rkt ex-
poses as part of its TCP/IP socket, HTTP server, WebSocket, and IRC client drivers. We will
examine these in more detail as part of our evaluation in chapter 9, focusing here on the exam-
ple of the IRC driver protocol as it appears to clients.

Protocol 8.34 (IRC client connection). Syndicate/rkt may interact across the network via the
IRC protocol (Oikarinen and Reed 1993; Kalt 2000), exposed by Syndicate/rkt’s IRC client
driver.

Module to activate. syndicate/drivers/irc

Schema. The IRC protocol allows participants to connect to a server and then to join zero or
more separate named chat rooms, each known as a channel. Each connection is identified at
the server by a server-unique nickname. A connection to an IRC server is represented by an
irc-connection record,

(assertion-struct irc-connection (host port nick))

where host and port identify the server to connect to, and nick the nickname to associate
with the connection.12 The nicknames of connected users in a given channel are conveyed via
irc-presence assertions,

(assertion-struct irc-presence (conn nick channel))

where conn is an irc-connection record, and nick and channel both strings. Messages from
a given channel on the server appear as irc-inbound messages,

(message-struct irc-inbound (conn nick target body))

where conn is an irc-connection record, body is the message text, and nick and target identify
the speaker and the channel, respectively. Messages traveling in the other direction, from the
program to a given server channel, appear as irc-outbound messages,

(message-struct irc-outbound (conn target body))

with conn having its usual meaning, body being the message text, and target identifying the
channel to which the IRC message should be directed.
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Roles. The unique ConnectionFactory creates a Connection in response to user requests. In turn,
each Connection interacts with a User.

Conversations.

• Connecting (User/ConnectionFactory). The User asserts an irc-connection record into
the dataspace; the ConnectionFactory reacts to its appearance by creating a Connec-
tion. Alternatively, the User may simply assert interest in irc-inbound messages: the
ConnectionFactory notices this, and asserts the irc-connection record carried in the
irc-inbound subscription, thereby triggering the Connecting conversation automatically.

• Joining (User/Connection). The User asserts interest in irc-inbound messages for a
specific, previously established connection and a specific channel name. In response,
the Connection sends appropriate JOIN messages to the remote server. The Connec-
tion also commits to maintaining a local record of channel membership in terms of
irc-presence assertions as the IRC server sends an initial bulk list of fellow channel
members and subsequent incremental updates to this list. As a consequence, the User
may use the irc-presence record indicating its own presence in the channel as an indica-
tion that the channel join operation is complete. When interest in irc-inbound messages
is retracted, the Connection sends appropriate PART messages and retracts the channel-
specific irc-presence assertions it has been maintaining.

• Speaking (User/Connection). The User sends irc-outbound messages, which the Connec-
tion relays on to the IRC server.

• Listening (User/Connection). Within the context of a joined channel, utterances from
channel members are delivered by the Connection as irc-inbound messages to all listen-
ing Users.

Example 8.35 (IRC bot). Figure 65 shows a simple “bot” program which connects to the Freen-
ode IRC network with nickname syndicatebot, joins channel ##syndicatelang, and greets
those in the channel as it joins. The driver notices the subscription of line 5, asserting C, the
irc-connection record, in response. This triggers the actual creation of the connection. The
endpoint of lines 5–8 reacts to incoming chat messages. The endpoint of lines 9–10 sends a
greeting to the members of the channel once the connection has completed joining the channel.
Finally, lines 11–13 react to changes in channel membership, including the connection’s own
membership and the members present at the time of channel join, by printing messages. ♦

In this example, the conversational context of membership in a particular IRC channel delim-
its two streams of messages. One of the two is the stream of irc-inbound messages from channel
members; the other is the stream of irc-outbound messages from the local User to peers in the
channel. The two streams interact: each irc-outbound message is reflected as an irc-inbound

message, meaning that a connection “hears its own speech”. Finally, these channel-specific
streams are in fact nested streams (nested transactions) within the larger conversational context

12 The library is a drastically simplified prototype, not even supporting nick changes during a connection.
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1 (define NICK "syndicatebot")
2 (define CHAN "##syndicatelang")
3 (define C (irc-connection "irc.freenode.net" 6667 NICK))

4 (spawn #:name ’irc-connection-example

5 (on (message (irc-inbound C $who CHAN $body))
6 (printf "~a says: ~a\n" who body)
7 (when (not (equal? who NICK))
8 (send! (irc-outbound C CHAN (format "Hey, ~a said ’~a’" who body)))))

9 (on (asserted (irc-presence C NICK CHAN))
10 (send! (irc-outbound C CHAN "Hello, everybody!")))

11 (during (irc-presence C $who CHAN)
12 (on-start (printf "~a joins ~a\n" who CHAN))
13 (on-stop (printf "~a leaves ~a\n" who CHAN))))

Figure 65: IRC bot

of the connection to the IRC server as a whole. Channel-specific sub-conversations come and
go within a connection’s context, interleaving arbitrarily.

acknowledgement and flow control . Within a single stream, it may be important
to manage the sizes of various buffers. Assertions describing the amount of free available
buffer space at a recipient act as windowed flow control. Assertions describing successfully-
received messages act as acknowledgements. The former allow management of receive buffer
space; the latter, management of send (retransmission) buffer space. Acknowledgements effec-
tively “garbage-collect” slots in a sender’s retransmission buffer. These ideas can be used to
model TCP/IP-like sliding-window “reliable-delivery” transport protocols.

Waiting

−REQ/− X �� +REQ/+ X

Transmitting

↓ +ACK/− X

Complete

Figure 66: Flow control and
acknowledgement

Consider the case of a single piece of information, to be
transmitted from a sender to a receiver. In order to make ef-
fective use of bandwidth or other scarce resources, the sender
might want to wait until the receiver is ready to listen before
producing a message for its consumption. Likewise, if the
medium or some relay in the communication path is unreli-
able, or if the receiver itself might fail at any time, the sender
will keep trying to transfer until receipt (and/or processing)
is confirmed.

Figure 66 depicts the lifecycle of the process from the
sender’s perspective. Starting in “Waiting” state, the sender
learns that the receiver has REQuested the item, transitioning

to “Transmitting” state and asserting the item X itself. If the receiver crashes or changes its
mind, the REQuest is withdrawn, and the sender transitions back to “Waiting”, retracting X.
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If the receiver ACKnowledges the item, however, the sender transitions to state “Complete”,
retracting X and continuing about its business. By using assertions instead of messages, the
Syndicate programmer has delegated to the dataspace the messy business of retries, timeouts
and so forth, and can concentrate on the epistemic properties of the logic of the transfer itself.

Example 8.36 (Acknowledgement and flow control). In simple cases, the fact of an interest in
a given assertion can be an implicature that the time is right to produce and to communicate
it. As we saw above in cases such as example 8.31, when no explicit, positive indication of
receipt is required, retraction of interest can serve as acknowledgement of receipt. However,
this conflates an indication that the receiver has reneged on its previously-declared interest
with an indication of successful delivery. When acknowledgement is important, we must make
it explicit and separate from assertions of readiness to receive.

1 (assertion-struct envelope (payload))
2 (assertion-struct acknowledgement (payload))
3 ... (react/suspend (k)
4 (during (observe (envelope _))
5 (define item (compute-item))
6 (assert (envelope item))
7 (on (asserted (acknowledgement item)) (k)))) ...

On line 3, we enter the “Waiting” state of figure 66. Interest in our envelope assertion (line
4) constitutes a REQ signal from a recipient; a subfacet is created representing occupancy of
the “Transmitting” state. The subfacet computes the item to transfer (line 5), asserts it (line 6)
and awaits explicit, positive acknowledgement of receipt (line 7). Once acknowledgement is
received, the call to k serves to terminate the facet opened on line 3, finishing at “Complete”
state and releasing the continuation of the react/suspend form. Otherwise, if the (observe

(envelope _)) assertion is retracted before acknowledgement is received, the corresponding
subfacet is destroyed and we return to “Waiting” state. ♦

8.8 dataflow and reactive programming

Manna and Pnueli define a reactive program very generally as follows:

A reactive program is a program whose role is to maintain an ongoing interac-
tion with its environment rather than to compute some final value on termina-
tion. (Manna and Pnueli 1991)

This contrasts with the slightly more restrictive definition of Bainomugisha et al., who define
reactive programming as “a programming paradigm that is built around the notion of continu-
ous time-varying values and propagation of change” (Bainomugisha et al. 2013) that is in turn
based on synchronous dataflow (Lee and Messerschmitt 1987). The dataspace model is clearly
reactive in sense of Manna and Pnueli, and while it does not quite satisfy the “distinguishing
features” of reactive languages given by Bainomugisha et al., it does enjoy similar strengths
and suffer similar weaknesses to many of the reactive languages they describe.

Maintenance of a connection between a representation of a temperature in degrees Fahrenheit
and in degrees Celsius is a classic challenge problem for dataflow languages (Ingalls et al.
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1 (assertion-struct temperature (unit value))
2 (message-struct set-temperature (unit value))

3 (spawn #:name ’track-celsius
4 (field [temp 0])
5 (assert (temperature ’C (temp)))
6 (on (message (set-temperature ’C $new-temp))
7 (temp new-temp))
8 (on (asserted (temperature ’F $other-temp))
9 (temp (* (- other-temp 32) 5/9))))

10 (spawn #:name ’track-fahrenheit
11 (field [temp 32])
12 (assert (temperature ’F (temp)))
13 (on (message (set-temperature ’F $new-temp))
14 (temp new-temp))
15 (on (asserted (temperature ’C $other-temp))
16 (temp (+ (* other-temp 9/5) 32))))

Figure 67: Maintaining synchrony between two temperature scales

1988; Bainomugisha et al. 2013). The problem is to internally maintain a temperature value,
presenting it to the user in both temperature scales and allowing the user to modify the value
in terms of either temperature scale.13 Figure 67 shows a Syndicate/rkt implementation of
the problem. An actor exists for each of the two temperature scales, maintaining an appropriate
assertion and responding to set-temperature messages by performing necessary conversions
before updating internal state. Temperature displays (not shown) may monitor the temperature

assertions maintained by each actor, and user interface controls allowing temperature update
should issue set-temperature messages with appropriate unit and value fields.

Each of the two actors shown acts as a unidirectional propagator of changes. The difference
between temperature assertions and set-temperature command messages suffices to rule out
confusion: a set-temperature message is always the cause of a change to the temperature,
while an update to a temperature assertion is never the cause of a change; rather, it simply
reflects some previous change. As Radul (2009) observes, “multidirectional constraints are
very easy to express in terms of unidirectional propagators”, and indeed the combination of the
two actors ensures a bidirectional connection between the Fahrenheit and Celsius temperature

assertions. However, we must ask whether we have truly entered into the spirit of the problem:
by allowing the Celsius actor to interpret events expressed in Fahrenheit, and vice versa, our
solution lacks the modularity and extensibility of the multidirectional solutions available in
true dataflow languages.

Figure 68 addresses the problem, separating the equations relating the Celsius and Fahren-
heit representations from the actors maintaining the representations. Each time some distinct
assertion of temperature appears, a set-temperature message is sent. Even though it seems

13 The specific presentation of this section is inspired by that of Ingalls et al. (1988).
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1 (spawn #:name ’track-celsius
2 (field [temp 0])
3 (assert (temperature ’C (temp)))
4 (on (message (set-temperature ’C $new-temp)) (temp new-temp)))

5 (spawn #:name ’track-fahrenheit
6 (field [temp 32])
7 (assert (temperature ’F (temp)))
8 (on (message (set-temperature ’F $new-temp)) (temp new-temp)))

9 (spawn #:name ’convert-C-to-F
10 (on (asserted (temperature ’C $other-temp))
11 (send! (set-temperature ’F (+ (* other-temp 9/5) 32)))))

12 (spawn #:name ’convert-F-to-C
13 (on (asserted (temperature ’F $other-temp))
14 (send! (set-temperature ’C (* (- other-temp 32) 5/9)))))

Figure 68: Modular synchronization between two temperature scales

like this may lead to unbounded chains of updates, activity will eventually quiesce because the
two equations are inverses. After a time, the interpretation of a set-temperature message will
lead to no observable change in a corresponding temperature assertion.

While our solutions thus far enjoy multidirectionality, they exhibit observable glitching (Bain-
omugisha et al. 2013). For example, just after a set-temperature message expressed in degrees
Celsius has been interpreted, a moment in the stream of events exists when the corresponding
Celsius temperature assertion has been updated but the Fahrenheit assertion has not yet in-
corporated the change. In general, any computation that depends on events traveling through
the dataspace to peers (and perhaps back again) involves unavoidable latency, which may man-
ifest as a form of glitching in some protocols. One approach to resolution of the problem
is to bring the mutually-dependent stateful entities into the same location; that is, publish
both Celsius and Fahrenheit from a single actor. If we do so, we may use any number of off-
the-shelf techniques for avoiding glitching, including reactive DSLs such as FrTime (Cooper
and Krishnamurthi 2006). However, this approach shuffles the problem under the rug, as the
domain-specific assertion protocol no longer embodies a dataflow system in any meaningful
sense. An alternative approach is to extend the assertions in our protocol with provenance infor-
mation (a.k.a “version” information or tracking of causality) to form a more complete picture
of transient states in a system’s evolution (Radul 2009; Shapiro et al. 2011). That way, while the
assertions themselves are able to (and do) represent not-yet-consistent intermediate states, un-
der interpretation the incomplete states are ignored. Provenance information allows us to reason
epistemically about flows of information in our protocols.





Part IV

R E F L E C T I O N





Overview

Every design demands evaluation. For a language design, this takes the form of the investi-
gation of properties such as well-definedness, usefulness, and performance. While the formal
models of Syndicate include basic theorems that characterize evaluation in Syndicate/λ, this
part presents an evaluation of the practical aspects of the design.

To begin, chapter 9 examines the usefulness of Syndicate, presenting a qualitative evaluation
of the design in terms of its effect on patterns in program texts.

Performance is the focus of chapter 10, which develops a Syndicate-specific performance
model. Programmers can rely on this model in the design and evaluation of their programs
and in the understanding of the programs of others.

Chapter 11 places Syndicate within the concurrency design landscape introduced in chap-
ter 3, analyzing it in terms of the criteria developed in section 3.1.

Finally, chapter 12 reflects on the thesis of this dissertation and outlines a handful of promis-
ing directions for future work.





9
Evaluation: Patterns

A programming language is low level when its programs require attention to the
irrelevant.

—Alan J. Perlis (1982)

The evaluation of programming models and language designs is a thorny topic. Where a de-
sign has been realized into a full language, and where mature implementations of that language
exist, we may examine quantitative attributes such as performance on a suite of benchmarks.
Where many large programs written in a language exist, we may plausibly look into quantita-
tive attributes such as error rates or programmer productivity. However, programming models
are mathematical constructs, and novel language designs are abstract. Quantitative measures
are inappropriate.

We are left with the investigation of qualitative attributes of our models and designs. A key
quality is the extent to which a model or design eliminates or simplifies patterns in program
texts, because other attributes improve as a consequence. In evaluating Syndicate through the
lens of design and programming patterns, I aim to show that the design is effective in concisely
achieving the effects of several such patterns.

9.1 patterns

I use the term “pattern” to cover two related concepts. The first is the idea of a programming
pattern in the sense discussed by Felleisen in his work on expressiveness (Felleisen 1991), syn-
onymous with an encoding of an otherwise-inexpressible concept. The second is the idea of
a design pattern from the object-oriented programming literature (Beck and Cunningham 1987;
Gamma et al. 1994). That is, a “pattern” appears in a text not only when a specific design
pattern is mentioned, but also in any situation in which an encoding is applied.

An encoding is a precise, potentially-automatable program transformation for representing
some linguistic feature that cannot be expressed directly. An example of an encoding is store
passing in a functional language to achieve the effect of mutable state. The precision of an
encoding makes it possible to develop tooling or language extensions to assist the programmer
in working with it. Seen from another angle, however, this same precision makes working
with an encoding by hand an exercise in “boilerplate” programming. For example, a program
with a manual implementation of store passing has entirely routine and predictable placement
and usage of the variable representing the store. Errors frequently arise in such programs.
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Approaches to automation such as macros, code generation, and monadic style help reduce this
boilerplate and rule out errors, but cannot usually ensure complete adherence to the abstraction
the encoding represents. For example, a monadic state library hides the explicit store from the
program text, but unless a type system rich enough to enforce the necessary invariants is
available, it remains possible for the programmer to misapply the library and throw into doubt
the guarantees offered by the abstraction. In other words, encodings generally yield leaky
abstractions.

The notion of a design pattern originated in architecture (Alexander et al. 1977), but has been
successfully transplanted to object-oriented programming (Beck and Cunningham 1987) and
can also be applied to other programming paradigms such as asynchronous messaging (Hohpe
and Woolf 2004; Hohpe 2017). A design pattern, in an object-oriented context, “names, ab-
stracts, and identifies the key aspects of a common design structure that make it useful for
creating a reusable object-oriented design” (Gamma et al. 1994). Unlike an encoding, a design
pattern is often not precise enough to be captured as either a library implementation or a lan-
guage feature, but like an encoding, its manual expression often involves boilerplate code and
the problems that go with it. The lack of precision often makes it difficult to provide tooling
for working with design patterns per se.

9.2 eliminating and simplifying patterns

In order to see what it might mean for a pattern to be eliminated or simplified, we must first
understand how patterns manifest in programs. Broadly speaking, a pattern is characterized
by realization of a program organization goal in terms of some mechanism, which frequently
involves boilerplate code. We see recursive use of patterns: implementation of the mechanism
for achieving some goal entails organizational requirements of its own, which in turn demand
satisfaction by some means. This can lead to towers of patterns. A pattern is eliminated by
a programming model or language feature if it is provided directly or made unnecessary. A
pattern can be simplified in two ways: in the case that its implementation depends on a tower
of patterns, some supporting layer of that tower can be eliminated; or its implementation may
be made more obvious by some part of the model or language feature.

For example, consider the task of maintaining a consistent graphical view on a list of items
as items are added to and removed from the list. Our ultimate goal is the synchronization of state
between the state of the on-screen view and the state of the underlying list. We might choose to
use the observer pattern to accomplish our synchronization task by processing signals from the
list as it changes. In turn, the observer pattern might be implemented using callbacks, which
ultimately depend on function calls. In the early days of computing, “function call” was a design
pattern. It has since been eliminated from most programming languages; this has simplified not
only the implementation of callbacks, but also the observer pattern and our original goal of
state synchronization. Adding language-level support for the observer pattern to the language,
as languages like C] have begun to explore, eliminates the need for callbacks in our pattern
tower, simplifying the expression of our goal.
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As another example, the addition of support for the actor model to a language makes obso-
lete many uses of shared memory for communication among components. In this sense, the
pattern of a shared store has been eliminated not by being provided directly, but by being made
irrelevant by a shift in perspective to a new way of thinking.

Turning our attention to design patterns in the sense of Gamma et al. per se, Norvig offers
three “levels of implementation” for patterns: “informal”, “formal” and “invisible” (Norvig
1996). An “informal” implementation of a pattern is expressed in program text as prose com-
ments naming the pattern alongside a from-scratch, manual implementation of the required,
stereotypical elements of the pattern at every site where the pattern is needed. A “formal” im-
plementation allows reuse by providing the pattern as a kind of library or language extension,
often in the form of a suite of macros, invoked for each separate use of the pattern. Finally, an
“invisible” implementation is “so much a part of [the] language that you don’t notice” its pres-
ence. This taxonomy gives us another approach to the topic of elimination and simplification
of patterns: we may say that a pattern is simplified when it moves from “informal” to “formal”,
and eliminated when it is made entirely “invisible”.

9.3 simplification as key quality attribute

A language which eliminates or simplifies patterns in program texts, concisely and robustly
achieving their effects without forcing the programmer to spell them out in full detail, is quali-
tatively better than one which does not. This claim is supported in several ways.

First, Felleisen’s Conciseness Conjecture (Felleisen 1991) states that the more expressive a pro-
gramming language is, the fewer programming patterns one tends to observe in texts written
in that language. Felleisen argues that this is important because “pattern-oriented style is
detrimental to the programming process,” observing that “the most disturbing consequence of
programming patterns is that they are an obstacle to an understanding of programs for both
human readers and program-processing programs.” For example, store-passing style requires
a reader to analyze an entire program to learn whether the store has been properly propagated,
accessed, and updated. Worse, certain encodings can have more than one interpretation, and
determining which is intended requires analysis of fine detail of the text. Felleisen gives the
example of continuation-passing style in a call-by-name language, which may encode either
unusual control structure or a call-by-value protocol. Automated tooling suffers in a similar
way: even with the precision offered by encodings, the global analyses required can be daunt-
ing. Tooling is also at a disadvantage compared to a human reader, since the human is able to
read and understand comments conveying the intent behind a piece of code, while the tool is
left to reason from the structure of the code alone. Turning to design patterns from encodings,
we see that the problems of analysis are only made worse. The imprecision of design patterns
forces humans and automated tools alike to make approximate guesses as to the intended
design-pattern-level meaning of a particular piece of code.

Second, Felleisen’s ideas surrounding expressiveness are formal reflections of more informal
ideas of the quality of a given programming language, alluded to in the Perlis quote at the top
of this chapter and discussed by researchers such as Brinch Hansen (Brinch Hansen 1993) and
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Hoare (Hoare 1974). Hoare, in an early and influential paper on programming-language de-
sign, writes that a programming language should give a programmer “the greatest assistance
in the most difficult aspects of his art, namely program design, documentation, and debug-
ging,” and that “a necessary condition for the achievement of any of these objectives is the
utmost simplicity in the design of the language” (Hoare 1974). Brinch Hansen, who frequently
collaborated with Hoare, suggested that the primary contribution that a language makes to-
ward achievement of this simplicity is “an abstract readable notation that makes the parts and
structure of programs obvious to a reader,” and goes on to say that “a programming language
should be abstract”:1

An abstract programming language suppresses machine detail [...] [and] relies on
abstract concepts [...] We shall also follow the crucial principle of language design
suggested by Hoare: The behavior of a program written in an abstract language should
always be explainable in terms of the concepts of that language and should never require
insight into the details of compilers and computers. Otherwise, an abstract notation
has no significant value in reducing complexity. (Brinch Hansen 1993, emphasis in
original)

An abstract language, then, achieves “simplicity” in that the programmer’s ideas find direct
expression in terms of the language itself, rather than indirect expression in terms of “machine
detail”. This allows the programmer to reason in terms of the ideas rather than their repre-
sentation. This is directly analogous to the relationship Felleisen remarks on between highly
expressive languages and the programming patterns they suppress: a language able to avoid
the need for programming patterns is abstract, i.e. good, in the sense of Brinch Hansen.

Third, the fields of Software Architecture and Software Engineering evaluate systems in
terms of quality attributes (Bass, Clements and Kazman 1998; Clements, Kazman and Klein
2001), or so-called “-ilities”, named for the common suffix of attributes such as maintainability,
stability, portability, and so forth. While these attributes are, strictly speaking, only applicable
to software architectures and not to programming models, they are not without value in our
setting. Many “-ilities” benefit immediately from program pattern elimination. For example,
modifiability depends on the programmer being able to understand the scope of a particular
change: a global encoding of some pattern interferes with this aim. Likewise, understandability
of a program hinges on concision and expressiveness, on the programmer’s ability to say what
they mean. In general, improvements in concision and expressiveness, and reduction of pattern
boilerplate, should lead to improvements in terms of several frequently-discussed “-ilities”. In
the analysis to follow I illustrate specific points of connection between the Syndicate model
and both general and scenario-specific “-ilities”.

Finally, some small support for the claim of this section comes from previous analysis of
design patterns in context of their implementation in various programming languages. Norvig
reports on a study of the Design Patterns book of Gamma et al. in which 16 of the 23 pat-
terns described in the book either find “qualitatively simpler implementation” or become en-

1 The full principle ends with “... and secure”, later defined in terms that make it essentially a synonym of “abstract”.
This sense of “secure” was originally introduced by Hoare (1974).
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tirely “invisible” when comparing implementations in Lisp or Dylan with implementations in
C++ (Norvig 1996).

9.4 event broadcast, the observer pattern and state replication

The observer pattern is a mainstay of object-oriented programming languages. Originating with
Smalltalk,2 its purpose is given by Gamma et al. (1994) as “a one-to-many dependency between
objects so that when one object changes state, all its dependents are notified and updated
automatically.” Its intent is to communicate state changes from a subject to a set of observers.

Event Broadcast

↓
Observer

↓
State Replication

The observer pattern frequently finds expression as part of a tower of
patterns. Supporting it we find an event broadcast facility of some kind,
and instances of the observer pattern in turn are often used to implement
state replication. The three patterns differ in intent. State replication is used
to synchronize disparate views on some stateful entity, while the observer
pattern focuses on the fact of a change in a stateful entity, and event broad-
casting is merely the vehicle by which some signal is delivered to a group
of recipients. Roughly speaking, state replication is the integral to the ob-
server pattern’s differential, and event broadcast is a generic message transport mechanism. In
particular, a state replica starts with an initial snapshot, while there is no such requirement for
an observer requesting change-notifications from a subject.3

Many popular programming languages include implementations of the observer pattern in
their standard library, yielding what Norvig terms a “formal” implementation level. Others,
however, make use of the pattern without a library implementation, yielding an “informal”
implementation. One layer up our tower of patterns, state replication seldom is supported
other than “informally”, and one layer down, event broadcasting is often somewhere between
“invisible” and informal-but-idiomatic.

A running example shows the patterns in action. The example involves a display of a set of
names of users present in an online chat room. The display is to update itself as users arrive or
depart the room, starting with the list of users present at the moment the display is initialized.
The underlying set of users is the subject, and the display is an observer. The example embodies
state replication in that the view, as it is created, interrogates the subject for its current members,
and uses observer-pattern notifications as indications that it should incorporate some change
that has just taken place.

2 ANSI Smalltalk does not include the “dependents” protocol because “there is nothing defined by the standard
that requires any kind of dependency mechanism.” (X3J20 Committee for NCITS 1997) However, inspection of a
September 1986 source listing of Smalltalk-80 shows the dependents protocol in the form in which it survives in
most Smalltalks today.

3 Hohpe (2017) has dubbed the distributed systems analogue of the observer pattern “the Subscribe-Notify conver-
sational pattern”. Surprisingly, “state replication” does not appear to be well-attested as a design pattern per se,
either in the traditional OO or asynchronous messaging realms. The notion of event broadcasting appears in the
asynchronous messaging literature simply as the role played by a message broker (Hohpe and Woolf 2004; Eugster,
Guerraoui and Damm 2001).
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1 nil subclass: Object [
2 Dependencies := nil.
3 Object class >> initialize [
4 self == Object ifFalse: [^self].
5 Dependencies := WeakKeyIdentityDictionary new.
6 ]
7 addDependent: anObject [
8 ^(Dependencies at: self ifAbsentPut: [OrderedCollection new]) add: anObject
9 ]

10 removeDependent: anObject [
11 | dependencies |
12 dependencies := Dependencies at: self ifAbsent: [^anObject].
13 dependencies remove: anObject ifAbsent: [].
14 dependencies size < 1 ifTrue: [Dependencies removeKey: self ifAbsent: []].
15 ^anObject
16 ]
17 changed: aParameter [
18 | dependencies |
19 dependencies := Dependencies at: self ifAbsent: [nil].
20 dependencies notNil ifTrue: [dependencies do: [:d | d update: aParameter]]
21 ]
22 changed [
23 self changed: self
24 ]
25 update: aParameter [
26 "Default behavior is to do nothing. Called by #changed and #changed:"
27 ]
28 ]

Figure 69: The GNU Smalltalk implementation of the classic Smalltalk dependents mechanism.
(Excerpted from GNU Smalltalk version 3.2.91, ©1990–2015 Free Software Foundation, Inc.)

smalltalk . Figure 69 is the GNU Smalltalk library implementation of the classic Smalltalk
“dependents” protocol. As part of the standard library, it fits Norvig’s criterion for a “for-
mal” instance of the observer pattern. Line 1 establishes a context in which we are sup-
plying definitions for class Object. Line 2 declares a class variable, Dependencies, on class
Object, initially with value nil. The constructor for class Object (lines 3–6) places a new
WeakKeyIdentityDictionary in the class variable.

The class variable Dependencies contains a dictionary mapping each subject to an Ordered-

Collection of observers. The methods addDependent: and removeDependent: maintain the struc-
ture. Line 20 in the method changed: is the heart of the implementation. It sequentially visits
each observer in turn, invoking the update: method on each with the given parameter value.
Idiomatic Smalltalk code conventionally uses the nullary method changed (lines 22–24) to sup-
ply the subject itself as the parameter value of a change notification. The definition of update:
within class Object ensures that every object in the system can act as an observer in this protocol.
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1 Object subclass: UserList [
2 | users |
3 initialize [ users := Set new. ]
4 userArrived: u [ users add: u. self changed. ]
5 userDeparted: u [ users remove: u. self changed. ]
6 users [ ^users ]
7 ]

8 Object subclass: UserListDisplay [
9 | userList prevUsers |

10 userList: ul [
11 prevUsers := Set new.
12 userList := ul.
13 userList addDependent: self.
14 self update: userList.
15 ]
16 update: anObject [
17 | new old |
18 new := userList users - prevUsers.
19 old := prevUsers - userList users.
20 new do: [:u | Transcript nextPutAll: u, ’ arrived.’; cr ].
21 old do: [:u | Transcript nextPutAll: u, ’ departed.’; cr ].
22 prevUsers := userList users copy.
23 ]
24 ]

Figure 70: A GNU Smalltalk program making use of the “dependents” protocol.

State replication per se does not appear as a library pattern in Smalltalk. Instead, it appears
as an informal pattern, implemented on a case-by-case basis, often making use of the “de-
pendents” protocol. We see an almost-“invisible” instance of event broadcasting on line 20 of
figure 69 in the loop that delivers a call to the update: method of each observer object.

Figure 70 shows a sketch of our example application. Class UserList implements the sub-
ject portion of the design, and class UserListDisplay implements the observer. The methods
userArrived: and userDeparted: invoke the UserList’s changed method (lines 4 and 5) to no-
tify observers that something has changed. In response, the update: method of UserListDisplay
is run. Because the Smalltalk convention is to simply convey the fact of a change rather than
any detail, update: must determine precisely what has changed in order to produce correct
incremental output. The explicit call to update: on line 14 initializes the display with the set
of users present at the time the display is created; if line 14 were omitted, no display updates
would happen until the first time the UserList changed. Finally, the need for copy on line 22 is
subtle. The users method of UserList returns a reference to the underlying set collection object,
and collections in Smalltalk are imperatively updated. If copy on line 22 is omitted, the code
fails to detect any changes after the initial update.
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1 module Observable
2 def add_observer(observer, func=:update)
3 @observer_peers = {} unless defined? @observer_peers
4 @observer_peers[observer] = func
5 end
6 def delete_observer(observer)
7 @observer_peers.delete observer if defined? @observer_peers
8 end
9 def changed(state=true)

10 @observer_state = state
11 end
12 def notify_observers(*arg)
13 if defined? @observer_state and @observer_state
14 if defined? @observer_peers
15 @observer_peers.each do |k, v| k.send v, *arg end
16 end
17 @observer_state = false
18 end
19 end
20 end

Figure 71: The Ruby implementation of the observer pattern. (Excerpted from the Ruby standard library
version 2.5.0, ©1998–2017 Yukihiro Matsumoto and other contributors.)

ruby. Figure 71 is the Ruby standard library implementation of the observer pattern as a
mixin module supplying the pattern’s subject-side behavior. This, too, is a “formal” implemen-
tation of the pattern in Norvig’s sense. The code relies on the Ruby idiom of dynamic addition
of instance variables to individual objects, creating the @observer_peers collection if it does not
exist at add_observer time (line 3). The implementation is more general than the Smalltalk im-
plementation in that each registered observer may optionally specify a method name to invoke.
By default, an observer’s :update method will be called.

The implementation takes care to avoid unnecessary signals, delivering notifications from
notify_observers only if the subject’s changed method has been called since the previous
notify_observers call. This can allow the programmer to batch multiple changes together,
sending a single notification at an opportune time after a number of changes have taken place.
While this technique is fragile unless the programmer is able to maintain tight control over the
sequence of events at the subject, it can provide a form of atomicity for batched changes.

Like Smalltalk, Ruby does not formally support the state replication pattern as such. When
it comes to event broadcast, line 15 is an almost-“invisible” implementation of event broadcast
that is practically identical to the analogous Smalltalk idiom.

We omit a Ruby implementation of our UserList example, as it is substantially the same as
the Smalltalk program, excepting the need for addition of a call to notify_observers after each
call to changed.
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1 public interface EventListener {}
2 public interface ChangeListener extends EventListener {
3 void stateChanged(ChangeEvent e);
4 }
5 public class EventObject {
6 protected transient Object source;
7 public EventObject(Object source) { this.source = source; }
8 public Object getSource() { return source; }
9 }

10 public class ChangeEvent extends EventObject {
11 public ChangeEvent(Object source) { super(source); }
12 }

Figure 72: Abbreviated portion of an observer pattern from the Java Swing library. (Excerpted from the
OpenJDK 7 source code, ©1996–2003 Oracle and/or its affiliates.)

java . Java supplies a plethora of data classes and interfaces implementing variations on
the observer pattern. Figure 72 shows one example from the standard Swing library. An
observer is to implement the ChangeListener interface; its single method, stateChanged, is
invoked by the subject when the relevant change occurs. The argument to stateChanged is a
ChangeEvent bearing a single field, source, which by convention is a reference to the subject
itself. Each variation on an EventListener in the Swing library comes with a corresponding
subclass of EventObject carrying relevant details of a change, and may have more than one
required handler method. For example, a ListDataListener implementation must respond to
intervalAdded, intervalRemoved and contentsChanged events, each taking a ListDataEvent.

No public utility classes are made available to assist in the implementation of the subject role.
This fact, along with the many variations and re-implementations of the pattern found both in
the standard libraries and in third-party libraries and applications, leads us to the conclusion
that Java offers only “informal” support for the observer pattern.

Just as in Smalltalk and Ruby, no formal support for state replication is on offer in Java.
Inspection of the uses of the private EventListenerList class central to the Swing instances of
the observer pattern shows that, again just as in Smalltalk and Ruby, idiomatic Java subjects
iterate over a collection object in order to broadcast change notifications.

erlang/otp. With Erlang/OTP we take a step away from shared-memory concurrency
and move to a shared-nothing setting with strongly isolated processes. Here the distinction
between the observer and state-replication patterns becomes more noticeable. Figure 73 shows
the key portions of an actor implementing the UserList portion of our running example.

Erlang/OTP does not offer a library implementation of the observer pattern or of state repli-
cation,4 making these patterns “informally” implemented in Norvig’s terms. It does provide
a “formal” library implementation of event broadcast called gen_event. The interface to gen_-

event requires a separate module for each kind of event callback; no standard callback imple-

4 In particular, the observer module is a graphical debugging tool, unrelated to the observer pattern.
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1 -record(state, {users, listeners}).

2 init([]) ->
3 process_flag(trap_exit, true),
4 {ok, #state{users = [], listeners = []}}.

5 handle_info({arrive, Name}, State = #state{users = Users, listeners = Listeners}) ->
6 [L ! {arrived, self(), Name} || L <- Listeners],
7 {noreply, State#state{users = [Name | Users]}};
8 handle_info({depart, Name}, State = #state{users = Users, listeners = Listeners}) ->
9 [L ! {departed, self(), Name} || L <- Listeners],

10 {noreply, State#state{users = [N || N <- Users, N =/= Name]}};
11 handle_info({sub, Pid}, State = #state{users = Users, listeners = Listeners}) ->
12 link(Pid),
13 [Pid ! {arrived, self(), Name} || Name <- Users],
14 {noreply, State#state{listeners = [Pid | Listeners]}};
15 handle_info({unsub, Pid}, State = #state{listeners = Listeners}) ->
16 unlink(Pid),
17 {noreply, State#state{listeners = [P || P <- Listeners, P =/= Pid]}};
18 handle_info({’EXIT’, Pid, _Reason}, State = #state{listeners = Listeners}) ->
19 {noreply, State#state{listeners = [P || P <- Listeners, P =/= Pid]}}.

Figure 73: An Erlang UserList program using the observer pattern.

mentation for the common case of sending an inter-actor message per event is provided. In
addition, incorporating a gen_event broadcast mechanism as part of the behavior of a stateful
actor is awkward, because each event source is implemented with a separate process. These
additional processes must be managed carefully to avoid resource leaks, complicating what
would ideally be a simple idiom. The gen_event module is seldom used outside of specialized
situations, perhaps for these reasons. In cases where the observer pattern is appropriate, Erlang
programmers generally prefer to roll their own broadcast mechanisms on a case-by-case basis.5

The code in figure 73 does just this. The figure shows part of a module implementing an
Erlang/OTP gen_server service actor; the init/1 function acts as constructor, handle_info/2
handles messages delivered to the actor, and the state record declaration on line 1 specifies
the structure used as the actor’s private state value. The actor keeps track of a list representing
a set of user names, as well as a list representing a set of observer process IDs.

The actor implements two protocols: one corresponding to the UserList protocol we saw on
lines 4–5 in the Smalltalk example program (figure 70), and one corresponding to a use of the
observer pattern to provide state replication. Lines 5–10 take care of the former, while lines
11–19 handle the latter.

Erlang/OTP gen_server actors, like Dataspace ISWIM actors, are functional event transduc-
ers. Each arriving message is passed to handle_info/2 along with the actor’s private state

5 Based on my first-hand experience of more than a decade of participation in the Erlang community.
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value.6 The actor is expected to return a functionally-updated state value along with an in-
struction regarding a possible reply. In response to an {arrive, Name} tuple message (line 5;
analogous to the Smalltalk program’s userArrived: method) our actor broadcasts a message
to its current subscriber list (line 6), making use of a list comprehension containing an asyn-
chronous message send instruction. It then returns an updated state record (line 7), placing
the new Name at the head of the users list. Similarly, a {depart, Name} message results in a
broadcast and an update removing the Name from the users list (lines 8–10).

Without line 13, this program would be closer to the observer pattern as described by Gamma
et al. than to an instance of state replication. To explain, we must examine the entirety of the
clause of lines 11–14. Line 11 matches a subscription request message, {sub, Pid}, carrying the
process ID of an observing actor. Not only does our service add the new Pid to its listeners

list, but it also supplies the new subscriber with a snapshot of the relevant portion of server
state, i.e., the users list. It does so using the same protocol it uses for announcing subsequent
incremental updates to the list.7 There is an asymmetry here: if we announce the “arrival” of
already-present users when a subscriber joins, we might expect it to be reasonable to announce
the “departure” of those same users when a subscriber unsubscribes. However, no analogue of
line 13 is present in the unsub clause (lines 15–17).

Part of the motivation for moving beyond the traditional scope of an observer pattern imple-
mentation, and toward a richer state replication design, is the strict “shared-nothing” isolation
of Erlang processes. In shared-memory languages like Smalltalk, Ruby, and Java it makes
sense for an observer to immediately interrogate the subject to access its current state; the two
are co-located, and a simple call to a getter method suffices. In Erlang, however, analogous
retrieval of the user list by an observer via RPC would not only be expensive, but could in-
troduce concurrency bugs: the latency of the round-trip introduces an unavoidable lag during
which further changes in the state of the processes in the system could take place. Conveying
the relevant public aspects of the subject’s state along with the change-notifications themselves
elegantly solves this problem. It also obviates the need for anything like the call to copy we saw
on line 22 of figure 70. Finally, this subtle shift in the implementation of the observer pattern
in shared-nothing languages provides a clue that many uses of the pattern might be better
thought of as mere mechanisms for state replication, rather than as ends in themselves.

We conclude our discussion of Erlang with investigation of lines 12, 16, and 18–19 of figure 73.
These subscribe to, unsubscribe from, and react to notifications of process termination, respec-
tively.8 The call to link on line 12 ensures that if an observer terminates, either cleanly or with
an exception, the subject receives a notification message called an “exit signal” in Erlang par-
lance. The call to unlink on line 16 cancels this subscription, and the clause of lines 18–19 treats
receipt of an “exit signal” describing the termination of an observer as an implicit unsubscrip-
tion. An understanding of this message-focused approach to error propagation allows us to
see lines 6 and 9 in a new light. They are superficially similar to the one-line implementations
of the event broadcast pattern seen in the Smalltalk (figure 69, line 20) and Ruby (figure 71,

6 I have used handle_info/2 for simplicity. A real implementation would prefer handle_call/3 and handle_cast/2.
7 An alternative implementation might use a special “initial snapshot” message format instead.
8 Line 3 is a standard incantation required by the language to ensure that exit signals are delivered as messages.

Omitting line 3 would have the effect of causing our subject actor to crash if an observer process crashes.
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1 (assertion-struct user-present (list-id user-name))

2 (define (spawn-user-list-display list-id)
3 (spawn (during (user-present list-id $user-name)
4 (on-start (printf "~a arrived.\n" user-name))
5 (on-stop (printf "~a departed.\n" user-name)))))

Figure 74: A Syndicate/rkt UserList program.

1 (spawn (during/spawn (tcp-connection $id (tcp-listener 5999))
2 (assert (tcp-accepted id))
3 (on-start (send! (tcp-out id "What is your name? "))
4 (react (stop-when (message (tcp-in-line id $name))
5 (send! (tcp-out id (format "Hello, ~a!\n" name)))
6 (react (assert (user-present ’room1 name))))))))

Figure 75: Syndicate/rkt TCP service interacting with figure 74

line 15) library code. The key difference is that in Smalltalk and Ruby each notification is a
synchronous method call without error handling. An exception from an observer will cause
the remaining observers to miss their notification, and may damage the subject. Here, each
notification is an asynchronous message send, which (in Erlang) never results in an exception.
Error handling is separated into the code dealing with links and exit signals.

Syndicate . Finally, let us examine state replication, the observer pattern, and event broad-
cast in Syndicate. The design of Syndicate incorporates a number of lessons from the Erlang
approach, but goes beyond it by placing state replication front and center in the programmer’s
mental model. The Syndicate design proceeds from the assumption that the intent of achiev-
ing state replication is more frequent than the intent of achieving the observer pattern, let alone
a raw event broadcast. The language thus offers prominent, explicit linguistic support for shar-
ing of public aspects of an actor’s private state. Figure 74 implements the Syndicate/rkt

equivalent of the Smalltalk program of figure 70.
An immediate difference is that class UserList is completely absent, appearing in vesti-

gial form only in the declaration of the user-present record type (line 1). The function
spawn-user-list-display is comparable to the Smalltalk class UserListDisplay. It observes
public aspects of the state of the user list, reacting to appearance or disappearance of set ele-
ments with appropriate print commands. In the Smalltalk example, we imagined a component
whose role was to call userArrived: and userDeparted: appropriately for each separate user.
The Syndicate program cuts out this intermediary. Instead, an actor responsible for signaling
presence of a particular user asserts a user-present record for the appropriate duration, and
that record is directly communicated to observers by the dataspace. For example, adding the
code in figure 75 to figure 74 causes the program to accept TCP/IP connections, ask for a name,
send a greeting, and assert the connected user’s presence in the user list until disconnection.
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Smalltalk Ruby Java Erlang/OTP Syndicate

Event broadcasting informal/invisible informal/invisible informal/invisible informal/invisible invisible

Observer pattern formal formal informal informal invisible

State replication informal informal informal informal invisible

Figure 76: Levels of implementation for state replication, the observer pattern, and event broadcasting

The dataspace connecting actors to each other takes on the role that was played by class
UserList, keeping observers up-to-date as relevant state changes, cleaning up subscriptions on
exit, handling failures, and so on. The notion of a subject has become diffuse and domain-
specific, rather than being tightly bound to the identity of a single object in the system. The
state replication pattern has become “invisible” in Norvig’s sense.

Object-oriented languages usually offer a notion of object identity that can be used as a marker
for a specific topic of conversation. Syndicate does not offer anything like this. Instead,
Syndicate encourages the programmer to take a relational view of shared state and demands
explicit treatment of identity. The approach is similar to use of primary keys in relational
databases. The programmer is free to choose a notion of identity appropriate to the domain.

Syndicate emphasizes state replication, but does not preclude use of the observer pattern.
Not all uses of the observer pattern are intended to support state replication. The observer
pattern is, like state replication, “invisible” in Syndicate. All that is required is for the subject
to send change-notification messages with an appropriate structure,

(send! (change-notification-record subject-id change-details))

optionally also placing more aspects of its state into the dataspace as assertions or responding
to RPC state queries. Observers express interest in such notifications in the usual way. Finally,
the event broadcast pattern is also completely “invisible”, as it is provided directly by the
mechanics of the dataspace model.

Recall the asymmetry remarked upon earlier in the Erlang program of figure 73. When a
new observer subscribes, the subject synthesizes “arrival” messages describing the users al-
ready present in the room, but sends no analogous “departure” messages to an unsubscribing
observer. As we saw in section 4.5, the dataspace ensures that each actor is sent events de-
scribing assertions added to or removed from the intersection of the group’s assertion set and
the specific interests of the actor itself. This set changes either when a peer makes or removes
assertions, or when the actor asserts or retracts interests. The dataspace makes no distinc-
tion, relaying changes in the relevant set no matter the cause. Thus, unusually, Syndicate is
symmetric in the exact way that we observed that our Erlang subject actor is not. When a
subscriber retracts interest in a set of assertions, the dataspace issues a state change event that
correspondingly removes any extant matching assertions from that actor’s view of the world.

analysis . Implementations of the observer pattern vary widely between languages and
scenarios within a language. While figure 76 summarizes the situation in terms of Norvig’s
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“levels of implementation,” we must step beyond this and consider practical concerns, which
make the following questions relevant to the programmer.

1. What information is conveyed as part of the signal delivered from a subject to an ob-
server?

a) Is the entity which changed identified?

b) Is the aspect of that entity which changed identified?

c) Is there room for a detailed description of the particular change?

2. How does the implementation interact with garbage collection?

3. How does the implementation interact with errors?

The Smalltalk implementation allows the subject to send a single object to observers. This is
conventionally a reference to the subject itself, but may be any object. A strong secondary con-
vention, when multiple aspects of a subject may change, is to use a selector9 as the notification
payload. This has clear weaknesses: it no longer reliably identifies the subject, making it poten-
tially challenging for a single observer to observe multiple subjects at once, and it is a simple
atom with no room for additional detail.

The Ruby implementation is more flexible. Firstly, and most importantly, no matter the
notification payload transmitted by the subject, each observer is given the opportunity to direct
notifications on a per-subscription basis to specific entry points by passing an optional second
argument (“func”) to the add_observer method. Secondly, the subject may invoke notify_-

observers with any number of any type of arguments. These are passed on as arguments to
each observer’s chosen handler method. The Erlang implementation, “informal” as it is, is
similarly flexible. No particular notification format or payload is required.

The Syndicate implementation is likewise flexible, but for a different reason. The specifics
of any information communicated from a subject to observers is part of the ordinary Syndicate

protocol design for the group. If the identity or nature of the entity which changed is relevant
to the protocol, some value denoting it will be included in each assertion and message; likewise
for the aspect which changed and any specific details of a given change.

The interactions between the observer pattern and garbage collection are straightforward to
explain, but can be difficult to address in realistic programs. Consider the Ruby implementa-
tion of the Observable module (figure 71). Its use of an ordinary dictionary object establishes
strong references to its observers. In cases where an observer becomes otherwise unreach-
able, the burden is on the programmer to explicitly break the connection between the two to
avoid resources leaks or unwanted notifications. The situation is identical in the Java Swing
EventListenerList subject implementation and is similar in Smalltalk, where a global dictio-
nary with weakly-held keys achieves the same effect as Ruby’s per-subject instance variable. In
all three cases, care must be taken by the programmer to avoid accidental reference cycles and
to develop a rigorous understanding of the lifecycles of all the objects involved.

9 Smalltalk’s “selectors” are Lisp’s “symbols”.
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Erlang and Syndicate, however, take a different approach. Actor lifetimes in both languages
are under explicit programmer control. Despite this, there are no problems with dangling refer-
ences. In the case of Erlang, such references are cleaned up as part of a subject’s reaction to exit
signals from terminated observers. However, solicitation of and responses to exit signals must
be explicitly specified by the programmer. In Syndicate, fine-grained conversational frames
associated syntactically with facets allow subjects and observers to precisely and automatically
delimit the scope and duration of relationships. In the example, observers of user-present as-
sertions may see them retracted due to an explicit or implicit retraction, as a conversation comes
to an end, or a facet or entire actor terminates. Both Erlang and Syndicate are symmetric in
that not only may subjects monitor their observers’ lifecycles, but observers may also attend to
the presence of observed subjects. In Erlang, this is achieved with links; in Syndicate, by the
guaranteed availability and visibility of assertions of interest alongside other assertions. An
observer may express interest in (user-present id _) assertions; a subject may express interest
in (observe (user-present id _)) assertions.

Finally, in every implementation of event broadcasting we have seen in object-oriented lan-
guages, the same error handling problems arise. An exception signaled by an observer’s call-
back method will by default “spill over” into the context of the subject, potentially damaging
it, even though it is the observer at fault. Worse, if the failing observer is in the middle of the
subscriber list, entries in the list following the failure will not receive the notification. Error
propagation with stack discipline in a situation where different segments of the stack belong to
different components in a group is inappropriate.

Erlang and Syndicate both do better. Erlang’s links and exit signals allow non-linear prop-
agation of failure signals along graphs of components. Syndicate generalizes the idea of
Erlang’s links, observing that the “liveness” attribute of an actor is just another piece of public
state, representable as an assertion like anything else. All of a terminating actor’s assertions
are automatically withdrawn in the dataspace model; those that describe a “liveness” property
of interest can be monitored like any other. This dovetails with the notion of a conversational
frame again, where presence of an assertion will frequently delimit a (sub)conversation. The
assertions removed as a peer crashes act like exit signals in that they cause well-defined events
to be delivered to conversational counterparties.

Beyond those three basic questions, some general issues with the observer pattern are worth
highlighting. First, by encoding event dispatch among concurrent components as ordinary syn-
chronous method call, common implementations make maintainability of and visibility into
a design employing the observer pattern difficult. Programmers must determine for them-
selves the boundaries between ordinary code and event-driven code, and must reconstruct
networks of interacting components by careful inspection of the details of their implemen-
tations. Syndicate separates protocol design into a separate programming phase, allowing
maintenance of each protocol specification as an artifact of its own, and allowing development
of tools specialized for visualization of dataspace traffic, thereby improving maintainability and
visibility for concurrent programs. Second, the granularity of event selection in most implemen-
tations is coarse; in Smalltalk, for example, the granularity is usually at the level of an entire
object. Observers must both filter and demultiplex their notifications to determine whether
and, if so, how a particular change is relevant to them. Syndicate allows filtering of infor-
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mation to granularity limited only by the protocol design, and demultiplexes incoming events
precisely to individual handler clauses in facet endpoints, thereby improving specificity and ef-
ficiency of communication in a concurrent program. Third, it is embarrassingly common when
programming with the observer pattern in a synchronous, sequential object-oriented language
to accidentally cause an infinite loop of mutual change-notifications, because such notifications
do not include enough information to determine whether they are redundant. Syndicate only
delivers notifications to observers when a true change is made to the contents of the dataspace;
that is, updates in Syndicate are automatically idempotent, thereby improving robustness and
reliability of concurrent programs. Finally, as we saw in the case of Java, “informal” imple-
mentations of the pattern lead to multiplication of effort with concomitant multiplication of
bugs. By bringing state replication into the language once and for all, Syndicate rules out the
possibility of competing, inconsistent implementations of the same idea, thereby improving
understandability and maintainability of programs.

9.5 the state pattern

The state pattern is a technique used in certain object-oriented languages to simulate the become

operation from the original actor model (Hewitt, Bishop and Steiger 1973). Gamma et al. write
that a use of the pattern allows an object “to alter its behavior when its internal state changes,”
and that the object “will appear to change its class” (Gamma et al. 1994). Languages like Self
that support dynamic inheritance do not need the pattern: an update to a so-called parent slot
automatically adjusts the available state and behavior of an object (Ungar et al. 1991). This
shows that it is possible for an “invisible” implementation of the pattern to exist. Languages
like Java and C++, where an object’s interface and class are fixed for its lifetime, are where the
pattern finds most application.

Standing

Ducking

 press:DOWN 

Jumping

 press:JUMP  release:DOWN 

Diving

 press:DOWN 

A state machine representing a video game character’s re-
sponse to key press and release events exemplifies the pat-
tern.10 When the player is standing still, pressing the JUMP

key causes the player to start a jump sequence. If, in mid-
air, the DOWN key is pressed, the player should transition into
a dive. However, when standing still, the DOWN key causes
the player to move into a ducking stance. While ducking, re-
lease of the DOWN key reverts to the standing state. Each state
should have associated with it a specific visual appearance
(sprite) for the player character.

java . Java implementations of the state pattern are “informal”. The Java program of figure 77

sketches a state pattern based implementation of the example state machine. Key state pattern
characteristics are replication of a suite of methods, once in a “wrapper” class (PlayerWrapper),
and again in an interface (KeyHandler) implemented by each “state” class. A separate “state”
class is created for each state in the state machine. The interface (and “state” class) version of

10 The example is due to Nystrom (2014), also available at http://gameprogrammingpatterns.com/state.html.

http://gameprogrammingpatterns.com/state.html
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1 interface KeyHandler {
2 void handlePress(PlayerWrapper p, Key k);
3 void handleRelease(PlayerWrapper p, Key k);
4 }

5 class PlayerWrapper {
6 KeyHandler state = new StandingState(this);
7 public void handlePress(Key k) { state.handlePress(this, k); }
8 public void handleRelease(Key k) { state.handleRelease(this, k); }
9 public void setSprite(Sprite s) { /* ... */ }

10 }

11 class StandingState implements KeyHandler {
12 public StandingState(PlayerWrapper p) { p.setSprite(Sprite.STANDING); }
13 public void handlePress(PlayerWrapper p, Key k) {
14 if (k == Key.JUMP) p.state = new JumpingState(p);
15 if (k == Key.DOWN) p.state = new DuckingState(p);
16 }
17 public void handleRelease(PlayerWrapper p, Key k) {}
18 }

19 class JumpingState implements KeyHandler {
20 public JumpingState(PlayerWrapper p) { p.setSprite(Sprite.JUMPING); }
21 public void handlePress(PlayerWrapper p, Key k) {
22 if (k == Key.DOWN) p.state = new DivingState(p);
23 }
24 public void handleRelease(PlayerWrapper p, Key k) {}
25 }

26 class DuckingState implements KeyHandler {
27 public DuckingState(PlayerWrapper p) { p.setSprite(Sprite.DUCKING); }
28 public void handlePress(PlayerWrapper p, Key k) {}
29 public void handleRelease(PlayerWrapper p, Key k) {
30 if (k == Key.DOWN) p.state = new StandingState(p);
31 }
32 }

33 class DivingState implements KeyHandler {
34 public DivingState(PlayerWrapper p) { p.setSprite(Sprite.DIVING); }
35 public void handlePress(PlayerWrapper p, Key k) {}
36 public void handleRelease(PlayerWrapper p, Key k) {}
37 }

Figure 77: State pattern example in Java
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1 (assertion-struct key-down (key))
2 (assertion-struct player-sprite (variation))

3 (define (standing-state)
4 (react (assert (player-sprite ’STANDING))
5 (stop-when (asserted (key-down ’JUMP)) (jumping-state))
6 (stop-when (asserted (key-down ’DOWN)) (ducking-state))))

7 (define (jumping-state)
8 (react (assert (player-sprite ’JUMPING))
9 (stop-when (asserted (key-down ’DOWN)) (diving-state))))

10 (define (ducking-state)
11 (react (assert (player-sprite ’DUCKING))
12 (stop-when (retracted (key-down ’DOWN)) (standing-state))))

13 (define (diving-state)
14 (react (assert (player-sprite ’DIVING))))

15 (spawn #:name ’player
16 (on-start (standing-state)))

Figure 78: State pattern example in Syndicate/rkt

each method takes an additional argument referencing the “wrapper”. The “wrapper” class
version of each method directly delegates to the current “state” object. In more complex situa-
tions, a “state” class may use instance variables of its own to keep track of information relevant
during its tenure.

Syndicate . The Syndicate/rkt program shown in figure 78 implements the same state
machine using facet mixins, abstractions of units of behavior and state that are named and
reusable in multiple contexts. Recall from section 6.4 that Syndicate/rkt allows abstraction
over facet creation using ordinary procedures. Here, each state becomes a separate facet rather
than a separate class, abstracted into its own procedure so that it may be reused as state transi-
tions take place. Events arriving from the dataspace trigger these transitions: use of stop-when
ensures that the active state facet terminates, and the handler invokes a procedure that ensures
that a new state facet replaces the old. The player actor dynamically includes an appropriate
starting facet at initialization time. In more complex state machines, lexical variables and facet-
local fields may be used freely for state-specific storage. As in Scheme, where states in a state
machine are frequently implemented as mutually tail-calling procedures, the presentation of
the state pattern here is “invisible”.

analysis . The most noticeable difference between the two implementations is the ability
of Syndicate/rkt to avoid the duplication that comes with mentioning each method in both
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the “wrapper”, the interface, and each “state” class.11 Where in Java the programmer must
manually arrange for the “wrapper” class PlayerWrapper to delegate to matching methods
on its current state object, the Syndicate/rkt program’s facets directly extend the interaction
surface of the containing actor. In essence, the language’s built-in demultiplexing and dispatch
mechanism is reused to perform the delegation implemented manually in the Java program.

A related difference is that in the Java program two objects must collaborate, with a reference
to the “wrapper” passed to each “state” method, and a reference to the current state object
held in the “wrapper”. In the Syndicate/rkt program, only one object (actor) exists in the
dataspace, and the instance variable required in the Java has disappeared, being replaced by
the implicit state of the actor’s facet tree. Sharing between the “wrapper” and a “state” in the
Java program must be allowed for in terms of the visible interface of the “wrapper” object,
while in Syndicate/rkt, sharing can be arranged by lexical closure, by passing references to
shared fields, or by each state facet publishing shared assertions of its own, as in the example.

In this example, every state responds to the same kind of transition event, namely key presses
and releases. If different states need to react to other situations in the simulated world, the
situation in Java can quickly become complex. For example, the player character may respond
to collisions with certain types of objects differently in different states, forcing addition of a
handleCollision() method to the “wrapper” class, the interface, and all “state” classes—even
those for which collisions are irrelevant. In Syndicate, only those facets reactive to an event
need mention it, adding additional endpoints to attract and respond to the events concerned.

Finally, multiple facets may be active simultaneously in a single actor, allowing rich dynamic
possibilities for mixing-in of state and behavior not available to the Java program. In object-
oriented languages like Java, up-front planning is required to properly scope per-instance state
and to install delegating “wrapper” method implementations.

9.6 the cancellation pattern

The cancellation pattern, known as Cancel Task in the business process modeling literature (Rus-
sell, van der Aalst and ter Hofstede 2016), appears whenever a long-running, asynchronous
task may be interrupted. For example, one common reason for interrupting a task is that the
party requesting its execution has lost interest in its outcome. Programming languages with
support for asynchronous task execution often support the pattern; for example, the .NET li-
brary includes a class CancellationToken for use with its task execution machinery, and many
implementations of “promises” for JavaScript include cancellability as a feature. A classic ex-
ample may even be seen in the famous parallel-or operator (Plotkin 1977), provided we allow
ourselves to imagine a realistic implementation which aborts the longer-running of the two
branches of a use of parallel-or once the other yields a result.

Cancellation is similar to, but distinct from, an error or exception. As Denicola writes,

11 Syndicate cannot claim a unique ability to avoid the interface (KeyHandler) required by Java: languages like
Smalltalk and Python get by without such interface declarations, while retaining many of the other features of
the pattern seen in Java.
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1 function makeCancellableRequest(url) {
2 return new Promise(function(resolve, reject, onCancel) {
3 var xhr = new XMLHttpRequest();
4 xhr.on("load", resolve);
5 xhr.on("error", reject);
6 xhr.open("GET", url, true);
7 xhr.send(null);
8 onCancel(function() { xhr.abort(); });
9 });

10 }

Figure 79: Cancellation pattern example in JavaScript+Bluebird.
Adapted from http://bluebirdjs.com/docs/api/cancellation.html.

A canceled operation is not "successful", but it did not really "fail" either. We
want cancellation to propagate in the same way as an exception, but it is not an
error. (Denicola 2016)

Syndicate propagates exceptions via automatic retraction of assertions on failure, and this is
how it propagates cancellation as well.

To illustrate the pattern, we follow an example drawn from the API documentation of the
Bluebird promise library for JavaScript.12 In the example, an incremental search feature submits
requests to an HTTP-based search service as the user types. Because the search service may
not answer as quickly as the user can type, we wish to be able to abandon previously-started,
not-yet-completed searches each time an update to the search term is given. An on-screen
“spinning icon” display should appear whenever a search is in progress, disappearing again
once results are available.

javascript. The JavaScript language has historically relied on callbacks for structuring its
asynchronous tasks, but latterly has shifted to widespread use of promises instead. However, de-
spite much discussion (Denicola 2016), the specification of the behavior of ES6 promises (ECMA
2015, section 25.4) does not include cancellation, leaving JavaScript itself with an “informal”
implementation of the pattern each time it is required. Individual implementations of the spec-
ification, especially those developed prior to ratification of the standard such as the previously-
mentioned Bluebird, include cancellation as an option, yielding “formal” implementations of
the pattern when combining a JavaScript engine with a particular promise library.

Figure 79 shows a use of Bluebird promises to implement a cancellable HTTP GET request.
The result of a call to makeCancellableRequest is a promise object with a cancel method in
addition to the usual interface. Bluebird allows the configuration function given to the Promise

constructor to accept an optional third onCancel argument (line 2), which itself is a callback
that configures an action to be taken in case the client of the constructed promise decides to
cancel it. Here, line 8 specifies that the ongoing XMLHttpRequest is to be aborted if the promise
returned by makeCancellableRequest is canceled.

12 The example can be seen at http://bluebirdjs.com/docs/api/cancellation.html.

http://bluebirdjs.com/docs/api/cancellation.html
http://bluebirdjs.com/docs/api/cancellation.html
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1 var searchPromise = Promise.resolve();

2 function incrementalSearch(searchTerm) {
3 searchPromise.cancel();
4 showSpinner();
5 var thisSearch = makeCancellableRequest("/search?q=" + encodeURIComponent(searchTerm))
6 .then( function(results) { showResults(results); })
7 .catch( function(e) { showSearchError(e); })
8 .finally( function() { if (!thisSearch.isCancelled()) { hideSpinner(); } });
9 searchPromise = thisSearch;

10 }

Figure 80: Incremental search using JavaScript+Bluebird.
Adapted from http://bluebirdjs.com/docs/api/cancellation.html.

Figure 80 implements the core of our illustrative example. The function incrementalSearch

is to be called with the current search term after every keystroke makes an alteration to the on-
screen search field. A global variable, searchPromise, is used to remember the most recently-
started interaction with the search service. Each time incrementalSearch is called, the previous
search is canceled (line 3), and a new search is started (line 5) after making sure the “spinner”
is displayed (line 4).

Each new search ends in one of three outcomes: success, in which case the callbacks of lines 6

and 8 execute; error, in which case lines 7 and 8 execute; or cancellation, in which case only
line 8 runs. The test in the if statement on line 8 makes sure not to hide the “spinner” if the
search has been canceled. After all, cancellation happens only when a new search replaces the
currently-active one. If the user were able to also cancel the search without starting a new one,
the test on line 8 would become more complex. In general, it can be difficult to decide on the
correct placement and timing of such code.

Syndicate . The notion of an assertion-mediated conversation frame serves here as the heart
of Syndicate’s approach to task cancellation, making the pattern “invisible” in Norvig’s termi-
nology. A Syndicate/rkt equivalent to makeCancellableRequest is shown in figure 81. Clients
trigger creation of a request-specific actor (line 2) by expressing interest in http-request tuples.
As the actor starts up, it sends the request (line 3). When a response comes in, the actor ter-
minates its root facet (line 5), replacing it with a facet that asserts the response body (line 6).
The other situation that causes termination of the root facet is withdrawal of interest in the
result. In either case, termination of the facet causes a message canceling the request to be
issued (line 4).13 The net effect of figure 81 is to adapt the imperative commands involved
in web requests to the declarative, conversation-frame-based approach of assertion-mediated
coordination.

Figure 82 implements the portion of the example that responds to changes in the text in
the search term field. The UI component (not shown) maintains a (unique) search-term-field

13 Cancellation of a web-request is idempotent.

http://bluebirdjs.com/docs/api/cancellation.html
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1 (assertion-struct http-request (id url body))

2 (spawn (during/spawn (observe (http-request $id $url _))
3 (on-start (web-request-send! id url))
4 (on-stop (web-request-cancel! id))
5 (stop-when (message (web-response-complete id _ $body))
6 (react (assert (http-request id url body))))))

Figure 81: Cancellation pattern example in Syndicate/rkt

1 (assertion-struct search-term-field (contents))
2 (assertion-struct search-results (results))

3 (spawn (during (search-term-field $term)
4 (define id (gensym ’search-id))
5 (during (http-request id (format "/search?q=~a" term) $results)
6 (assert (search-results results)))))

Figure 82: Incremental search using Syndicate/rkt

assertion, ensuring that it contains the up-to-date query text. In response, for each distinct term
(line 3) a new request ID is generated (line 4) and an HTTP request is begun (line 5). Upon its
completion, a search-results record is asserted. However, if the search term changes before
the request completes, the entire facet constructed on lines 4–6 is terminated. In turn, this
retracts interest in the results of the unwanted HTTP request, which then cancels itself via the
code in figure 81.

No mention has been made of the “spinner” thus far. We may achieve the desired effect
by introducing a show-spinner flag, asserting it only in the presence of a search-term-field

assertion not paired with a search-results assertion. Figure 83 shows the technique. Because
we wish to react to the presence of a search-term-field but the absence of a search-results, we
must use the assert!/retract! commands to invert the sense of the inner during.14

The actual display of the outputs from our program—the “spinner” and any search results
that might be available—can be done with separate actors responding to changes in the data-
space. Presence of a show-spinner flag assertion causes addition of the loading indicator to the
UI; a change in asserted search-results causes an update to the relevant widget.

analysis . Central to the pattern is the idea of chaining cancellations: if task A has gener-
ated asynchronous sub-tasks B and C, then cancellation of A should automatically lead to the
cancellation of B and C. In JavaScript, as in .NET, Go, E, Erlang and other languages where
some analogue of the pattern appears, such chaining is arranged manually by the programmer.
In Syndicate, however, the use of facets and assertions to frame (sub)conversations ensures

14 This issue is further discussed in section 11.3. In this specific case, a “during/not” macro could be introduced to
abstract away from the details of implementing logical negation this way.
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1 (assertion-struct show-spinner ())

2 (spawn (during (search-term-field _)
3 (on-start (assert! (show-spinner)))
4 (on-stop (retract! (show-spinner)))
5 (during (search-results _)
6 (on-start (retract! (show-spinner)))
7 (on-stop (assert! (show-spinner))))))

Figure 83: Incremental search “loading” indicator in Syndicate/rkt

that when a facet terminates, its withdrawn assertions cause the termination of facets in peers
engaged in conversation with it. The process is automatic, and follows without programmer
effort as a side-effect of the Syndicate’s protocol-centric design. That is, Syndicate’s cancella-
tion mechanism readily composes, often without explicit “wiring”.

In languages with exceptions, interaction of cancellation with exception signaling is unclear.
Our JavaScript example demonstrates error propagation along links between promises, but
does not address JavaScript’s exception mechanism. Solutions must be found on a case-by-case
basis: the JavaScript promises API omits cancellation, so there is no standard way to connect
cancellation to and from exception flow. In Syndicate, exceptions cause assertion withdrawal,
which automatically triggers a cancellation cascade where necessary.

Finally, cancellation requires extra care in order to maintain consistency of global invariants.
The conditions under which the “spinner” is hidden in the JavaScript example are subtle and
could potentially become complicated under even quite simple additions to the scenario. By
contrast, Syndicate encourages decomposition of the problem into two phases. First, actors
contribute to an overall predicate deciding whether the “spinner” should be shown. Then, a
single actor applies the decision from the first phase to the display. Aside from the awkward-
ness of assert!/retract!, the code in figure 83 can almost be read as the declarative statement,
“show the spinner when a search is active but no results have yet appeared.”

9.7 the demand-matcher pattern

A common pattern in concurrent systems is demand-matching: tracking of demand for some
resource or service, and adding and removing corresponding supply in response to changes in
demand. Despite its prevalence in many different types of software, this pattern has not, to my
knowledge, previously been given a name. The structure of this section is therefore different
to those that have preceded it. Instead of detailed examination of the pattern’s appearance in
several languages, this section describes the demand-matcher pattern in the style of Gamma
et al. (1994) in order to bring the concept into focus. An understanding of the idea shows that
Syndicate’s design makes the pattern “invisible”.

The demand-matcher pattern’s purpose is explicit lifetime management. Even garbage-collected
languages require patterned coding to deal with extra-linguistic resources such as sockets, file
handles, or large memory buffers. These coding patterns track demand for a resource so that
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it may be created when required and destroyed in a timely manner when no longer relevant.
On the construction side, factory objects and the flyweight pattern exemplify the concept; on the
destruction side, close methods and reference-counting are two strategies commonly used.

Many instances can be found in a wide variety of programs. For example, every program
offering TCP server functionality is an example of the demand-matcher pattern, in any program-
ming language. Demand for the services of the server is indicated by the appearance of a new
connection. On UNIX-like systems, this demand is signaled at a fundamental level by accept(2)

returning a new connected TCP socket. The server provides supply by allocating resources to
the new connection, maintaining connection-specific conversational state, and beginning the
sub-conversation associated with the new connection. When the remote party disconnects, this
drop in demand is signaled by the closing of the connected socket, and the server responds by
releasing the connection’s resources and cleaning up associated conversational state.

Correctly matching supply to demand—that is, correctly allocating and releasing a resource
as the need for it waxes and wanes—is motivated by the same concerns that motivate automatic
garbage collection. If a programmer does not correctly scope the lifetime of some resource to
the lifetime of conversations involving that resource, the resulting program may suffer resource
leaks (e.g. unclosed sockets) or dangling references (attempts to write to a closed socket).

In Syndicate, facet-based assertion-tracking obviates these patterns. To allocate a resource,
a client asserts interest in it. The server responds by constructing a facet whose on-start ac-
tion creates the underlying resource and whose on-stop action destroys it. The server’s facet
lifetime, and hence the resource’s lifetime, is scoped by the consumer’s continued assertion of
interest. Once that interest is withdrawn, the server-side facet terminates, thereby releasing
the resource. Syndicate’s facets allow the programmer to bidirectionally associate resources
with conversational frames—to bring external resources into the conversational state. Further-
more, dataspace programming allows a straightforward aggregation of interest in a resource
because requests following the first one may simply discover the already existing instance of
the resource. Similarly, dataspaces allow the easy realization of load-balancing schemes.

We have seen many instances of demand-matching in this dissertation already. Informative
specimens may be found in example 8.12, figures 60 and 61, and particularly examples 8.27

and 8.31, in addition to many of the examples in this chapter.

intent Track demand for some resource or service; add and remove corresponding supply in
response to changes in demand.

participants

• Client: source of demand. Must signal changes in demand for service to the Demand
Matcher.

• Demand Matcher: monitors demand and supply levels and brings them into balance
when changes are detected; commonly spawns Service instances in response to increases
in demand.
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• Service: satisfies demand. Usually signals its existence and/or status to the Demand
Matcher to help it perform its balancing task.

known uses

• Every TCP service program treats incoming connections as demand, and allocates and
deallocates internal resources as connections come and go.

• The UNIX inetd service can be configured to execute programs in response to incoming
TCP connections. The recent systemd suite of programs can be configured similarly.

• The dbus service bus allows for applications and daemons to be instantiated “on demand
when their services are needed.”15

• Worker pools, e.g. Amazon’s “Elastic Load Balancing” product, which “automatically
scales its request handling capacity to meet the demands of application traffic.”16 “As
Elastic Load Balancing sees changes in the traffic profile, it will scale up or down.”17

• “Leasing” of resources and “renewal reminders” (Hohpe 2017) serve as a mechanism for
tracking demand. For example, DHCP (Droms 1997) allocates IP addresses and issues
a lease in response to a message from a client. Decrease in demand happens automati-
cally when an issued lease expires. A second example can be seen in the WebSub proto-
col (W3C 2016), which associates a lease with each subscription and in addition sends a
“renewal reminder” when a lease nears expiry.

• Work items in job queues are implicitly demands for allocation of some compute and/or
IO resource, which is automatically freed once its work item completes. A frequently-
seen embellishment is the notion of a limited resource, where only a certain number of
resources may be in use at once, and if demand exceeds the possible supply, clients must
wait for a resource to become free before they may proceed.

related concepts and patterns

• Flyweight (Gamma et al. 1994), as seen in e.g. symbol tables: interning a symbol is
similar to demand for its existence; symbol tables that weakly hold their entries rely on
the garbage-collector to lazily detect absence of demand, releasing the associated resource
in response.

• The “Demand Matcher” participant is often an instance of Factory (Gamma et al. 1994).

• Garbage collection (distributed and non-distributed). Abstractly, garbage collection tracks
demand for (references to) resources (objects), releasing each resource once its existence
is no longer required. Garbage collection would be an example of the Demand Matcher
pattern, except for the latter’s ability to manufacture demanded resources when demand
increases, a feature not offered by garbage collectors.

15 https://www.freedesktop.org/wiki/Software/dbus/
16 https://aws.amazon.com/elasticloadbalancing/
17 https://aws.amazon.com/articles/1636185810492479

https://www.freedesktop.org/wiki/Software/dbus/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/articles/1636185810492479
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1 do_call(Process, Request) ->
2 Mref = erlang:monitor(process, Process),
3 Process ! {’$gen_call’, {self(), Mref}, Request},
4 receive
5 {Mref, Reply} ->
6 erlang:demonitor(Mref, [flush]),
7 {ok, Reply};
8 {’DOWN’, Mref, _, _, Reason} ->
9 exit(Reason)

10 end.

Figure 84: Simple RPC client code in Erlang.
Adapted from gen:do_call from Erlang/OTP 19.2, ©1996–2017 Ericsson AB.

• Supervision in Erlang (Armstrong 2003). A supervisor monitors actors supplying some
service, often created in response to some signal of demand. The supervisor takes action
to ensure stable supply, restarting crashing actors as necessary.

9.8 actor-language patterns

In addition to the broadly-applicable programming patterns thus far discussed, the design of
Syndicate eliminates the need for certain more narrowly-focused features seen in actor-based
languages such as Erlang. In particular, the introduction of facets in combination with the
react/suspend construct of section 6.5 eliminates some patterned uses of selective receive, in
those languages with such a construct, and decoupling of presence information from actor
identity eliminates complications in protocols making use of request delegation.

selective receive . Erlang’s selective receive facility allows a process to scan its mailbox
for messages matching a certain pattern, yielding the first match or blocking until a matching
message is later received. This is used to build RPC-style interaction as a library facility that
appears to a client as an ordinary procedure call, hiding the details of communication. The
chief drawback of the use of selective receive is a lack of availability. While the actor is in a
state waiting for specific messages to arrive, it cannot attend to ordinary requests from peers,
thereby increasing the risk of deadlock. Syndicate’s facets eliminate RPC-like patterns involv-
ing selective receive entirely, allowing actors to remain available even when managing ongoing
sub-conversations with peers.18

For example, figure 84 shows the essence of the library routine gen:do_call from Erlang/OTP
19.2.19 Line 1 declares the routine as a function expecting the server’s process ID and some

18 For those cases where selective-receive-like unavailability is required, it can be implemented as a library routine
surrounding a few fields and an internal queue. This explicit representation of a queue of pending messages
has some distant relationship to the “activators” of Frølund and Agha (1994) in that it marshals incoming events,
suspending further activity until some palatable arrangement of them has been arrived at.

19 The code has been simplified, eliding timeout handling and support for cross-node calls in distributed Erlang.
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1 (define (do-call self-pid process request)
2 (define request-id (gensym ’request-id))
3 (react/suspend (k)
4 (on (asserted (present process))
5 (send! (rpc-request process self-pid request-id request)))
6 (stop-when (retracted (present process))
7 (error ’do-call "Server exited before replying!"))
8 (stop-when (message (rpc-reply self-pid request-id $reply))
9 (k reply))))

Figure 85: Approximate Syndicate analogue of figure 84

value describing the RPC request to issue. Line 2 subscribes to lifecycle information about the
server: if it crashes while the subscription is active, a ’DOWN’ message is delivered to subscribing
processes. The call to erlang:monitor yields a globally unique reference, which here is cleverly
used for two purposes: not only does it uniquely identify the subscription just established, it is
also pressed into service as an identifier for the specific RPC request instance being executed.
Line 3 delivers the request in an envelope. The envelope includes four things: the Request

itself; an atom, ’$gen_call’, identifying the RPC protocol that is expected; the sender’s own
process ID, self(); and the Mref unique identifier for the request instance.

Line 4 opens the selective receive expression. Here, the process expects one of two messages
to arrive. If an envelope containing the reply, uniquely labeled with this request’s Mref, arrives
first (line 5), the process cancels its subscription to lifecycle information of the server process
(line 6) and returns the result (line 7). If an indication that the server has crashed arrives first
(line 8), with context again uniquely identified by Mref, then the routine causes this process to
crash with the same “exit reason”, thus propagating exceptions across process boundaries in a
structured way.

If a ’DOWN’ message arrives first, the OTP library relies on the convention that no reply
message will arrive later. This works well, though it does rule out patterns of delegation we
return to below (section 9.8). However, if a reply arrives first, a ’DOWN’ message may still be
issued in the window between control returning to line 5, and the unsubscription of line 6

taking effect. For this reason, after an unsubscription has taken effect, programmers must take
care to use selective receive to discard any pending ’DOWN’ messages that might be queued.

Here, the programmer of the routine has done this by passing flush to erlang:demonitor.
Quoting from the Erlang/OTP documentation (Ericsson AB 2017),

Calling demonitor(Mref, [flush]) is equivalent to the following, but more efficient:

1 demonitor(Mref),
2 receive
3 {_, Mref, _, _, _} -> true
4 after 0 -> true
5 end
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Syndicate eliminates the need for these uses of selective receive. The rough equivalent of
figure 84 is shown in figure 85. The use of react/suspend on line 3 reifies a partial continua-
tion, making do-call a blocking procedure just like Erlang’s do_call.20 The protocol sketched
here assumes that the server asserts (present id) as a placeholder for an appropriate domain-
specific indication of presence; lines 6 and 7 in figure 85 react to retraction of presence, which
corresponds to handling of the ’DOWN’ message on lines 8 and 9 of figure 84. Because the facet
expressing interest in present assertions is terminated either when a reply is received or the
server crashes, and the facet’s interests are retracted at its termination, the situation of needing
to flush a pending server termination message never arises.

Generally, the fact that Syndicate’s facets combine subscriptions and event handlers, so that
one never exists without the other, ensures that messages are delivered to relevant handlers,
and conversely, that irrelevant messages are never handled at all.

transparent request delegation. An RPC server process in Erlang/OTP may, upon
receiving an RPC request, forward the request to some other “worker” process, which replies
on its behalf. Clients use Erlang’s “monitor” facility to detect failures in server processes.
However, if a server forwards a request, the client is left monitoring the original server process
and not the worker process that has just been given responsibility for delivering the reply. If
the worker process crashes, the client is left hanging; conversely, if the service process crashes,
but the worker process is still running normally, the client will falsely assume its RPC request
failed. Worse, because of the hard-coded assumption that a crash implies that no reply will
subsequently arrive, the client will later be faced with a “martian packet”; that is, a reply from
the worker will arrive after the necessary context information has already been discarded.

A few workarounds exist. The worker may forward the reply to the server process, which
relays it in turn to the original requestor, thereby avoiding the “martian packet” scenario. The
server may monitor the worker, perhaps crashing if it notices the worker crash, or perhaps
remembering its obligations and synthesizing crash signals specifically for the clients affected
by the crash. The worker may monitor the server, crashing if it notices the server crash, thereby
at least avoiding wasted effort; however, it is important to note that a race condition exists here:
the worker may finish its work and deliver the reply to the client before it receives notification
that the server has crashed, bringing us back to a “martian packet” scenario. Finally, the
transparency of delegation may be discarded, and the server may reply to the client with the
identity of the worker, essentially telling it to expect a real reply later from a different source.21

Delegation in Syndicate does not suffer from any of these problems. Syndicate presence
indications are not tied to actor identity: instead, presence may be as coarse- or fine-grained as
the domain requires. For example, a Syndicate service may use a protocol that advertises the
fact that a reply is on its way for a certain request ID:

20 Note, however, that k is not mentioned on line 7, which means that any exception handler in the context of do-call
has no opportunity to catch the error signaled by line 7. The actor simply terminates. Local adjustment of do-call
can rectify the problem; more sophisticated integration of Racket exceptions, partial continuations, and facets re-
mains as future work.

21 This non-transparency is similar to the delegation involved in HTTP’s redirect responses, with their Location

headers. HTTP reverse-proxying, by contrast, is a form of transparent delegation.
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(request-in-progress service-id request-id)

A service that does not delegate requests manages these request-specific assertions itself,
while a delegating service passes responsibility for maintaining request-in-progress asser-
tions along with the task at hand. In each case, the assertion of interest contains the same
information: the client is unaware of the identity of the specific actor handling the request, but
nonetheless is able to monitor the request’s progress.

This benefit was achieved by generalizing away from using implementation-specific iden-
tifiers (process IDs) as proxies for domain-specific information (the possibility of receiving a
reply to a request). Having broken this tight coupling, we are now free to explore additional
possibilities not previously available. For example, we may extend request-in-progress asser-
tions to include more detailed progress information for long-running tasks simply by adding a
field; clients monitoring request progress are thus automatically informed as milestones go by.





10
Evaluation: Performance

Established approaches to concurrency generally have well-understood performance models
that programmers use when reasoning about the expected and actual behavior of their pro-
grams. The actor model, for example, naturally admits Õ(1) message delivery and Õ(1) process
creation in most implementations; the abstract performance of the Relational database model
can be understood in terms of table scans and index characteristics; and so on. The Syndicate

model includes features such as multicast and state change notifications not present in other
approaches to concurrency, and does not fit the established performance models. Therefore, we
must develop a Syndicate-specific performance model that programmers can rely on in the de-
sign and evaluation of their Syndicate programs, and in the understanding of the Syndicate

programs of others. We begin by considering the abstract costs of Syndicate actions (sec-
tion 10.1), which we then confirm with measurements of asymptotic performance characteris-
tics of representative protocols (section 10.2). Finally, we touch on the concrete performance of
the Syndicate/rkt prototype implementation (section 10.3).

10.1 reasoning about routing time and delivery time

The key to Syndicate’s performance is the implementation of dataspace-model actions.1 A
model of performance must give the programmer a sense of the costs involved in the interpre-
tation of the three possible types of action. Interpretation of a spawn action is like interpreta-
tion of a state change notification, because the initial assertion set conveyed with a leaf actor is
transformed into just such an action. Interpretation of message and state change notification ac-
tions involves two steps, with associated costs: computation of the set of recipients (“routing”)
followed by delivery of an event to each identified recipient (“delivery”).

Programmers might reasonably expect that the routing time of state change notifications
should be bounded by the number of assertions in each notification, which is why the in-
cremental semantics using patches instead of full sets is so important. A complication arises,
however, when one considers that patches involving wildcards refer to infinite sets of assertions.
The trie-based representation of assertion sets takes care to represent such infinite sets tractably,
but the programmer cannot assume a routing time bounded by the size of the representation of
the notification. To see this, consider that asserting ? forces a traversal of the entirety of the
?-prefixed portion of the dataspace to discover every active interest.

1 Facets within actors are similar to actors within a dataspace, and the costs of routing within an actor can be under-
stood by analogy to routing within a dataspace.
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Fortunately, routing time of SCNs can be bounded by the size of the representation of the
intersection of the patch with the dataspace itself. When processing a patch πi

πo
to a dataspace

R, the function combine (figure 39) explores R only along paths that are in πi or πo. Thus,
when reasoning about SCN routing time, programmers must set their performance expecta-
tions based on both the patches being issued and the assertions established in the environment
to be modified by each patch. After routing has identified the actors to receive state change
notifications, the associated delivery time should be linear in the number of recipients.

The costs of message actions are simpler to understand than those of SCN actions, allowing
us to make more precise statements on expected upper bounds. The key variable is the fraction
of each message that must be examined to route it to a set of destinations. For example, some
Syndicate protocols treat messages as pairs of an address, used to select recipients, and a
body that is not examined during routing. That is, messages are of the form (address, body),
and assertions of interest are of the form ?(address, ?). For such protocols, the routing process
should take time in Õ(|address|). More general messaging protocols effectively use more of each
message as address information. In such cases, routing time should be bounded by Õ(|message|).
In either case, noting that |address| 6 |message|, delivery to all n interested recipients should
take time in Õ(n), for Õ(|message|+ n) overall processing time. Encoding actor-style unicast
messaging is then a special case, where the address is a target process ID, Õ(|address|) = Õ(1),
the size of the message body is irrelevant, and n = 1, yielding Õ(1) expected per-message cost.

10.2 measuring abstract Syndicate performance

Notwithstanding the remarks above, we cannot yet make precise statements about complexity
bounds on routing and delivery costs in Syndicate in general. The difficulty is the complex
interaction between the protocol chosen by the programmer and the data structures and algo-
rithms used to represent and manipulate assertion sets in the Syndicate implementation.

We can, however, measure the performance of Syndicate/rkt on representative protocols.
For example, we expect that:

• simple actor-style unicast messaging performs in Õ(1);

• multicast messaging performs within Õ(|message|+n);

• state change notification performance can be understood; and

• Syndicate programs can smoothly interoperate with the “real world.”

unicast messaging . We demonstrate a unicast, actor-like protocol using a simple “ping-
pong” program. The program starts k actors in a single Syndicate dataspace, with the ith
peer asserting the subscription ?(ping, ?, i). When it receives a message (ping, j, i), it replies by
sending (ping, i, j). Once all k peers have started, a final process numbered k+ 1 starts and
exchanges messages with one of the others until ten seconds have elapsed. It then records the
overall mean message delivery latency.
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Figure 86: Message routing and delivery latencies, sec/msg vs. k

Figure 86a shows message latency as a function of the number of actors. Each point along the
x-axis corresponds to a complete run with a specific value for k. It confirms that, as expected,
total routing and delivery latency is roughly Õ(1).

broadcast messaging . To analyze the behavior of broadcasting, we measure a variation
on the “ping-pong” program which broadcasts each ping to all k participants. Each sent mes-
sage results in k delivered messages. Figure 86b shows mean latency of each delivery against
k. This latency is comprised of a fixed per-delivery cost along with that delivery’s share of a
fixed per-transmission routing cost. In small groups, the fixed routing cost is divided among few
actors, while in large groups it is divided among many, becoming an infinitesimal contributor
to overall delivery latency. Latency of each delivery, then, is roughly Õ(1k + 1). Aggregating to
yield latency for each transmission gives Õ(1+ k), as expected.

state change notifications . Protocols making use of state change notifications fall
into one of two categories: either the number of assertions relevant to an actor’s interests
depends on the number of actors in the group, or it does not. Hence, we measure one of each
kind of protocol.

The first program uses a protocol with assertion sets independent of group size. A single
“publishing” actor asserts the set {A}, a single atom, and k “subscribers” are started, each assert-
ing {?A}. Exactly k patch events {A}

∅ are delivered. Each event has constant, small size, no matter
the value of k.

The second program demonstrates a protocol sensitive to group size, akin to a “chatroom”
protocol. The program starts k “peer” actors in total. The ith peer asserts a patch containing
both (presence, i) and ?(presence, ?). It thereby informs peers of its own existence while ob-
serving the presence of every other actor in the dataspace. Consequently, it initially receives a
patch indicating its own presence along with that of the i− 1 previously-started peers, followed
by k− i− 1 patches, one at a time as each subsequently-arriving peer starts up.

Measuring the time-to-inertness of differently-sized examples of each program and dividing
by the number of state change notification events delivered shows that in both cases the pro-
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Figure 87: State Change Notification cost, sec/notification vs. k
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Figure 88: Marginal cost of additional connections, sec/conn. vs. k

cessing required to compute and deliver each state change notification is roughly constant even
as k varies (figure 87).

communication with the “outside world”. An implementation of a TCP/IP “echo”
service validates the claim that Syndicate can effectively structure a concurrent program that
interacts with the wider world, because this service is a typical representative of many network
server applications.

The implementation-provided TCP driver actor provides a pure Syndicate interface to socket
functionality. A new connection is signaled by a new assertion. The program responds by
spawning an actor for the connection. When the connection closes, the driver retracts the
assertion, and the per-connection actor reacts by terminating.

The scalability of the server is demonstrated by gradually ramping up the number of active
connections. The client program alternates between adding new connections and performing
work spread evenly across all open connections. During each connection-opening phase, it
computes the mean per-connection time taken for the server to become ready for work again
after handling the batch of added connections. Figure 88 plots the value of k, the total number
of connections at the end of a phase, on the (logarithmic) x-axis; on the y-axis, it records mean
seconds taken for the server to handle each new arrival. The marginal cost of each additional
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connection remains essentially constant and small, though the results are noisy and subject to
GC effects.

10.3 concrete Syndicate performance

We have seen that the abstract (big-O) performance of Syndicate dataspace implementations
using the trie structure satisfies our expectations. However, programmers rely not only on
big-O evaluations, but also on absolute performance figures. In absolute terms, looking only
at micro-benchmarks such as those explored above, we see that message-passing performance
is quite respectable. The results of figures 86, 87 and 88 were all produced on my commodity
2015-era desktop Linux machine, an Intel Core i7-3770 running at 3.4 GHz; figure 86a shows
that Syndicate/rkt can route approximately 30,000 messages per second, while figure 86b
shows that it can deliver approximately 1,000,000 messages per second.2 As a rough com-
parison, a crude “ping-pong” program written to Racket’s built-in thread, thread-send, and
thread-receive APIs yields approximately 780,000 point-to-point messages (i.e., each message
involving both routing and delivery) per second. We may conclude that the Syndicate/rkt

prototype’s absolute routing performance is roughly a factor of twenty slower than the opti-
mized point-to-point routing infrastructure available in a production language implementation.
Assertion-set manipulation is new, so we have nothing to compare it against; that said, there
are clear directions for improving the constant factors.3

More broadly, the speed of the prototype Syndicate implementations has not prevented
effective use and evaluation of the programs written thus far. Of the larger Syndicate case
studies, the 2D platformers are most challenging from a performance perspective: to achieve
a 60 Hz frame rate, a program must never exceed a hard per-frame time budget of 16.67ms.
Platformer “A”, written primarily using protocols involving Syndicate messages, has no trouble
maintaining a high frame rate even with tens of moving agents on-screen; platformer “B”,
written primarily using protocols manipulating assertions, only manages a high frame rate with
one or two simultaneously moving agents on the screen. To see why, consider again figures 86

and 87: at 30,000 messages per second, we may send up to 500 messages per frame before
exceeding our 60 Hz frame budget; but SCN processing is substantially slower. Even the very
simple program whose measurements are shown in figure 87 does not exceed some 2,500 SCNs
per second, which at 60 Hz gives us a budget of approximately 40 SCNs per frame. Clearly,
future work on optimization of SCN processing will be of great benefit to applications like
platformer “B” which have real-time constraints and make use of assertion-manipulation-heavy
protocols. However, the platform games are an outlier; none of the other case studies places
such extreme demands on the implementation. For example, the graphical window-layout

2 Both figures are for a single core. Syndicate/rkt does not yet take advantage of multiple cores because Racket
requires special programming for multi-core operation.

3 The temptation to dismiss the Syndicate design on grounds of performance must be resisted. A relevant compar-
ison is the development of Smalltalk, a dynamic object-oriented programming system. Early Smalltalk implemen-
tations (Kay 1993) required custom hardware for reasonable performance, and it was not until the Self research
program bore fruit (Chambers 1992; Hölzle 1994; Hölzle and Ungar 1995) some twenty years later that dynamic
object-oriented systems attained performance levels enabling their use in a wide array of production applications.
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GUI system reliably responds to user input within one or two frame times, despite making
use of assertion-based protocols; few things tend to change from frame to frame, unlike the
animation-heavy platformer.

The next-most-challenging case study from a concrete performance perspective is the TCP/IP
stack. On a wired 100GB Ethernet, an IPv4 ICMP “ping” round trip between two Linux ma-
chines adjacent on the network takes ~0.4ms; the highly-optimized C-language Linux kernel
TCP/IP stack is used at both ends of the link. Approximately the same round trip times are
achieved if we replace the responding party’s kernel-based IP stack with a simple C program
responding to pings using the Linux packet(7) packet-capture mechanism. Switching to the
Syndicate/rkt implementation of TCP/IP, by contrast, yields round trips of ~3.5ms, suggest-
ing that it adds ~3ms of round trip latency. In a more realistic setting, pinging the same
machine from a computer on the other side of the city (around ten network hops away), we see
~22ms round trips via the Linux kernel’s IP stack and ~25ms via the Syndicate/rkt stack: the
extra 3ms from Syndicate starts to look less significant in context of ordinary network condi-
tions. The Syndicate DNS resolver, which I have used for my day-to-day browsing since 2012,
is certainly not as quick as the system’s own resolver, written in C; but the ~11ms of latency it
introduces is barely noticeable in the context of day-to-day web browsing.
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Discussion

Chapter 3 sketched a map of the design space of concurrency models, placing each at a point in
a multi-dimensional landscape. The chapter concluded with a discussion of the properties of
an interesting point in that landscape. In this chapter I show that Syndicate uniquely occupies
this point in the design space and that it offers linguistic support for each of the categories
C1–C12 defining the dimensions of the space. I also make connections between Syndicate

and areas of related work not examined in chapter 3. Finally, no design can be perfect for all
scenarios; therefore, I conclude the chapter with a discussion of limitations of the Syndicate

design and the dataspace model.

11.1 placing Syndicate on the map

Section 3.6 gave a collection of desiderata for a concurrency model, expressed in terms of
characteristics C1–C12 described in section 3.1. Syndicate satisfies each of the particulars listed.
No other model discussed in chapter 3 manages to satisfy all at once, though the fact space
model (section 3.5) comes close. As discussed in section 2.5, Syndicate is like an integration
of the fact space model into a programming language design (as opposed to middleware)
and goes beyond the fact space model in its strong epistemic focus and support for explicit
representation of conversations, conversational frames, and conversational state.

Each of the concurrency models of chapter 3 was illustrated with an implementation of a
portion of a running example, a toy “chat server”. Figure 89 gives a Syndicate equivalent at a
similar level of abstraction. However, we do not have to be satisfied with pseudo-code: the real

1 (define (user-agent name socket-id)
2 (assert (present name))
3 (on (message (tcp-in-line socket-id $line))
4 (send! (speak name line)))
5 (during (present $who)
6 (on-start (send! (tcp-out socket-id (format "~a arrived\n" who))))
7 (on-stop (send! (tcp-out socket-id (format "~a left\n" who))))
8 (on (message (speak who $text))
9 (send! (tcp-out socket-id (format "~a: ~a\n" who text))))))

Figure 89: Syndicate chat room user agent
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1 #lang syndicate
2 (require/activate syndicate/drivers/tcp2)
3 (require racket/format)

4 (message-struct speak (who what))
5 (assertion-struct present (who))

6 (spawn #:name ’chat-server
7 (during/spawn (tcp-connection $id (tcp-listener 5999))
8 (assert (tcp-accepted id))

9 (define me (gensym ’user))
10 (assert (present me))
11 (on (message (tcp-in-line id $line))
12 (send! (speak me (bytes->string/utf-8 line))))

13 (during (present $user)
14 (on-start (send! (tcp-out id (string->bytes/utf-8 (~a user " arrived\n")))))
15 (on-stop (send! (tcp-out id (string->bytes/utf-8 (~a user " left\n")))))
16 (on (message (speak user $text))
17 (send! (tcp-out id (string->bytes/utf-8 (~a user ": " text "\n"))))))))

Figure 90: A complete Syndicate TCP/IP chat server program

implementation is available to us. Figure 90 is a Racket source file that implements a complete
TCP/IP chat server listening on port 5999. A fully-realized form of figure 89 appears within
figure 90 as lines 10–17.

As the chat server program starts up, a single actor, chat-server, is created. It expresses
interest in notifications of connections appearing on port 5999 (line 7). In response, the TCP
driver activated on line 2 causes creation of a server socket listening on the specified port. If
the chat-server actor were to terminate, the TCP driver would notice the drop in demand
and stop accepting new connections. Each time a new connection arrives, an actor for the
connection is spawned (line 7). The new actor signals the driver that the connection has been
successfully accepted (line 8) and goes on to establish two related conversations. The first, lines
9–12, reacts to lines of input from the TCP socket, relaying them as speak messages to peers in
the dataspace. The second, lines 13–17, reacts to each separate user present in the space. As
the actor learns that a new user exists, it sends a notification over TCP (line 14); when that user
departs, it sends a matching notification (line 15).1 While connected, anything that user says is
prefixed with the user’s name and delivered via TCP (lines 16–17).

The Syndicate program shown is superficially similar to the sketch of a fact space program
shown in figure 9 (page 38). An immediate difference is that the Syndicate program uses
messages for utterances of connected users, while the fact space program uses tuples, roughly

1 Here we translate Syndicate assertions into messages sent via a non-Syndicate medium, the reverse of the situation
discussed in example 8.17.
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analogous to assertions. A second difference is that no matter the cause, each facet of the
Syndicate program retracts its assertions from the shared space as it terminates, where the
fact space program only does the same if the connection to the tuplespace is broken or closed.
Fact space actors joining and leaving conversations dynamically must keep track of their pub-
lished resources by hand. A more subtle difference between the two programs is that the
Syndicate program attends only to utterances from users who have explicitly marked them-
selves as present. The fact space sketch responds to all Message tuples, no matter the existence
of a corresponding Presence tuple. To adapt the fact space sketch to be equivalent in this way
to the Syndicate program, we would have to add additional book-keeping to track which users
the actor knows to be present. To adapt the Syndicate program to be equivalent to the fact
space program, however, all we would have to do is hoist the endpoint of lines 16–17 above and
outside the during clause of line 13, changing user to $user in the speak pattern. The alteration
reflects a change in ontological relationship between present assertions and speak messages:
after the change, the latter are no longer framed by the former.

(C1; C2; C7) Turning to the criteria described in section 3.1 (page 25), the dataspace model
offers a single primitive mechanism that unifies one-to-one and many-to-many messaging and
state exchange. Syndicate programmers design their assertions and messages to include cor-
relation information that identifies relevant conversational context in domain-specific terms;
because the language routes messages and assertions via pattern matching, the design directly
supports arbitrary numbers of participants in a conversation. Syndicate’s facets provide the
associated control structure and directly express the correspondence between protocol-level
conversational context and actor-level control context. The assertions of interest in an event
handler endpoint serve as the interface between data and control, demultiplexing incoming
events to the correct facets and event handlers. Syndicate programmers use nested sub-facets
to capture sub-conversations within conversational contexts. Nesting of facets reflects nesting
of contexts and captures relationships of ontological dependency between a containing and a
contained conversational frame.

(C3; C4) Endpoints allow arbitrary reactions to changes in the dataspace, but an important
special case is to maintain a local copy of shared information. Syndicate includes streaming
query forms which take on the task of integrating changes from the dataspace with the contents
of local fields. Conversely, Syndicate’s assertion endpoints automatically transfer changes in
local fields into the dataspace.

(C5; C7; C8) Syndicate automatically maintains dataspace integrity in case of partial failure
because its dataspaces offer a set view of a bag of assertions. When an actor fails or terminates,
the dataspace removes all assertions belonging to the actor from the bag. If this affects the set
perspective on the bag, then the dataspace notifies the remaining actors. This fate-sharing (Clark
1988) of state and actor lifetime thus turns into a tool for maintaining application-level invari-
ants. This idea extends beyond maintaining data invariants to maintaining control invariants.
Syndicate’s during and during/spawn forms create and destroy facets in response to assertions
appearing and disappearing; in turn, those created facets assert derived knowledge back into
the dataspace and establish related subscriptions and event handlers. Each such facet exists
only as long as the assertion that led to its creation. This allows the programmer to rely on
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invariants connecting presence of assertions in the dataspace with existence of matching facets
in an actor. For example, in our chat server, programmers may straightforwardly ensure that
every connected user has an asserted present tuple and every present tuple describes a con-
nected user. Exceptions fit the model smoothly, because they cause actor termination, which
retracts all active assertions.

(C6) The core mechanism of the dataspace model, state replication over a lossless medium,
offers an analog of strong eventual consistency (Viotti and Vukolić 2016) to the programmer. This
allows reasoning about common knowledge (Fagin et al. 2004). An actor maintaining some asser-
tion knows both that interested peers learn of the assertion and that each such peer knows that
all others learn of the assertion. By providing this guarantee at the language level, Syndicate

lets programmers rely on this additional form of epistemic reasoning in their protocol designs.
(C9) Syndicate programs may react to retraction of assertions as well as their establishment.

This allows interpretation of particular assertions as demand for some resource. The TCP
driver is a clear example: it allocates and releases sockets to match tcp-connection assertions
in the dataspace. This approach to resource management is a form of garbage collection where
domain-specific descriptions of resources take the place of pointers, and resources are released
once the last expression of interest in them disappears. As such, this idiom is frequently used
in Syndicate programs.2 Even service startup ordering problems can be solved in this way,
interpreting interest in service presence (Konieczny et al. 2009) as a request for service startup or
shutdown.

In section 3.5, we discussed an enhancement to the running example where each user’s pres-
ence record would also include a status message. Figure 10 (page 39) sketched the additional
book-keeping required to track both presence and status of each user. The Syndicate equiv-
alent makes use of the erasure of irrelevant information performed by the inst metafunction
(definition 5.24):

(during (present $who _)

(on-start (send! (tcp-out socket-id (format "~a arrived\n" who))))

(on-stop (send! (tcp-out socket-id (format "~a left\n" who)))))

(on (asserted (present $who $status))

(send! (tcp-out socket-id (format "~a status: ~a\n" who status))))

(C10) As we saw in section 7.4, Syndicate implementations can capture program traces in
terms of the actions and events of the underlying dataspace model. These traces can then
be visualized in various ways, yielding insight into system state and activity. Similar trace
information acts as the basis of an experimental unit-testing facility,3 where executable specifi-
cations of expected behavior in terms of patterns over traces run alongside the program under
test, signaling an error if an unwanted interaction is discovered.

(C11) Syndicate’s facets and fields allow easy addition of new conversations and conver-
sational state to an existing actor without affecting other conversations that actor might be
engaged in. In Syndicate/rkt, Racket’s own abstraction facilities (procedures and macros)
allow programmers to extract facets into reusable chunks of functionality, allowing “mixin”

2 Unlike traditional GC, this resource management strategy allows synthesis of resources merely by naming them!
3 This unit-testing facility is a contribution of my colleague Sam Caldwell.
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style augmentation of an actor’s behavior. When it comes to altering a conversation to include
more or fewer participants, programmers adjust their protocol definitions—if required. A pro-
tocol’s schema may allow participants to freely express interest in certain assertions. Where
such expressions of interest would interfere, however, the protocol must be revised, and the
corresponding facets of actors must be updated to match. However, such changes are local to
the facets concerned and do not affect neighboring facets.

(C12) Finally, tighter integration of Syndicate with existing experimental support for reload-
ing of Racket modules is future work. Experience thus far is that the combination is promising:
a Syndicate protocol for describing the availability of new code allows actors to serialize their
own state and pass it to their post-upgrade replacements. Felleisen et al. (1988) raise the idea
of abstract representations of continuations—that is, of ongoing tasks. It may be promising to
explore this idea in the setting of serialization of actor state, since it may have benefits for code
upgrade, orthogonal persistence, and program state visualization.

11.2 placing Syndicate in a wider context

The map of concurrency-model design space sketched in chapter 3 introduced many ideas, lan-
guages, designs and systems related to Syndicate. Here, we touch on other inspirational and
related work. In particular, Syndicate and the underlying dataspace model invite comparison
to general techniques for functional I/O as well as to process calculi, actor-based models of
concurrency, and messaging middleware.

11.2.1 Functional I/O

Communication is intrinsically effectful. As a result, designers of functional languages (Peyton
Jones 2001; Felleisen et al. 2009) have been faced with the challenge of reconciling effectful with
pure programming when extending their ideas to functional systems.

worlds and universes . Felleisen et al. (2009) propose Worlds, one of the roots of this
work. A World is a context within which a functional program responds to a fixed set of events
chosen for teaching novice programmers. Concurrency is inherent in the model; the user’s ac-
tions are interleaved with other events occurring in the system, making concurrency an integral
part of the design process. The following sample World maintains a counter, incremented as
time passes, that is reset on key-press and drawn to the screen each time it changes:

(big-bang 0 [on-tick (lambda (i) (+ i 1))]

[on-key (lambda (i k) 0)]

[to-draw (lambda (i) (text (~a i) 20 "black"))])

A World program is neither continuation-passing-style nor monadic. Rather than compos-
ing chains of sequential actions, the programmer focuses on formulating responses to asyn-
chronous events. In this context, the programmer must keep in mind that the event following
an action is not knowable.
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Despite their concurrency, Worlds yield a functional model of I/O, since each transition
function reacting to events is pure. Each transition function has roughly the type

WorldState× Event→WorldState×Actions

sometimes omitting the Event input or Actions output. The insight that the specific details of
each transition function’s type signature can be generalized into instantiations of this general
signature was one of the steps that led to Network Calculus and the dataspace model. Further-
more, the “operating system” underpinning a particular World keeps track of its state between
invocations of transition functions; this, too, was early inspiration for Network Calculus. The
behavior of a World program is all possible functional compositions of its event handlers with
appropriate streams of events, again directly comparable to Network Calculus and the data-
space model.

World programs compose to form a Universe, communicating in a strict hub-and-spoke topol-
ogy. Though each World runs in parallel with its neighbors in the Universe, Worlds are them-
selves single-threaded and cannot create or destroy Worlds dynamically. When Worlds fail, the
hub is informed of their disappearance. The dataspace model can be seen as a generalization
of this structure that also recursively demotes each Universe to a mere World in some larger
Universe.

Worlds and Universes suffice for teaching novices, but they do not scale to “real” software.
Following Hudak and Sundaresh in evaluating functional approaches to I/O (Hudak and Sun-
daresh 1988), we see that World programs enjoy good support for equational reasoning and
interactive use but have only limited support for handling error situations. Furthermore, the
fixed set of events offered to Worlds, the strictness of the communications topology, and the
associated concurrency model in Universes impose serious restrictions that are lifted by the
design of the dataspace model.

monadic i/o. Peyton Jones and Wadler (1993) propose monadic I/O, famously and success-
fully subsequently incorporated into Haskell (Peyton Jones 2001). The monadic approach to
combination of functional programming and effectful programming is to reify side-effecting op-
erations as values, and to use monadic type structure to enforce correct sequencing and other
constraints on interpretation of these effect values. While a number of benefits flow from this
design, there is a tendency for the resulting monads to mimic the familiar concepts, style, and
techniques of imperative programming languages. For example, Haskell uses its monadic I/O
facility to offer the programmer exceptions, mutable reference cells, threads, locks, file handles
and so forth. These are accessed via procedure calls that can often be directly mapped to similar
procedures in imperative languages.

The dataspace model shares the notion of reification of actions with the monadic approach.
However, it differs strongly in two respects. First, it is event-based. The monadic model directly
parallels traditional approaches to input, including blocking actions, callbacks and events. Sec-
ond, the dataspace model uses a single language of general-purpose actions—state change
notifications and messages—as a lingua franca through which many disparate protocols are ex-
pressed. The monadic approach uses many different monadic languages and interpreters. For
example, Haskell’s IO monad includes special-purpose representations for a fixed, large suite
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of actions, while the dataspace model offers only message- and assertion-based information
exchange, and expects neighboring actors to interpret encoded descriptions of actions relayed
via messages and assertions. On the one hand, the dataspace approach is modularly extensible,
but on the other hand, it limits itself to a single form of interactivity, whereas monadic type
structure can be used to encode a wide range of effects.

concurrent ml . CML (Reppy 1991, 1999) is a combinator language for coordinating I/O
and concurrency, available in SML/NJ and Racket (Flatt and PLT 2010, version 6.2.1, S11.2.1).
CML uses synchronous channels to coordinate preemptively-scheduled threads in a shared-
memory environment. Like Syndicate, CML treats I/O, communication, and synchronization
uniformly. In contrast to Syndicate, CML is at heart transactional. Where CML relies on
garbage collection of threads and explicit “abort” handlers to release resources involved in
rolled-back transactions, Syndicate monitors assertions of interest to detect situations when a
counterparty is no longer interested in the outcome of a particular action. CML’s threads in-
habit a single, unstructured shared-memory space; it has no equivalent of Syndicate’s process
isolation and layered media.

11.2.2 Functional operating systems

The dataspace model harks back to early research on functional operating systems (Henderson
1982; Stoye 1986), as it is literally a message-based functional OS for coordinating concurrent
components “in the large”. Hudak and Sundaresh (1988) survey approaches to functional I/O;
the dataspace model is distantly related to their “stream-based I/O” formulation. They suggest
that a functional I/O system should provide support for (1) equational reasoning, (2) efficiency,
(3) interactivity, (4) extensibility, and (5) handling of “anomalous situations,” or errors.

equational reasoning . Like Worlds and Universes, the dataspace model allows for
equational reasoning because event handlers are functional state transducers. When side-effects
are absolutely required, they can be encapsulated in a process, limiting their scope. The state
of the system as a whole can be partitioned into independent processes, allowing programmers
to avoid global reasoning when designing and unit-testing their code (Eastlund and Felleisen
2009; Sullivan and Notkin 1990).

efficiency. A functional implementation of a dataspace manages both its own state and
the state of its contained processes in a linear way. Hudak and Sundaresh, discussing their
“stream” model of I/O, remark that the state of their kernel “is a single-threaded object, and so
can be implemented efficiently”. The dataspace model shares this advantage with streams.

There are no theoretical obstacles to providing more efficient and scalable implementations
of the core dataspace model abstractions. Siena (Carzaniga, Rosenblum and Wolf 2000) and
Hermes (Pietzuch and Bacon 2002) both use subscription and advertisement information to
construct efficient routing trees. Using a similar technique for dataspace implementation would
permit scale-out of the corresponding layer without changing any code in application processes.
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interactivity. The term “interactivity” in this context relates to the ability of the system to
interleave communication and computation with other actors in the system, and in particular to
permit user actions to affect the evolution of the system. The dataspace model naturally satisfies
this requirement because all processes are concurrently-evolving, communicating entities.

extensibility. The dataspace model is extensible in that the ground dataspace multiplexes
raw Racket events without abstracting away from them. Hence, driver processes can be written
to adapt the system to any I/O facilities that Racket offers in the future. The collection of
request and response types for the “stream” model given by Hudak and Sundaresh (Hudak
and Sundaresh 1988, section 4.1) is static and non-extensible because their operating system is
monolithic, with device drivers baked in to the kernel. On the one hand, monolithicity means
that the possible communication failures are obvious from the set of device drivers available;
on the other hand, its simplistic treatment of user-to-driver communication means that the
system cannot express the kinds of failures that arise in microkernel or distributed systems.
Put differently, a monolithic stream system is not suitable for a functional approach to systems
programming.

The dataspace model action type (figure 12) appears to block future extensions because it
consists of a finite set of variants. This appearance is deceiving. Actions are merely the interface
between a program and its context. Extensibility is due to the information exchanged between
a program and its peers. In other words, the action type is similar to the limited set of core
forms in the lambda calculus, the limited set of methods in HTTP and the handful of core
system calls in Unix: a finite kernel generating an infinite spectrum of possibilities.

errors . In distributed systems, a request can fail in two distinct ways. Some “failures”
are successful communications with a service, which just happens to fail at some requested
task; but some failures are caused by the unreachability of the service requested. Syndicate

represents the former kind of failure via protocols capable of expressing error responses to
requests. For the latter kind of failure, it uses assertions as presence information to detect
unavailability and crashes.

11.2.3 Process calculi

A major family of concurrency models is based on π-calculus (Milner, Parrow and Walker 1992)
and its many derivatives.

the conversation calculus . Spiritually closest to the dataspace model is the Conver-
sation Calculus (Caires and Vieira 2010; Vieira, Caires and Seco 2008), based on π-calculus.
Its conversational contexts scope multi-party interactions. Named contexts nest hierarchically,
forming a tree. Processes running within a context may communicate with others in the same
context and processes running in their context’s immediate container. Contexts on distinct tree
branches may share a name and thus connect transparently through hyperlinks. The Conver-
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sation Calculus also provides a Lisp-style throw facility that aborts to the closest catch clause.
This mechanism enables supervisor-like recovery strategies for exceptions.

Although the Conversation Calculus and the dataspace model serve different goals—the
former is a calculus of services while the latter is the core of a language design—the two are
similar. Like a dataspace, a conversational context has both a spatial meaning as a location for
computation and a behavioral meaning as a delimiter for a session or protocol instance. Both
models permit communication within their respective kinds of boundary as well as across them.

The two models starkly differ in two aspects. First, the dataspace model cannot transparently
link subnets into logical overlay networks because its actors are nameless. Instead, inter-subnet
routing has to be implemented in an explicit manner, based on state-change notifications. Proxy
actors tunnel events and actions across links between subnets; once such a link is established,
actors may ignore the actual route. Any implementation of Conversation Calculus must realize
just such routing within the implementation; the dataspace model provides the same expres-
siveness as a library feature external to the implementation.

Second, Conversation Calculus lacks state-change notifications and does not automatically
signal peers when conversations come to an end—normally or through failure. Normal termi-
nation in Conversation Calculus is a matter of convention, while exceptions signal failure to
containing contexts but not to remote participants in the conversational context. In contrast, the
state-change notification events of the dataspace model signal failure to all interested parties
transparently.

mobile ambients . Cardelli and Gordon (2000) describe the Mobile Ambient Calculus. An
ambient is a nestable grouping of processes, an “administrative domain” within which compu-
tation and communication occur.

At first glance, Mobile Ambients and the dataspace model are duals. While the dataspace
model focuses on routing data between domains, from which code mobility can be derived via
encodings, Mobile Ambients derives message routing by encoding it in terms of a primitive
notion of process mobility. By restricting ourselves to transporting data rather than code from
place to place, we avoid a large class of mobility-related complication and closely reflect real
networks, which transport only first-order data. Moving higher-order data (functions, objects)
happens via encodings. Furthermore, mobility of code is inherently point-to-point, and the
π-calculus-like names attached to ambients reflect this fact. Syndicate’s pattern-based routing
is a natural fit for a more general class of conversational patterns in which duplication of
messages is desired.

11.2.4 Formal actor models

Another major family of concurrency models has its roots in the actor model of Hewitt and
others (Hewitt, Bishop and Steiger 1973; Agha et al. 1997; De Koster, Van Cutsem and De
Meuter 2016). A particularly influential branch of the family, having some similarities to the
dataspace model, is due to Agha and colleagues (Agha et al. 1997; Callsen and Agha 1994;
Varela and Agha 1999).



250 discussion

Varela and Agha’s variation on the actor model (Varela and Agha 1999) groups actors into
hierarchical casts via director actors, which control some aspects of communication between
their casts and other actors. If multicast is desired, it must be explicitly implemented by a di-
rector. While casts and directors have some semblance to the layered dataspace model, the two
differ in many aspects. The availability of publish/subscribe to dataspace actors automatically
provides multicast without forcing all members of a layer to use the same conversational pat-
tern. Directors are computationally active, but dataspaces are not. In their place, the dataspace
model employs relay actors that connect adjacent layers. Finally, Varela and Agha’s system lacks
state-change notification events and thus cannot deal with failures easily. They propose mobile
messenger actors for localizing failure instead.

In Callsen and Agha’s ActorSpace (Callsen and Agha 1994) actors join and leave actorspaces.
Each actorspace provides a scoping mechanism for pattern-based multicast and anycast mes-
sage delivery. Besides communication via actorspace, a separate mechanism exists to let actors
address each other directly. In contrast, Syndicate performs all communication with interest-
based routing and treats dataspaces as specialized actors, enforcing abstraction boundaries
and making it impossible to distinguish between a single actor or an entire dataspace provid-
ing some service. Actors may join multiple actorspaces, whereas dataspace model actors may
only inhabit a single dataspace, reflecting physical and logical layering and giving an account
of locality. In the dataspace model, actors “join” multiple dataspaces by spawning proxy actors,
which tunnel events and actions through intervening layered dataspaces. Finally, ActorSpace
does not specify a failure model, whereas dataspaces signal failure with state-change notifica-
tion events.

Peschanski et al. (2007) describe an actor-style system with multicast channels connecting
actors, but do not consider layering of actor locations. They consider link failure, channel failure
and location failure as distinct concepts, whereas the dataspace model unifies all of these in the
state-change event mechanism. They describe their multicast routing technique as “additive”,
comparing to the “subtractive” discard-relation-based technique of Ene and Muntean (2001).
The formal model of dataspaces is a hybrid of additive and subtractive: actors are grouped
in a dataspace, providing a crisp scope for broadcast, within which a discard-like subtractive
operation is applied.

Fiege et al. (2002) consider scoping of actors. Their notion of actor visibility differs from
ours: dataspace model actors explicitly route messages and presence between layers using � ·
and friends, whereas their actors are automatically visible to all other actors having a common
super-scope. Their scopes form a directed acyclic graph rather than a tree, whereas dataspace
layering is strictly tree-like. Their event mappings are similar in function to relay actors in
dataspace model programs, translating between protocols at adjacent layers.

Finally, actor models to date lack an explicit interface to the outside world. I/O remains
a brute-force side-effect instead of a messaging mechanism. The functional approach to mes-
saging and recursive layers of the dataspace model empowers us to treat this question as an
implementation decision.
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11.2.5 Messaging middleware

A comparison of Syndicate with publish/subscribe brokers (Eugster et al. 2003) supplies an
additional perspective. Essentially, a dataspace corresponds to a broker: the subset of assertions
declaring interests is the subscription table of a broker; the event and action queues at each
actor are broker “queues”; characteristic protocols are used for communication between parties
connected to a broker; etc. In short, the dataspace model can be viewed as a formal semantics of
brokers. The Syndicate/rkt “broker” actor (appendix C) exposes a WebSocket-based protocol
connecting Syndicate/rkt programs with Syndicate/js programs running in the browser,
taking an important first step toward investigation of Syndicate in a distributed setting.

11.3 limitations and challenges

As we have seen, Syndicate is able to succinctly express solutions to a wide range of con-
currency and coordination problems. However, it also suffers from weaknesses in addressing
others. In this section, we explore some of the challenges to the dataspace model and the
Syndicate language.

security properties . Imagine a Syndicate encoding of the traditional actor model, where
each actor knows its own identity and communications are conveyed as messages carrying tu-
ples (id, payload). An actor with id x would assert ?(x, ?) in order to receive messages addressed
to it; a peer y would send messages 〈x, "hello"〉. However, nothing in the dataspace model pre-
vents y, upon learning the name x, expressing interest ?(x, ?) itself, thereby receiving a carbon-
copy of all messages addressed to x. To prevent this, some notion of permissible assertions for a
given actor must be brought to bear.

Placing a trusted firewall between an untrusted actor and its dataspace can be used to enforce
limits on the assertions made by an actor and its potential children. Key to the idea is that
actor behaviors in the dataspace model are mere functions, opening the possibility of writing
functions to filter the action and event streams traveling to and from an actor’s behavior. In
terms of the dataspace model formalism, a firewall can be as simple as shown in figure 91.
The real Syndicate/rkt implementation is scarcely more complex. Use of a firewall to isolate
untrustworthy actors such as y can thus restore the security properties of the actor model. If
our actor y, supposed to receive only messages addressed to idy, is spawned with an action
Py, we can enforce its good behavior by interpreting

firewall (((?, ?)− ? (?, ?))∪ ? (idy, ?)) Py

instead of Py itself. It remains future work to more closely integrate access controls with
the dataspace model. Preliminary work toward a type system for the dataspace model also
suggests that static enforcement of some of these properties is possible (Caldwell, Garnock-
Jones and Felleisen 2017).

locks and mutual exclusion. Programs such as Dijkstra’s “dining philosophers” re-
quire locks for controlling access to a shared, scarce resource. In the shared-memory concur-
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ffw : ∀τ.(ASet×Fτ → Fτ)
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Figure 91: “Firewalling” dataspace model actors

rency model, semaphores act as such locks. Performing a “down” operation on a semaphore is
interpreted as claiming a resource; the corresponding “up” operation signifies resource release.
The tuplespace model is able to implement the necessary mutual exclusion by assigning a spe-
cific tuple in the store as a quasi-physical representative of a lock. As tuples move from place
to place, each tuple having an independent lifetime, the notion of a current holder of a tuple
makes sense.4 The locking protocol for a tuplespace, then, is to perform an out(lock) action to
initialize the lock to its unlocked state, to perform in(lock) to claim the lock, and to release it
by once more performing out(lock). The actor model and other message-passing models must
choose some other strategy, lacking shared state entirely; a common solution there is to reify a
lock as an actor mediating access to the contested resource.

Syndicate’s dataspaces are in some ways quite similar to tuplespaces. A key difference is
that Syndicate assertions do not have the independent existence of tuples: multiple indepen-
dent assertions of the same value cannot be distinguished from just one, and any observers
expressing interest in a given assertion all receive updates regarding its presence in the data-
space. There is therefore no way for Syndicate’s assertion-manipulation primitives to directly
implement locking or mutual exclusion; the dataspace itself is not stateful in the right way.
However, borrowing from the actor model, an indirect implementation of locking is perfectly
possible, as we have seen already in figure 35.5 The necessary state of each lock must be held

4 This property of tuples is known as “generativity” in the literature (Gelernter 1985, section 2, p. 82).
5 At heart, this problem is about atomic transfer of ownership of some resource. Interestingly, no realizable electronic

computer network has any means of expressing such transfers. The actor model and Syndicate both share this
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within some actor, which is then able to make authoritative decisions about which peer is to be
assigned the lock at any one time. This strategy is exactly the same as that required to imple-
ment locking in the actor model. A key improvement over both the equivalent actor model lock
implementation and the tuplespace approach to locking is the ability of Syndicate protocols to
rely on automatic assertion retraction on actor termination or failure: here, a lock-holder that
crashes automatically releases the lock, freeing the lock-maintaining actor to assign the lock to
some other waiting client.6

message-based vs . assertion-based signaling . Syndicate not only allows but forces
a kind of temporal decoupling of components: every time a request travels via the dataspace,
the programmer may rely on eventually getting the answer needed, but does not know in gen-
eral how soon. Other things may also happen in the meantime. Some protocol domains rely
intrinsically on tight temporal bounds—sometimes on the “synchrony” hypothesis, on being
able to access any part of the application’s state in “no time at all”—and for these problems,
Syndicate may be of limited application. Implementation of an IRC server makes for an in-
teresting case study here: traditional implementations take advantage of being able to “stop
the world” and query the global server state. However, even there we can adapt to the forced
decoupling mandated by Syndicate and get some advantages. Appendix B presents the case
study in more detail.

capturing and embedding of sets of assertions . Patterns in Syndicate match indi-
vidual assertions from the dataspace, and pattern variables capture single host-language values.
Similarly, the assertion templates in endpoints only allow embedding of fields holding single
host-language values. From time to time, direct extraction or insertion of assertion sets would
be valuable. For example, the “broker” program connecting Syndicate/rkt to Syndicate/js

(appendix C) relays arbitrary assertion sets in bulk between the Racket and JavaScript sides of
the network connection, whether those sets are finite or not. Given that the existing Syndicate

pattern language only allows matching of single values, the broker relies on ad-hoc extensions
to the language design in order to perform its task.

complex “joins” on assertions . In the IRC server example discussed in Appendix B,
the program must communicate an initial set of channel members upon channel join. Setting
aside interactions with the complications of NICK/QUIT tracking discussed in the appendix,
one might imagine using Syndicate/rkt’s immediate-query form to imperatively compute the
initial set of channel members:

(define conns (immediate-query [query-set (ircd-channel-member Ch $c) c]))

(define nicks (immediate-query [query-set (ircd-connection-info conns $n) n]))

(send-initial-name-list! Ch nicks)

characteristic with such physical networks. This raises questions as to whether tuplespaces can be implemented
“primitively” at all, or whether they must always be encoded in terms of some underlying message-passing system.

6 Erlang can use exit signals to achieve a similar outcome, as can other actor languages with an analogous construct.
Various suggestions have been made to overcome the “lost tuple” problem in tuplespace languages (Bakken and
Schlichting 1995).
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Unfortunately, this doesn’t work, because as we have just discussed, embedding sets of values
like conns into an assertion set is not currently supported. An alternative is to iterate over
conns, performing an immediate-query for each peer connection, making n+ 1 round trips to
the dataspace. A future Syndicate design could perhaps include some way of specifying a join-
like construct: a way of asserting “interest in all records (ircd-connection-info c n) where c
is drawn from any record (ircd-channel-member Ch c),” retrieving the information of interest
in a single round trip.

negative knowledge and “snapshots .” It can be awkward to express programs that
interpret the absence of a particular assertion as logically meaningful, a form of negation; recall
the machinations that the code of figure 83 (page 227) was forced to engage in. There, the
facet assumed absence of relevant knowledge at startup, acting as if no relevant assertions were
present. It then updated its beliefs upon discovery of relevant knowledge, and altered its ac-
tions accordingly. This difficulty is related to the “open world” nature of Syndicate dataspaces.
Relatedly, as discussed in section 4.8, in situations where one may validly make a closed-world
assumption, it is awkward to gather a “complete” set of facts relevant to a given query. For
example, consider again the task of the IRC server when a user joins an existing IRC channel.
The server must collect and send the new user a list of all users already present in the channel
before transitioning into an incremental membership-maintenance mode. This is the inverse of
the IRC client example motivating the use of assert! and retract! seen in section 6.6. The
IRC server solves the problem by establishing interest in assertions describing channel mem-
bership, then waiting for a rather arbitrary length of time—two dataspace-and-back round trip
times—before calling the membership information it has gathered at that point “enough” and
transmitting it. How long is long enough to wait? In this case, two round trips sufficed, but in
general, no limit can be placed. At its root, the reason is that expression of interest in a record
may result in lazy production of that record. A special, but important, case is that of a relay
actor whose responsibility is to convey expressions of interest across some gap—be it a network
link, or simply a bridge between two adjacent nested dataspaces—and to convey the resulting
assertions back in the other direction. Each relay introduces latency between detection of inter-
est in an assertion and production of the assertion itself. Actors interested in assertions cannot
in general predict any upper bound on this latency.
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Conclusion

12.1 review

The thesis that this dissertation defends is

Syndicate provides a new, effective, realizable linguistic mechanism for sharing
state in a concurrent setting.

As in the introduction, we can examine this piece by piece.

mechanism for sharing state . We have seen that, as promised, the dataspace model
(chapter 4) directly focuses on the management, scoping, and sharing of conversational state
among collaborating actors. Actors exchange state-change notification events with their sur-
roundings, describing accumulated conversational knowledge. Dataspaces use epistemic
knowledge of actors’ interests to route information and record provenance to maintain in-
tegrity of the store after partial failure.

linguistic mechanism . The full Syndicate language design (chapter 5) equips a host
language used to write leaf actors in a dataspace with new linguistic constructs: facets,
endpoints and fields. Facets manifest conversations and conversational state within an
actor. Each facet comprises a bundle of private state, shared state, subscriptions and event-
handlers. Programmers tie facet lifetimes to the lifetimes of conversational frames. Facets
nest, forming a structure that mirrors the logical structure of ongoing conversations.

realizability. A new data structure, the assertion trie, provides efficient pattern matching
and event routing at the heart of Syndicate/rkt and Syndicate/js, the two prototype
Syndicate implementations (chapters 6 and 7).

effectiveness . The effectiveness of the design is shown through examination of program-
ming idioms (chapter 8), discussion of programming patterns and design patterns elimi-
nated from Syndicate programs (chapter 9), and through preliminary confirmation of the
expected performance of the implementation approach taken (chapter 10).

novelty. While Syndicate draws on prior work, it stands alone at an interesting point in the
design space of concurrency models (chapter 11).
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12.2 next steps

The Syndicate design gives programmers a new tool and a new way of thinking about co-
ordination of concurrent components in non-distributed programs. This dissertation has devel-
oped an intuition, a computational model, and the beginnings of a programming model for
Syndicate. There are several possible paths forward from here.

enhancements to the formal models . First, development of a Syndicate type sys-
tem could allow programmers to capture and check specifications not only for structural prop-
erties of the data to be placed in each dataspace, but behavioral properties of actors participat-
ing in Syndicate conversations, including their roles, responsibilities and obligations. Second,
the core dataspace model does not include any kind of programmer-visible name or name-like
entity, but many protocols depend on some notion of globally unique token; equipping the
formal model with either unique or unguessable tokens would allow exploration of the formal
properties of such protocols and the programs that implement them. Finally, as part of work to-
ward a model of distributed Syndicate, separating the grouping aspect of dataspaces from their
layering aspect would allow investigation of “subnets”: fragmentary dataspaces that combine
to form a logical whole.

system model . The few experiments exploring Syndicate tool support so far have been
promising, suggesting that the design might offer a new perspective on broader systems ques-
tions. Development of protocols for process control, for generalized “streams” of assertions,
and for console-based or graphical user interaction with programs would allow experimenta-
tion with operating systems design. The Syndicate/rkt prototype implementation already
includes use of contracts (Dimoulas et al. 2016) to check field invariants; perhaps new kinds of
contract could be employed to check actor, role, or conversation invariants within and between
dataspaces. The “firewall” mechanism for securing access to the dataspace could be combined
with ideas from certificate theory (Ellison et al. 1999) to explore multiuser Syndicate. Strate-
gies for orthogonal persistence of Syndicate actors could allow investigation of database-like,
long-lived dataspaces. The existing “broker” approach to integrating Syndicate/rkt with
Syndicate/js could be generalized to support polyglot Syndicate programming more gen-
erally. Finally, the implementations of Syndicate to date have employed single-threaded, co-
operative concurrency; introduction of true parallelism would be an important step toward a
distributed Syndicate implementation.

distributed systems . The centrality of state machine replication to distributed systems
(Lamport 1984) is one of the reasons to hope Syndicate might work well in a distributed setting,
given the centrality of state replication to the dataspace model. Communication via assertions,
rather than messages, can lead to protocols that automatically withstand lost messages, even in
the presence of certain kinds of “glitching”. That is, replication by state-change notification is
in some sense self-synchronizing. Syndicate programs must already cope with certain forms
of partial failure familiar from distributed systems; for example, messages can be “lost” if
they are routed through a relay actor that crashes at an inopportune moment. Even though the
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underlying dataspace itself guarantees reliable message delivery, this guarantee only applies on
a “hop-by-hop” basis. It would be interesting to attempt to scale this nascent resilience up to a
distributed setting, perhaps even transplanting some of the benefits of Syndicate back into the
fact space model. Finally, since certain aspects of causal soundness (definition 4.31) are helpful
but not essential, we are free to consider alternative “subnet”-based implementation strategies,
such as making actors build copies of the whole routing table themselves, leaving the dataspace
“empty” and stateless, and using Bloom filters or similar to narrowly overapproximate the
interests of an actor or group of actors.





A
Syndicate/js Syntax

Figure 92 presents an Ohm (Warth, Dubroy and Garnock-Jones 2016) grammar that extends
JavaScript with Syndicate’s new language features. Support is provided for spawning new
actors (lines 11–16), for creating (lines 17–18) and configuring (lines 19–30) facets, for managing
fields (lines 35–37), sending messages (line 38) and matching incoming events (lines 39–48). The
remainder of the compiler from the extended JavaScript dialect to the core language is placed
alongside the grammar in a separate 460-line JavaScript file.

In order to keep the compiler simple, some of the tasks performed by the Syndicate/rkt

macro-based compiler are deferred to runtime in the Syndicate/js implementation. In ad-
dition, the Ohm system is, at heart, a parsing toolkit, and does not offer an analogue of the
intricately interwoven multi-phase expansion process available in Racket’s syntactic extension
system; therefore, features such as event expanders, which allow the Syndicate/rkt program-
mer to define custom event pattern forms, are precluded. This limits the Syndicate/js pro-
grammer to those event pattern forms built-in to the compiler.

Two entry points to the compiler are provided: a command-line tool, for ordinary batch
compilation, and a browser-loadable package. The latter allows for rapid development of
Syndicate/js-based web applications by on-the-fly translating HTML script tags with a type

attribute of “text/syndicate-js” into plain JavaScript that the browser can understand.

example

Figure 93 shows a complete example browser-based Syndicate/js program. Figure 93a speci-
fies the HTML structure of the page loaded into the browser; figure 93b specifies Syndicate/js

code giving the program its behavior. Lines 4 and 5 of the HTML load the latest versions of
the Syndicate/js compiler and runtime, respectively, from the syndicate-lang.org domain.
Line 6 connects the HTML to the Syndicate/js program, making sure to correctly label the
type of the linked code as text/syndicate-js in order to arrange for it to be compiled to plain
JavaScript on the fly. Lines 7 and 8 are the user-visible interface; in particular, two elements
are given identifiers in order for them to be accessible from the script. The clickable button is
named counter, and the span of text forming its label is named button-label.

Line 1 of the script in figure 93b opens a block declaring the boot script for the ground
dataspace to be run. Line 2 activates the Syndicate/js “user interface” driver, responsible
for mapping assertions describing HTML fragments into the page as well as responding to
interest in DOM events by establishing subscriptions and relaying events from the page into the
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1 Syndicate <: ES5 {
2 Statement
3 += ActorStatement
4 | DataspaceStatement
5 | ActorFacetStatement
6 | ActorEndpointStatement
7 | AssertionTypeDeclarationStatement
8 | FieldDeclarationStatement
9 | SendMessageStatement

10 FunctionBodyBlock = "{" FunctionBody "}"

11 ActorStatement
12 = spawnStar (named Expression<withIn>)? FunctionBodyBlock -- noReact
13 | spawn (named Expression<withIn>)? FunctionBodyBlock -- withReact

14 DataspaceStatement
15 = ground dataspace identifier? FunctionBodyBlock -- ground
16 | dataspace FunctionBodyBlock -- normal

17 ActorFacetStatement
18 = react FunctionBodyBlock

19 ActorEndpointStatement
20 = on start FunctionBodyBlock -- start
21 | on stop FunctionBodyBlock -- stop
22 | assert FacetPattern AssertWhenClause? #(sc) -- assert
23 | on FacetEventPattern FunctionBodyBlock -- event
24 | on event identifier FunctionBodyBlock -- onEvent
25 | stop on FacetTransitionEventPattern FunctionBodyBlock -- stopOnWithK
26 | stop on FacetTransitionEventPattern #(sc) -- stopOnNoK
27 | dataflow FunctionBodyBlock -- dataflow
28 | during FacetPattern FunctionBodyBlock -- during
29 | during FacetPattern spawn (named Expression<withIn>)?
30 FunctionBodyBlock -- duringSpawn

31 AssertWhenClause = when "(" Expression<withIn> ")"

32 AssertionTypeDeclarationStatement
33 = (assertion | message) type identifier "(" FormalParameterList ")"
34 ("=" stringLiteral)? #(sc)

35 FieldDeclarationStatement = field MemberExpression ("=" AssignmentExpression<withIn>)? #(sc)
36 MemberExpression += field MemberExpression -- fieldRefExp
37 UnaryExpression += delete field MemberExpression -- fieldDelExp

38 SendMessageStatement = "::" Expression<withIn> #(sc)

39 FacetEventPattern
40 = message FacetPattern -- messageEvent
41 | asserted FacetPattern -- assertedEvent
42 | retracted FacetPattern -- retractedEvent

43 FacetTransitionEventPattern
44 = FacetEventPattern -- facetEvent
45 | "(" Expression<withIn> ")" -- risingEdge

46 FacetPattern
47 = LeftHandSideExpression metalevel decimalIntegerLiteral -- withMetalevel
48 | LeftHandSideExpression -- noMetalevel

49 // (Keyword definitions elided)
50 }

Figure 92: Ohm grammar for the Syndicate/js extension to JavaScript
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1 <!doctype html>

2 <html>

3 <meta charset="utf-8">

4 <script src="http://syndicate-lang.org/dist/syndicatecompiler.js"></script>

5 <script src="http://syndicate-lang.org/dist/syndicate.js"></script>

6 <script type="text/syndicate-js" src="index.js"></script>

7 <h1>Button Example</h1>

8 <button id="counter"><span id="button-label"></span></button>

9 </html>

(a) index.html, HTML page hosting the program

1 ground dataspace {

2 Syndicate.UI.spawnUIDriver();

3 spawn {

4 var ui = new Syndicate.UI.Anchor();

5 field this.counter = 0;

6 assert ui.html(’#button-label’, ’’ + this.counter);

7 on message Syndicate.UI.globalEvent(’#counter’, ’click’, _) {

8 this.counter++;

9 }

10 }

11 }

(b) index.js, Syndicate/js source code, automatically translated to plain JavaScript

Figure 93: Example Syndicate/js in-browser program

dataspace. Lines 3–10 comprise the lone actor in this program. Line 4 constructs a JavaScript
object offering convenience methods for constructing assertions and event patterns. On line
6, we see one of its uses. The actor asserts a record whose interpretation is, loosely, “please
add the literal string representation of the value of this.counter to the collection of DOM
nodes inside the element with ID button-label.” The assertion make reference to the field
this.counter declared on line 4. The dataflow mechanism ensures that as this.counter is
updated, assertions and subscriptions depending on it are automatically updated to match.
Lines 7–9 comprise the sole event handler endpoint in the program, soliciting notifications
about mouse-clicks on the DOM element with ID counter. In response, the actor increments
its this.counter field.

Figure 94: The running program

The net effect of all of this is shown in figure 94. Each time
the user clicks the button, the number on the button’s label is
incremented.





B
Case study: IRC server

Syndicate encourages programmers to design protocols that use assertion signaling, rather
than messages, to exchange information. In many cases, this results in a “logical” character-
ization of protocol progress that is robust in the face of unexpected processing latency and
partial failure. Use of messages within a conversational frame established by assertions is also,
in many cases, perfectly sensible. However, in some cases—predominantly integration with
non-Syndicate protocols, where messages alone transfer changes in application state—the
Syndicate programmer must still carefully reason about order of events and latency. The
reasoning involved is in some ways similar to that used to design away races in languages with
other approaches to concurrency, but is focused on epistemic questions rather than questions of
state; programmers think about which components know certain facts, rather than which locks
are in certain states. Solutions include tracking causality in exchanged messages, or explicitly
serializing communications through a single actor performing the role of single-point-of-truth.
Syndicate is no different to the actor model in this regard; programming in Erlang, for exam-
ple, involves exactly the same kinds of considerations.1

A challenging example is found in the IRC protocol (Oikarinen and Reed 1993; Kalt 2000).
Upon joining a channel, the server sends the client first an aggregate of all users previously
present in the channel. Then, updates to that set are delivered via incremental JOIN and PART

notifications; if a peer disconnects, QUIT replaces PART. However, if a channel member decides
to change its nickname, this is to be reported by the server not as a PART of the old nickname
followed by a JOIN of the new, but by a special NICK message. In the Syndicate IRC server
case study,2 the requirements thus far can be met with only modest contortions (figure 95). The
challenge appears when we notice the requirement that if our connection is in two channels,
and some peer X is in those same channels, and X renames itself to Y, the server should send
only one NICK message; likewise, if X disconnects, only one QUIT message should be sent. That
is, NICK and QUIT messages relate to connected users, not channels, but are only delivered to
a client when they are relevant, namely when the client has one or more channel in common
with the name-changing or disconnecting user. The code shown in figure 95 delivers redundant
NICK and QUIT messages in these situations. A different approach is called for.

1 For example, the internal architecture of RabbitMQ had to be revised several times to avoid RPC-like interactions
in favor of unidirectional streaming in order to avoid time-of-check-to-time-of-use problems stemming from the
fact that messages between independent pairs of actors may legitimately be delivered in any order in Erlang (and
the actor model). If multiple paths from a stateful component to some sink exist, then it is perfectly possible for
updates involving the stateful component to arrive out-of-order.

2 Source code file examples/ircd/session.rkt in the Syndicate repository.
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1 (during (ircd-channel-member $Ch this-conn)
2 (field [initial-names-sent? #f]
3 [initial-member-nicks (set)])

4 (on-start (flush!)
5 (flush!) ;; two round-trips to dataspace: gather current peers
6 (define nicks (initial-member-nicks))
7 (initial-names-sent? #t)
8 (initial-member-nicks ’no-longer-valid)
9 (send-initial-name-list! Ch nicks))

10 (during (ircd-channel-member Ch $other-conn)
11 (field [current-other-name #f])

12 (define/query-value next-other-name #f
13 (ircd-connection-info other-conn $N)
14 N)

15 (on (retracted (ircd-channel-member Ch other-conn))
16 (when (current-other-name)
17 (send-PART (current-other-name) Ch)))

18 (begin/dataflow
19 (when (not (equal? (current-other-name) (next-other-name)))
20 (cond
21 [(not (next-other-name)) ;; other-conn is disconnecting
22 (send-QUIT (current-other-name))]
23 [(not (initial-names-sent?)) ;; still gathering initial list
24 (initial-member-nicks (set-add (initial-member-nicks)
25 (next-other-name)))]
26 [(not (current-other-name)) ;; other-conn is joining
27 (send-JOIN (next-other-name) Ch)]
28 [else ;; it’s a nick change
29 (send-NICK (current-other-name) (next-other-name))])
30 (current-other-name (next-other-name))))))

Figure 95: Heart of the IRC server channel-membership-tracking code.
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1 (field [peer-common-channels (hash)]
2 [peer-names (hash)])

3 (define (add-peer-common-channel! other-conn Ch)
4 (peer-common-channels
5 (hashset-add (peer-common-channels) other-conn Ch)))

6 (define (remove-peer-common-channel! other-conn Ch)
7 (peer-common-channels
8 (hashset-remove (peer-common-channels) other-conn Ch)))

9 (define (no-common-channel-with-peer? other-conn)
10 (not (hash-has-key? (peer-common-channels) other-conn)))

11 (define (forget-peer-name! other-conn)
12 (peer-names (hash-remove (peer-names) other-conn)))

13 (define (most-recent-known-name other-conn)
14 (hash-ref (peer-names) other-conn #f))

15 (define (remember-peer-name! other-conn name)
16 (peer-names (hash-set (peer-names) other-conn name)))

Figure 96: Additional per-connection IRC server fields for NICK/QUIT deduplication.

Traditional IRC server implementations such as the original ircd (as of version irc2.11.2p3)
and newer implementations such as miniircd3 are able to avoid these concerns. Two differences
in design interact to make this possible. First, they are single-threaded, event-driven programs.
In effect, all state in the system is local to the active thread. Second, notification transmission is
performed by the component responsible for the user being renamed or disconnecting, giving
a convenient place to store a transient “checklist” of users to whom a particular NICK or QUIT

notification has already been delivered. When preparing such notifications, these programs
simply loop over all members of all the changing user’s channels, making a note of peers to
whom they have sent notifications as they go, in effect deduplicating the notifications.

Nothing prevents us from writing a Syndicate IRC server in this style: a single “server”
actor could hold all relevant state, with a facet for each connected user; in its event handlers,
it would be able to interrogate the instantaneous state of the server as a whole without hav-
ing to make allowance for the temporal decoupling that arises every time a Syndicate actor
accesses its dataspace. However, taking this approach forfeits the advantages offered by id-
iomatic Syndicate design. In the Syndicate IRC implementation, authoritative aggregate
system state lives in the dataspace, not in individual actors, and notification transmission is
the responsibility of the component representing the party to be notified; deduplication must
happen there.

3 https://github.com/jrosdahl/miniircd

https://github.com/jrosdahl/miniircd
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1 (during (ircd-channel-member $Ch this-conn)
2 (field [initial-names-sent? #f]
3 [initial-member-nicks (set)])

4 (on-start (flush!)
5 (flush!) ;; two round-trips to dataspace: gather current peers
6 (define nicks (initial-member-nicks))
7 (initial-names-sent? #t)
8 (initial-member-nicks ’no-longer-valid)
9 (send-initial-name-list! Ch nicks))

10 (during (ircd-channel-member Ch $other-conn)
11 * (on-start (add-peer-common-channel! other-conn Ch))
12 * (on-stop (remove-peer-common-channel! other-conn Ch)
13 * (when (no-common-channel-with-peer? other-conn)
14 * (forget-peer-name! other-conn)))

15 (field [current-other-name #f])

16 (define/query-value next-other-name #f
17 (ircd-connection-info other-conn $N)
18 N)

19 (on (retracted (ircd-channel-member Ch other-conn))
20 (when (current-other-name)
21 (send-PART (current-other-name) Ch)))

22 (begin/dataflow
23 (when (not (equal? (current-other-name) (next-other-name)))
24 (cond
25 [(not (next-other-name)) ;; other-conn is disconnecting
26 * (when (most-recent-known-name other-conn)
27 * (send-QUIT (current-other-name))
28 * (forget-peer-name! other-conn))]
29 [(not (initial-names-sent?)) ;; still gathering initial list
30 (initial-member-nicks (set-add (initial-member-nicks)
31 (next-other-name)))
32 * (remember-peer-name! other-conn (next-other-name))]
33 [(not (current-other-name)) ;; other-conn is joining
34 (send-JOIN (next-other-name) Ch)
35 * (remember-peer-name! other-conn (next-other-name))]
36 [else ;; it’s a nick change
37 * (when (not (equal? (next-other-name)
38 * (most-recent-known-name other-conn)))
39 * (send-NICK (current-other-name) (next-other-name))
40 * (remember-peer-name! other-conn (next-other-name)))])
41 (current-other-name (next-other-name))))))

Figure 97: IRC server channel-membership-tracking with NICK/QUIT deduplication.
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To perform this deduplication, the actor must track exactly the names of peers with whom
we share a channel. The simplest approach I could come up with uses two new connection-
scoped fields to do this. Figure 96 shows the new fields and their use. The changes to the
code of figure 95 are the lines marked with * in figure 97. Lines 10–11 manage the connection’s
view of which other connections have a channel in common with this connection. The actual
deduplication, the purpose of the exercise, occurs on lines 25–27 and 36–39.

One noteworthy feature of the code in figure 96 is its similarity to a special-purpose repre-
sentation of a local dataspace containing “virtual assertions” of the form

(ircd-common-channel this-conn other-conn)

(ircd-connection-info other-conn name)

The fact that the program already relies on ircd-connection-info assertions in the dataspace
raises the question of why we do not simply assert

(ircd-common-channel this-conn other-conn)

within the during clause starting on line 9 of figure 97, and add a new facet to the connection ac-
tor reacting to ircd-common-channel, tracking ircd-connection-info and issuing NICK and QUIT

messages when required. The answer is that building an initial summary of names is a stateful
procedure that is part of joining an individual channel, while tracking NICK changes and QUIT

events is done on a per-connection basis. It would be possible for the summary-construction
process to add a nickname X to its set, for X to rename itself Y, and for the corresponding “:X
NICK Y” message to be transmitted before the summary list, containing the already-obsolete X.
Absent the requirement to summarize channel members in a manner syntactically distinct from
subsequent changes to channel membership, this assertion-based approach of “following the
logic” would work well.





C
Polyglot Syndicate

Many of the programs developed in Syndicate have involved multiple separate processes,
some running Syndicate/rkt and others Syndicate/js code, communicating via a simple
JSON-based encoding of Syndicate events carried over WebSockets. Informally, imagine a
function enc(·) which maps Syndicate objects to JSON terms. We might encode tries like this:

enc(mt) = []

enc(ok(α)) = [enc(α)]

enc(br(T ′, {s 7→ T , . . . })) = [enc(T ′), [[enc(s), enc(T)], . . . ]]

and might encode Syndicate events like this:

enc(〈c〉) = ["message", enc(c)]

enc(
πi
πo

) = ["patch", [enc(πi), enc(πo)]]

Interoperation between Racket and JavaScript requires some agreement on the atoms and
structure-types exchanged. I have chosen a conservative approach of identifying correspond-
ing strings, numbers and booleans in each of Racket, JavaScript and JSON. Racket lists map to
JSON and JavaScript arrays. Racket “prefab” structs map to JSON objects with special @type
and fields members, which in turn map to the “structs” used extensively in the JavaScript data-
space implementation. JSON’s objects—key/value dictionaries—are not otherwise supported,
consonant with the restrictions on Syndicate/js assertions discussed in section 7.2.1.

At each end of a connected WebSocket, a Syndicate actor maps between events arriving
from its dataspace and JSON-encoded packets arriving from the socket. Depending on the

A B
... broker wsock

Syndicate/js

wsock broker ...
C D

Syndicate/rkt

Internet

A B
...

Syndicate/js
...

C D

Syndicate/rkt

Figure 98: Physical (left) and logical (right) arrangement of connected Syndicate processes.
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details of the transformation between events and packets, a number of different effects can be
obtained.

Figure 98 shows two separate Syndicate processes communicating via WebSockets. The left-
hand portion of the figure illustrates the “physical” arrangement: two processes, connected via
the Internet, with Syndicate actors contained in each; in particular, with one actor (“wsock”) on
each side dedicated to managing a WebSocket connection, and one actor (“broker”) dedicated
to relaying between local dataspace events and transmitted WebSocket JSON messages.1 The
right-hand portion of the figure shows one possible logical arrangement that can be achieved.

The illustrated configuration is asymmetric, despite the seeming symmetry of the “physical”
arrangement; the key is in the transformations applied in the “broker” actors at each end of
the link. If the Racket-side “broker” wraps received assertions in a shared() constructor, and
the JavaScript-side “broker” relays out assertions labeled with a toServer() constructor, and
labels assertions with a fromServer() constructor when relaying them in, the resulting logical
arrangement has the shape depicted. Imagine that D in the diagram has expressed interest
in some assertion shared(x), and that A wishes to assert x such that D can see it. D simply
asserts ?shared(x) as usual, and A asserts toServer(x). The “broker” on A’s side has previously
asserted {?toServer(?), ??fromServer(?)}, thereby expressing interest in outbound assertions as
well as interest in interest in inbound assertions.2 After A’s action, the broker thus learns that
toServer(x) has been asserted, and accordingly sends enc( {x}∅ ) along the WebSocket. The broker
on the Racket side receives and decodes this event, and then transforms the assertions carried
within it by wrapping them with the shared() constructor. It then sends the resulting event,
{shared(x)}

∅ , to its dataspace as if the event were endogenous. D then learns of the assertion
as usual. Assertions may also flow in the reverse direction: if B asserts ?fromServer(y), then
the JavaScript-side broker sends enc( {?y}∅ ) through the WebSocket, and the Racket-side broker
asserts {shared(?y), ?shared(y)}. Note that the Racket-side broker has now expressed interest in
shared(y) assertions as if it were interested in such assertions itself. If C then asserts shared(y),
the Racket-side broker receives an event {shared(y)}

∅ , transforms it to {y}
∅ , and relays it to the

JavaScript-side broker, which transforms it to {fromServer(y)}
∅ before delivering it to the JavaScript-

side dataspace, again as if it were endogenous. B then learns of the assertion as usual.

Using transformations similar to these allows us to effectively embed labeled portions of a
dataspace within other dataspaces in a virtual hierarchy. If more than one JavaScript client is
connected at the same time, it appears alongside the other connected (and local) actors in the
Racket-side dataspace. Naturally, when the client disconnects, be it cleanly or as the result
of a crash or networking problem, this manifests to the Racket-side broker as a WebSocket
disconnection; the broker terminates itself in response, thereby automatically retracting the
assertions from the remote dataspace.

The specific transformation scheme sketched above wraps assertions received from all clients
with the same constructor; in practice, we often wish to be able to securely distinguish between

1 Source code file racket/syndicate/broker/server.rkt in the Syndicate repository.
2 Note the strong similarity to the out metafunction (definition 4.14), used to translate between assertions in adjacent

dataspaces within a Syndicate program.
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assertions made by individual connected clients: the implemented broker therefore allows
customization of the wrappers on a per-connection basis.

By labeling assertions received from connected clients, the broker enforces a kind of spatial
separation between the remote party and local actors. This can be used for sandboxing, among
other things. The “web chat” case study takes advantage of this sandboxing, carefully checking
labeled, untrusted assertions from each connected client before relaying them to peers in the
server-side dataspace. This is a core element in the enforcement of the application’s security
policy, closely related to the “firewalls” described in section 11.3.

Labeling of received assertions has a second benefit: it eliminates any ambiguity between
assertions pertaining to the operation of the broker itself and its websocket connection (which,
recall, is just another actor, communicating with the broker via assertions and messages) and
assertions pertaining to the dataspace on the other end of the websocket link. In particular,
events bearing assertions describing local websocket activity are clearly separated from events
describing remote assertions. The per-connection constructor used to label received assertions
acts as a form of quotation.





D
Racket Dataflow Library

This appendix presents a listing of the Racket dataflow library discussed in section 7.3.3.
The dataflow.rkt source file implements the dataflow mechanism proper.

1 #lang racket/base

2 (provide dataflow-graph?
3 make-dataflow-graph
4 dataflow-graph-edges-forward

5 current-dataflow-subject-id

6 dataflow-record-observation!
7 dataflow-record-damage!
8 dataflow-forget-subject!
9 dataflow-repair-damage!)

10 (require racket/set)
11 (require "support/hash.rkt")

12 (struct dataflow-graph (edges-forward ;; object-id -> (Setof subject-id)
13 edges-reverse ;; subject-id -> (Setof object-id)
14 damaged-nodes) ;; Setof object-id
15 #:mutable)

16 (define current-dataflow-subject-id (make-parameter #f))

17 (define (make-dataflow-graph)
18 (dataflow-graph (hash)
19 (hash)
20 (set)))

21 (define (dataflow-record-observation! g object-id)
22 (define subject-id (current-dataflow-subject-id))
23 (when subject-id
24 (define fwd (dataflow-graph-edges-forward g))
25 (set-dataflow-graph-edges-forward! g (hashset-add fwd object-id subject-id))
26 (define rev (dataflow-graph-edges-reverse g))
27 (set-dataflow-graph-edges-reverse! g (hashset-add rev subject-id object-id))))
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28 (define (dataflow-record-damage! g object-id)
29 (set-dataflow-graph-damaged-nodes! g
30 (set-add (dataflow-graph-damaged-nodes g) object-id)))

31 (define (dataflow-forget-subject! g subject-id)
32 (define rev (dataflow-graph-edges-reverse g))
33 (define subject-objects (hash-ref rev subject-id set))
34 (set-dataflow-graph-edges-reverse! g (hash-remove rev subject-id))
35 (for [(object-id (in-set subject-objects))]
36 (define fwd (dataflow-graph-edges-forward g))
37 (set-dataflow-graph-edges-forward! g (hashset-remove fwd object-id subject-id))))

38 (define (dataflow-repair-damage! g repair-node!)
39 (define repaired-this-round (set))
40 (let loop ()
41 (define workset (dataflow-graph-damaged-nodes g))
42 (set-dataflow-graph-damaged-nodes! g (set))

43 (let ((already-damaged (set-intersect workset repaired-this-round)))
44 (when (not (set-empty? already-damaged))
45 (log-warning "Cyclic dependencies involving ids ~v\n" already-damaged)))

46 (set! workset (set-subtract workset repaired-this-round))
47 (set! repaired-this-round (set-union repaired-this-round workset))

48 (when (not (set-empty? workset))
49 (for [(object-id (in-set workset))]
50 (define subjects (hash-ref (dataflow-graph-edges-forward g) object-id set))
51 (for [(subject-id (in-set subjects))]
52 (dataflow-forget-subject! g subject-id)
53 (parameterize ((current-dataflow-subject-id subject-id))
54 (repair-node! subject-id))))
55 (loop))))

The support/hash.rkt source file implements support routines for maintaining hash-tables
mapping keys to sets of values.

1 #lang racket/base

2 (provide hash-set/remove
3 hashset-member?
4 hashset-add
5 hashset-remove)

6 (require racket/set)

7 (define (hash-set/remove ht key val [default-val #f] #:compare [compare equal?])
8 (if (compare val default-val)
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9 (hash-remove ht key)
10 (hash-set ht key val)))

11 (define (hashset-member? ht key val)
12 (define s (hash-ref ht key #f))
13 (and s (set-member? s val)))

14 (define (hashset-add ht key val #:set [set set])
15 (hash-set ht key (set-add (hash-ref ht key set) val)))

16 (define (hashset-remove ht k v)
17 (define old (hash-ref ht k #f))
18 (if old
19 (let ((new (set-remove old v)))
20 (if (set-empty? new)
21 (hash-remove ht k)
22 (hash-set ht k new)))
23 ht))





Bibliography

Agha, Gul. 1986. Actors: a model of concurrent computation in distributed systems. Cambridge,
Massachusetts: MIT Press. [13, 29]

Agha, Gul A., Ian A. Mason, Scott F. Smith and Carolyn L. Talcott. 1997. “A Foundation for
Actor Computation.” Journal of Functional Programming 7(1):1—-72. [13, 29, 48, 249]

Agorics, Inc. 1995. Joule: Distributed Application Foundations. Technical Report ADd.003.4P
Agorics, Inc. http://www.erights.org/history/joule/. [17]

Alexander, Christopher, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-King
and Shlomo Angel. 1977. A Pattern Language: Towns, Buildings, Construction. New York:
Oxford University Press. [206]

Alur, Rajeev. 2007. Marrying Words and Trees. In Symp. on Principles of Database Systems. Beijing,
China: pp. 233—-242. [146]

Alur, Rajeev and P. Madhusudan. 2009. “Adding nesting structure to words.” Journal of the
ACM 56(3):16:1—-16:43. [129, 146]

Alvaro, Peter, Neil Conway, Joseph M. Hellerstein and William R. Marczak. 2011. Consistency
Analysis in Bloom: a CALM and Collected Approach. In 5th Biennial Conference on Innovative
Data Systems Research (CIDR ’11). [18, 183, 185]

Andersson, Arne and Thomas Ottmann. 1995. “New Tight Bounds on Uniquely Represented
Dictionaries.” SIAM Journal on Computing 24(5):1091–1103. [143]

Armstrong, Joe. 2003. Making reliable distributed systems in the presence of software errors
Phd Royal Institute of Technology, Stockholm.
URL: http://erlang.org/download/armstrong_thesis_2003.pdf [11, 18, 29, 53, 230]

Bach, Kent. 2005. The Top 10 Misconceptions About Implicature. In Festschrift for Larry Horn,
ed. Betty Birner and Gregory Ward. [7]

Bainomugisha, Engineer, Andoni Lombide Carreton, Tom Van Cutsem, Stijn Mostinckx and
Wolfgang De Meuter. 2013. “A Survey on Reactive Programming.” ACM Computing Surveys
45(4):1–34. [37, 155, 197, 198, 199]

Baker, Henry G. 1992. “Lively linear Lisp: "look ma, no garbage!".” ACM SIGPLAN Notices
27(8):89–98.
URL: http://www.pipeline.com/ hbaker1/LinearLisp.html [142]

Baker, Henry G. 1993. “Equal rights for functional objects or, the more things change, the more
they are the same.” ACM SIGPLAN OOPS Messenger 4(4):2–27. [148]

http://www.erights.org/history/joule/


278 Bibliography

Bakken, David E. and Richard D. Schlichting. 1995. “Supporting Fault-Tolerant Parallel Pro-
gramming in Linda.” IEEE Transactions on Parallel and Distributed Systems 6(3):287–302. [34,
35, 253]

Baldoni, Roberto, Leonardo Querzoni and Antonino Virgillito. 2005. Distributed Event Routing
in Publish/Subscribe Communication Systems: a Survey. Technical report Dipartimento di
Informatica e Sistemistica, Università di Roma "La Sapienzia".
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.1108 [146]

Barendregt, H. P. 1984. The Lambda Calculus: Its Syntax and Semantics. rev. ed. Amsterdam, The
Netherlands: North-Holland. [85]

Bass, Len, Paul Clements and Rick Kazman. 1998. Software Architecture in Practice. Addison-
Wesley. [208]

Beck, Kent and Ward Cunningham. 1987. Using pattern languages for object-oriented programs.
In OOPSLA Workshop on Specification and Design for Object-Oriented Programming.
URL: http://c2.com/doc/oopsla87.html [205, 206]

Bernstein, Daniel J. 2004. “Crit-bit trees.”.
URL: http://cr.yp.to/critbit.html [143]

Berry, Gérard and Georges Gonthier. 1992. “The Esterel synchronous programming language:
design, semantics, implementation.” Science of Computer Programming 19(2):87–152. [99]

Bloom, Burton H. 1970. “Space/time trade-offs in hash coding with allowable errors.” Commu-
nications of the ACM 13(7):422–426. [67]

Brinch Hansen, Per. 1993. “Monitors and Concurrent Pascal: A Personal History.” ACM SIG-
PLAN Notices 28(3):1—-35. [27, 207, 208]

Busi, Nadia and Gianluigi Zavattaro. 2001. Publish/subscribe vs. shared dataspace coordi-
nation infrastructures: Is it just a matter of taste? In Proceedings Tenth IEEE International
Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises. WET ICE 2001.
Cambridge, Massachusetts: . [34]

Caires, Luís and Hugo Torres Vieira. 2010. Analysis of Service Oriented Software Systems with
the Conversation Calculus. In Proceedings of the 7th International Conference on Formal Aspects
of Component Software. pp. 6—-33. [248]

Caldwell, Sam, Tony Garnock-Jones and Matthias Felleisen. 2017. “Coordinating Concurrent
Conversations.” Unpublished draft. [61, 95, 98, 251]

Callsen, Christian J. and Gul Agha. 1994. “Open Heterogeneous Computing in ActorSpace.” J.
Parallel and Distributed Computing 21(3):300–289. [23, 249, 250]

Cardelli, Luca and Andrew D. Gordon. 2000. “Mobile ambients.” Theoretical Computer Science
240(1):177–213. [249]



Bibliography 279

Carriero, Nicholas J., David Gelernter, Timothy G. Mattson and Andrew H. Sherman. 1994.
“The Linda alternative to message-passing systems.” Parallel Computing 20(4):633–655. [13,
33]

Carzaniga, Antonio, David S. Rosenblum and Alexander L. Wolf. 2000. Achieving scalability
and expressiveness in an Internet-scale event notification service. In Proceedings of the nine-
teenth annual ACM symposium on Principles of distributed computing - PODC ’00. New York,
New York, USA: ACM Press pp. 219–227. [188, 247]

Chambers, Craig. 1992. The Design and Implementation of the Self Compiler, an Optimizing
Compiler for Object-Oriented Programming Languages Phd Stanford. [239]

Clark, David D. 1988. “The design philosophy of the DARPA internet protocols.” ACM SIG-
COMM Computer Communication Review 18(4):106–114. [55, 243]

Clark, James and Makoto Murata, eds. 2001. RELAX NG Specification. OASIS.
URL: http://relaxng.org/spec-20011203.html [144]

Clements, Paul, Rick Kazman and Mark Klein. 2001. Evaluating Software Architectures: Methods
and Case Studies. Addison-Wesley. [208]

Clinger, William Douglas. 1981. Foundations of Actor Semantics Phd dissertation Mas-
sachusetts Institute of Technology. [59]

Conway, Neil, William Marczak, Peter Alvaro, Joseph M. Hellerstein and David Maier. 2012.
Logic and lattices for distributed programming. Technical report.
URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-167.html [183, 184, 185]

Cooper, Gregory H. and Shriram Krishnamurthi. 2006. Embedding dynamic dataflow in a call-
by-value language. In European Symposium on Programming (ESOP 2006), ed. Peter Sestoft.
Vienna, Austria: Springer-Verlag pp. 294–308. [154, 199]

Coq development team. 2004. The Coq proof assistant reference manual. LogiCal Project. Ver. 8.0.
URL: http://coq.inria.fr [61]

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. 2009. Introduc-
tion to Algorithms. 3 ed. MIT Press. [129, 143]

Culpepper, Ryan and Matthias Felleisen. 2010. Fortifying macros. In Proceedings of the 15th ACM
SIGPLAN International Conference on Functional Programming. ACM pp. 235–246. [110, 153]

Day, John. 2008. Patterns in Network Architecture: A Return to Fundamentals. Prentice Hall. [vii]

De Koster, Joeri, Stefan Marr, Tom Van Cutsem and Theo D’Hondt. 2016. “Domains: Sharing
state in the communicating event-loop actor model.” Computer Languages, Systems & Struc-
tures . [13, 29]



280 Bibliography

De Koster, Joeri, Tom Van Cutsem and Wolfgang De Meuter. 2016. 43 Years of Actors: a
Taxonomy of Actor Models and Their Key Properties. In Proc. AGERE. Amsterdam, The
Netherlands: pp. 31–40. [30, 249]

de la Briandais, Rene. 1959. File Searching Using Variable Length Keys. In Papers Presented at the
the March 3-5, 1959, Western Joint Computer Conference. San Francisco, California: pp. 295–298.
[128]

Denicola, Domenic. 2016. “Cancelable Promises.”.
URL: https://github.com/tc39/proposal-cancelable-promises/tree/0e769fda8e16bff0feffe964fddc43dcd86668ba
[224]

Diao, Yanlei, Mehmet Altinel, Michael J. Franklin, Hao Zhang and Peter Fischer. 2003. “Path
sharing and predicate evaluation for high-performance XML filtering.” ACM Transactions on
Database Systems 28(4):467–516. [146]

Dimoulas, Christos, Max S. New, Robert Bruce Findler and Matthias Felleisen. 2016. “Oh
Lord, Please Don’t Let Contracts Be Misunderstood.” Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming - ICFP 2016 . [256]

Donnelly, Kevin and Matthew Fluet. 2008. “Transactional events.” Journal of Functional Program-
ming 18(5-6):649–706. [29]

Droms, R. 1997. “Dynamic Host Configuration Protocol.” RFC 2131 (Draft Standard).
URL: http://www.ietf.org/rfc/rfc2131.txt [229]

Dunn, Jeffrey. 2017. “Epistemic Consequentialism.” Internet Encyclopedia of Philosophy .
URL: http://www.iep.utm.edu/epis-con/ [8]

Eastlund, Carl and Matthias Felleisen. 2009. Automatic verification for interactive graphical
programs. In Proceedings of the 8th International Workshop on the ACL2 Theorem Prover and its
Applications. New York, New York, USA: ACM Press pp. 33–41. [247]

ECMA. 2015. ECMA-262: ECMAScript 2015 language specification. 6th ed. Ecma International.
[29, 224]

Elliott, Conal and Paul Hudak. 1997. “Functional reactive animation.” Proceedings of the second
ACM SIGPLAN international conference on Functional programming - ICFP ’97 pp. 263–273. [37]

Ellison, C., B. Frantz, B. Lampson, R. Rivest, B. Thomas and T. Ylonen. 1999. “SPKI Certificate
Theory.” RFC 2693 (Experimental).
URL: http://www.ietf.org/rfc/rfc2693.txt [256]

Elphinstone, Kevin and Gernot Heiser. 2013. “From L3 to seL4 – What Have We Learnt in 20

Years of L4 Microkernels?” ACM SIGOPS Symposium on Operating Systems Principles (SOSP)
pp. 133–150. [36]



Bibliography 281

Ene, Cristian and Traian Muntean. 2001. A Broadcast-based Calculus for Communicating Sys-
tems. In Workshop on Formal Methods for Parallel Programming. San Francisco, California: .
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.2165 [250]

Ericsson AB. 2017. Erlang Run-Time System Application (ERTS) Reference Manual, version 9.0.
URL: http://erlang.org/doc/apps/erts/ [231]

Erlang/OTP Design Principles. 2012.
URL: http://www.erlang.org/doc/design_principles/des_princ.html [109]

Ershov, A. P. 1958. “On Programming of Arithmetic Operations.” Communications of the ACM
1(8):3–6.
URL: http://www.pipeline.com/ hbaker1/othergc/Ershov-Hash.txt [142]

Eugster, Patrick Th., Pascal A. Felber, Rachid Guerraoui and Anne-Marie Kermarrec. 2003. “The
many faces of publish/subscribe.” ACM Computing Surveys 35(2):114–131. [34, 146, 188, 251]

Eugster, Patrick Th., Rachid Guerraoui and Christian Heide Damm. 2001. On objects and
events. In Proceedings of the 16th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. Tampa Bay, Florida: pp. 254–269. [209]

Fagin, Ronald, Joseph Y. Halpern, Yoram Moses and Moshe Vardi. 2004. Reasoning About
Knowledge. MIT Press. [8, 15, 244]

Felleisen, Matthias. 1988. The Theory and Practice of First-Class Prompts. In Proc. Principles of
Programming Languages. San Diego, California: . [119]

Felleisen, Matthias. 1991. “On the expressive power of programming languages.” Science of
Computer Programming 17(1–3):35–75. [34, 205, 207]

Felleisen, Matthias, Mitchell Wand, Daniel P. Friedman and Bruce F. Duba. 1988. Abstract
Continuations: A Mathematical Semantics for Handling Full Functional Jumps. In ACM
Conf. on LISP and Functional Programming. Snowbird, Utah: pp. 52–62. [119, 245]

Felleisen, Matthias, Robert Bruce Findler and Matthew Flatt. 2009. Semantics Engineering with
PLT Redex. Cambridge, Massachusetts: MIT Press. [57, 61]

Felleisen, Matthias, Robert Bruce Findler, Matthew Flatt and Shriram Krishnamurthi. 2009. A
Functional I/O System. In ICFP.
URL: http://www.ccis.northeastern.edu/scheme/pubs/icfp09-fffk.pdf [149, 245]

Fiege, Ludger, Mira Mezini, Gero Mühl and Alejandro P. Buchmann. 2002. Engineering Event-
Based Systems with Scopes. In Proc. of the European Conference on Object-Oriented Programming.
[250]

Filliâtre, Jean-Christophe and Sylvain Conchon. 2006. Type-Safe Modular Hash-Consing. In
Proceedings of the 2006 workshop on ML. Portland, Oregon: ACM pp. 12–19. [142]



282 Bibliography

Finch, Tony. 2016. “QP tries are smaller and faster than crit-bit trees.” Tiny Transactions on
Computer Science 4. [143]

Flatt, Matthew, Gang Yu, Robert Bruce Findler and Matthias Felleisen. 2007. Adding delimited
and composable control to a production programming environment. In Proc. Int. Conf. on
Functional Programming. Freiburg, Germany: . [119]

Flatt, Matthew and PLT. 2010. Reference: Racket. Technical Report PLT-TR-2010-1 PLT Inc.
http://racket-lang.org/tr1/. [107, 177, 247]

Flatt, Matthew, Robert Bruce Findler and Matthias Felleisen. 2006. Scheme with Classes, Mixins,
and Traits. In Programming Languages and Systems. Sydney, Australia: pp. 270–289. [148]

Forgy, Charles L. 1982. “Rete: A Fast Algorithm for the Many Patterns/Many Objects Match
Problem.” Artificial Intelligence 19:17–37. [37]

Fournet, Cédric and Georges Gonthier. 2000. “The Join Calculus: a Language for Distributed
Mobile Programming.”. [29]

Fowler, Simon, Sam Lindley and Philip Wadler. 2016. “Mixing Metaphors Actors as Channels
and Channels as Actors.”. [29]

Fredkin, Edward. 1960. “Trie Memory.” Communications of the ACM 3(9):490—-499. [128]

Frølund, Svend and Gul Agha. 1994. Abstracting interactions based on message sets. In ECOOP.
[230]

Gamma, Erich, Richard Helm, Ralph Johnson and John Vlissides. 1994. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley. [17, 205, 206, 207, 209, 215, 220,
227, 229]

Garnock-Jones, Tony and Matthias Felleisen. 2016. Coordinated Concurrent Programming in
Syndicate. In Proc. ESOP. Eindhoven, The Netherlands: pp. 310–336.
URL: http://www.ccs.neu.edu/racket/pubs/esop16-gjf.pdf [47, 146]

Garnock-Jones, Tony, Sam Tobin-Hochstadt and Matthias Felleisen. 2014. The Network as a
Language Construct. In European Symposium on Programming. Grenoble, France: pp. 473—-
492.
URL: http://www.ccs.neu.edu/racket/pubs/esop14-gjthf.pdf [47, 185]

Gelernter, David. 1985. “Generative communication in Linda.” ACM Transactions on Program-
ming Languages and Systems 7(1):80–112. [13, 33, 252]

Gelernter, David and Nicholas Carriero. 1992. “Coordination languages and their significance.”
Communications of the ACM 35(2):97–107. [13]

Golovin, Daniel. 2010. “The B-Skip-List: A Simpler Uniquely Represented Alternative to B-
Trees.” arXiv preprint arXiv:1005.0662 .
URL: http://arxiv.org/abs/1005.0662 [143]

http://racket-lang.org/tr1/


Bibliography 283

González Boix, Elisa. 2012. Handling Partial Failures in Mobile Ad hoc Network Applications:
From Programming Language Design to Tool Support Phd Vrije Universiteit Brussel.
URL: http://soft.vub.ac.be/Publications/2012/vub-soft-phd-12-03.pdf [33]

González Boix, Elisa, Christophe Scholliers, Wolfgang De Meuter and Theo D’Hondt. 2014.
“Programming mobile context-aware applications with TOTAM.” Journal of Systems and Soft-
ware 92(1):3–19. [33, 35]

Gosling, James, Bill Joy, Guy L. Steele, Gilad Bracha and Alex Buckley. 2014. The Java Language
Specification, Java SE 8 Edition. Addison-Wesley Professional. [27]

Goto, Eiichi and Yasumasa Kanada. 1976. Hashing Lemmas on Time Complexities with Appli-
cations to Formula Manipulation. In Proc. ACM Symp. on Symbolic and Algebraic Computation.
Yorktown Heights, New York: pp. 154–158. [142]

Goubault, Jean. 1994. Implementing Functional Languages with Fast Equality, Sets and Maps:
an Exercise in Hash Consing. Technical report Bull S.A. Research Center, rue Jean-Jaurès,
78340 Les Clayes sous Boise. [142]

Graunke, Paul, Shriram Krishnamurthi, Steve Van Der Hoeven and Matthias Felleisen. 2001.
Programming the Web with High-Level Programming Languages. In European Symposium on
Programming. [119]

Grice, H. Paul. 1975. Logic and Conversation. In Syntax and Semantics 3: Speech Acts. New York:
Academic Press pp. 41–58. [6, 7, 8, 15]

Haller, Philipp and Martin Odersky. 2009. “Scala Actors: Unifying thread-based and event-
based programming.” Theoretical Computer Science 410(2-3):202–220. [29, 176]

Hancock, Christopher Michael. 2003. Real-time programming and the big ideas of computa-
tional literacy Phd Massachusetts Institute of Technology. [113]

Harris, Tim, Simon Marlow, Simon Peyton Jones and Maurice Herlihy. 2005. Composable
memory transactions. In Proc. Principles and Practice of Parallel Programming (PPOPP). [27]

Henderson, Peter. 1982. Purely Functional Operating Systems. In Functional Programming and
its Applications, ed. J. Darlington, P. Henderson and D. Turner. Cambridge University Press
pp. 177–192. [247]

Hendricks, Vincent and John Symons. 2015. Epistemic Logic. In The Stanford Encyclopedia of
Philosophy, ed. Edward N. Zalta. Fall 2015 ed. Metaphysics Research Lab, Stanford University.
[8]

Hewitt, Carl. 1971. Procedural Embedding of Knowledge in Planner. In Proc. IJCAI. pp. 167–182.
[179]

Hewitt, Carl, Peter Bishop and Richard Steiger. 1973. A universal modular ACTOR formalism
for artificial intelligence. In Proc. International Joint Conference on Artificial Intelligence. Morgan
Kaufmann Publishers Inc. pp. 235–245. [13, 29, 32, 220, 249]



284 Bibliography

Hinze, Ralf. 2000. “Generalizing generalized tries.” Journal of Functional Programming 10(4):327–
351. [146]

Hoare, C. A. R. 1974. Hints on Programming Language Design. In Computer Systems Reliability,
ed. C. Bunyan. Vol. 20 pp. 505–534. [208]

Hoare, C. A. R. 1985. Communicating sequential processes. Prentice Hall. [29]

Hohpe, Gregor. 2017. “Conversation Patterns.”.
URL: http://www.enterpriseintegrationpatterns.com/patterns/conversation/ [206, 209, 229]

Hohpe, Gregor and Bobby Woolf. 2004. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. 1 ed. Addison-Wesley Professional. [183, 206, 209]

Hölzle, Urs. 1994. Adaptive optimization for Self: Reconciling high performance with ex-
ploratory programming Phd Stanford University.
URL: http://i.stanford.edu/TR/CS-TR-94-1520.html [239]

Hölzle, Urs and David Ungar. 1995. Do Object-Oriented Languages Need Special Hardware
Support? In Proceedings of the 9th European Conference on Object-Oriented Programming (ECOOP
’95). pp. 253–282. [239]

Hudak, Paul and Raman S. Sundaresh. 1988. “On the Expressiveness of Purely Functional I/O
Systems.”. [246, 247, 248]

IEEE. 2009. “International Standard - Information technology Portable Operating System Inter-
face (POSIX) Base Specifications, Issue 7.” ISO/IEC/IEEE 9945:2009(E) pp. 1–3880. [27, 120,
182]

INCITS T13 Committee. 2006. “ANS T13/1699-D: AT Attachment 8 - ATA/ATAPI Command
Set (ATA8-ACS).”. [120]

Ingalls, Dan, Scott Wallace, Yu-ying Chow, Frank Ludolph and Ken Doyle. 1988. Fabrik - A
Visual Programming Environment. In Proc. OOPSLA. [197, 198]

Ionescu, Vlad Alexandru. 2010. “Very fast and scalable topic routing – part 1.”.
URL: http://www.rabbitmq.com/blog/2010/09/14/very-fast-and-scalable-topic-routing-part-1/ [129,
146]

Ionescu, Vlad Alexandru. 2011. “Very fast and scalable topic routing – part 2.”.
URL: https://www.rabbitmq.com/blog/2011/03/28/very-fast-and-scalable-topic-routing-part-2/ [129]

ISO. 2014. “International Standard - Information technology - Programming Languages - C++.”
ISO/IEC 14882:2014 pp. 1–1358. [27]

Jayaram, K. R. and Patrick Eugster. 2011. Split and Subsume: Subscription Normalization
for Effective Content-Based Messaging. In International Conference on Distributed Computing
Systems. pp. 824–835. [188]



Bibliography 285

Kalt, C. 2000. “Internet Relay Chat: Client Protocol.” RFC 2812 (Informational).
URL: http://www.ietf.org/rfc/rfc2812.txt [194, 263]

Kay, Alan C. 1993. “The Early History of Smalltalk.” ACM SIGPLAN Notices 28(3). [239]

Kitcher, Philip. 1990. “The Division of Cognitive Labor.” The Journal of Philosophy 87(1):5–22. [8]

Konieczny, Eric, Ryan Ashcraft, David Cunningham and Sandeep Maripuri. 2009. Establishing
Presence within the Service-Oriented Environment. In IEEE Aerospace Conference. Big Sky,
Montana: . [21, 189, 244]

Korta, Kepa and John Perry. 2015. Pragmatics. In The Stanford Encyclopedia of Philosophy, ed.
Edward N. Zalta. Winter 2015 ed. Metaphysics Research Lab, Stanford University. [14]

Lamport, Leslie. 1984. “Using Time Instead of Timeout for Fault-Tolerant Distributed Systems.”
ACM Transactions on Programming Languages and Systems 6(2):254–280. [256]

Landin, P. J. 1966. “The Next 700 Programming Languages.” Commun. ACM 9(3):157–166. [49]

Lee, Edward A. and David G. Messerschmitt. 1987. “Synchronous data flow.” Proceedings of the
IEEE 75(9):1235–1245. [197]

Leroy, Xavier. 2009. “Formal verification of a realistic compiler.” Communications of the ACM
52(7):107–115. [127]

Li, Peng and Steve Zdancewic. 2007. Combining Events and Threads for Scalable Network
Services. In Proceedings of the 2007 ACM SIGPLAN conference on Programming language design
and implementation. pp. 189–199. [176]

Love, Robert. 2005. “Kernel Korner: Intro to Inotify.” Linux Journal .
URL: http://www.linuxjournal.com/article/8478 [53]

Manna, Zohar and Amir Pnueli. 1991. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer Verlag. [188, 197]

Martins, J. Legatheaux and Sérgio Duarte. 2010. “Routing Algorithms for Content-Based Pub-
lish/Subscribe Systems.” IEEE Communications Surveys and Tutorials 12(1):39–58. [188]

McCarthy, John. 1998. Elaboration Tolerance. In Proc. Fourth Symp. on Logical Formalizations of
Commonsense Reasoning. London, England: .
URL: http://jmc.stanford.edu/articles/elaboration.html [183]

Mey, Jacob L. 2001. Pragmatics: An Introduction. 2 ed. Wiley-Blackwell. [14, 15]

Miller, Heather, Philipp Haller and Martin Odersky. 2014. Spores: A type-based foundation for
closures in the age of concurrency and distribution. In ECOOP. Uppsala, Sweden: . [23]



286 Bibliography

Miller, Heather, Philipp Haller, Normen Müller and Jocelyn Boullier. 2016. Function passing: a
model for typed, distributed functional programming. In Proceedings of the 2016 ACM Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software -
Onward! 2016. Amsterdam, The Netherlands: . [23]

Miller, Mark S. 2006. Robust composition: Towards a unified approach to access control and
concurrency control Phd Johns Hopkins University. [17, 30]

Miller, Mark S., E. Dean Tribble and Jonathan Shapiro. 2005. Concurrency Among Strangers.
In Proc. Int. Symp. on Trustworthy Global Computing. Edinburgh, Scotland: pp. 195–229. [29]

Miller, Mark S., Tom Van Cutsem and Bill Tulloh. 2013. Distributed electronic rights in
JavaScript. In Proc. ESOP. [40]

Milner, Robin. 1999. Communicating and Mobile Systems: The Pi Calculus. Cambridge University
Press. [29]

Milner, Robin, Joachim Parrow and David Walker. 1992. “A calculus of mobile processes, I.”
Information and Computation 100(1):1–40. [248]

Mostinckx, Stijn, Andoni Lombide Carreton and Wolfgang De Meuter. 2008. Reactive Context-
Aware Programming. In Proc. 1st Int. DisCoTec Workshop on Context-aware Adaptation Mecha-
nisms for Pervasive and Ubiquitous Services (CAMPUS). Oslo, Norway: . [13, 37, 38, 100]

Mostinckx, Stijn, Christophe Scholliers, Eline Philips, Charlotte Herzeel and Wolfgang De
Meuter. 2007. Fact spaces: Coordination in the face of disconnection. In Proc. Int. Conf.
on Coordination Models and Languages, ed. Amy L. Murphy and Jan Vitek. Paphos, Cyprus:
pp. 268–285. [13, 37, 100]

Mozafari, Barzan, Kai Zeng and Carlo Zaniolo. 2012. High-performance complex event pro-
cessing over XML streams. In Proceedings of the 2012 international conference on Management of
Data - SIGMOD ’12. New York, New York, USA: ACM Press pp. 253—-264. [146]

Murphy, Amy L., Gian Pietro Picco and Gruia-Catalin Roman. 2006. “LIME: A Coordination
Model and Middleware Supporting Mobility of Hosts and Agents.” ACM Transactions on
Software Engineering and Methodology 15(3):279–328. [33]

Norvig, Peter. 1996. Design patterns in dynamic programming. In Object World.
URL: http://www.norvig.com/design-patterns/design-patterns.pdf [207, 209]

Nystrom, Robert. 2014. Game Programming Patterns. Genever Benning. [220]

Oikarinen, J. and D. Reed. 1993. “Internet Relay Chat Protocol.” RFC 1459 (Experimental).
Updated by RFCs 2810, 2811, 2812, 2813.
URL: http://www.ietf.org/rfc/rfc1459.txt [194, 263]

Oliva, Dino P., John D. Ramsdell and Mitchell Wand. 1995. “The VLISP Verified PreScheme
Compiler.” Lisp and Symbolic Computation 8:111–182. [127]



Bibliography 287

Papadopoulos, George A. and Farhad Arbab. 1998. “Coordination Models and Languages.”
Advances in Computers 46:329–400. [34]

Perlis, Alan J. 1982. “Special Feature: Epigrams on programming.” ACM SIGPLAN Notices
17(9):7–13. [205]

Peschanski, Frédéric, Alexis Darrasse, Nataliya Guts and Jérémy Bobbio. 2007. “Coordinating
mobile agents in interaction spaces.” Science of Computer Programming 66(3):246–265. [250]

Peyton Jones, Simon. 2001. Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell. In Engineering theories of software construc-
tion, ed. C.A.R. Hoare, M. Broy and R. Steinbrueggen. IOS Press pp. 47—-96. [245, 246]

Peyton Jones, Simon L. and Philip Wadler. 1993. Imperative functional programming. In ACM
Symposium on Principles of Programming Languages (POPL). Charleston, South Carolina: . [246]

Pierce, Benjamin C. 2002. Types and Programming Languages. MIT Press. [95]

Pietzuch, Peter Robert and Jean M. Bacon. 2002. “Hermes: a distributed event-based middle-
ware architecture.” Proceedings 22nd International Conference on Distributed Computing Systems
Workshops pp. 611–618. [188, 247]

Plotkin, G. D. 1977. “LCF considered as a programming language.” Theoretical Computer Science
5(3):223–255. [151, 223]

Pugh, William. 1990. “Skip lists: a probabilistic alternative to balanced trees.” Communications
of the ACM 33(6):668–676. [143]

Queinnec, Christian. 2000. The Influence of Browsers on Evaluators or, Continuations to Pro-
gram Web Servers. In ICFP. [119]

Radul, Alexey Andreyevich. 2009. Propagation Networks: A Flexible and Expressive Substrate
for Computation Phd Massachusetts Institute of Technology. [198, 199]

Reppy, John H. 1991. CML: A Higher-order Concurrent Language. In Proc. PLDI. Toronto,
Canada: pp. 293–305. [29, 247]

Reppy, John H. 1999. Concurrent Programming in ML. Cambridge University Press. [177, 247]

Reppy, John Hamilton. 1992. Higher-order Concurrency Phd thesis Cornell University. [22]

Rotem-Gal-Oz, Arnon. 2006. “Fallacies of Distributed Computing Explained.” White paper.
URL: http://www.rgoarchitects.com/Files/fallacies.pdf [3]

Rowstron, Antony. 2000. Using Agent Wills to Provide Fault-tolerance in Distributed Shared
Memory Systems. In Parallel and Distributed Processing. Rhodos, Greece: pp. 317–324. [35]

Rowstron, Antony and Alan Wood. 1996. Solving the Linda multiple rd problem. In Proc. 1st
International Conference on Coordination Models and Languages (COORDINATION ’96). Cesena,
Italy: pp. 357–367. [33]



288 Bibliography

Russell, Nick, Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. 2016. Control-flow
Patterns. In Workflow Patterns: The Definitive Guide. Cambridge, Massachusetts: MIT Press
chapter 4. [223]

Salvaneschi, Guido and Mira Mezini. 2014. Towards Reactive Programming for Object-Oriented
Applications. In Transactions on Aspect-Oriented Software Development XI, ed. Shigeru Chiba,
Éric Tanter, Eric Bodden, Shahar Maoz and Jörg Kienzle. Springer-Verlag Berlin Heidelberg
pp. 227–261. [155]

Sanderson, Steven. 2010. “Introducing Knockout, a UI library for JavaScript.”.
URL: http://blog.stevensanderson.com/2010/07/05/introducing-knockout-a-ui-library-for-javascript/
[155]

Sant’Anna, Francisco, Roberto Ierusalimschy and Noemi Rodriguez. 2015. “Structured syn-
chronous reactive programming with Céu.” Proceedings of the 14th International Conference on
Modularity - MODULARITY 2015 pp. 29–40. [99]

Schlichting, Richard D. and Fred B. Schneider. 1983. “Fail-stop processors: an approach to
designing fault-tolerant computing systems.” ACM Transactions on Computer Systems 1(3):222–
238. [99]

Scholliers, Christophe, Elisa González Boix and Wolfgang De Meuter. 2009. TOTAM: Scoped
Tuples for the Ambient. In Proc. 2nd DisCoTec workshop on Context-aware Adaptation Mechanisms
for Pervasive and Ubiquitous Services (CAMPUS). [33]

Scholliers, Christophe, Elisa González Boix, Wolfgang De Meuter and Theo D’Hondt. 2010.
Context-Aware Tuples for the Ambient. In Proc. On the Move to Meaningful Internet Systems
(OTM). Crete, Greece: . [33]

Seidel, Raimund and Cecilia R. Aragon. 1996. “Randomized search trees.” Algorithmica 16(4-
5):464–497. [143]

Shapiro, Marc, Nuno Preguiça, Carlos Baquero and Marek Zawirski. 2011. Conflict-free Repli-
cated Data Types. In Proc. 13th International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS 2011). Grenoble, France: pp. 386–400. [199]

Sklower, Keith. 1991. A Tree-Based Packet Routing Table for Berkeley Unix. In USENIX Winter
Conference. [146]

Stoye, William. 1986. “Message-based Functional Operating Systems.” Science of Computer Pro-
gramming 6:291–311. [247]

Sullivan, Kevin and David Notkin. 1990. Reconciling environment integration and component
independence. In Proceedings of the fourth ACM SIGSOFT symposium on Software development
environments - SDE 4. Vol. 15 New York, New York, USA: ACM Press pp. 22–33. [247]

Sundar, Rajamani and Robert E. Tarjan. 1989. Unique Binary Search Tree Representations and
Equality-Testing of Sets and Sequences. Technical report. [143]



Bibliography 289

Tatroe, Kevin, Peter MacIntyre and Rasmus Lerdorf. 2013. Programming PHP, 3rd edition.
O’Reilly Media. [33]

The AMQP Working Group. 2008. “Advanced Message Queueing Protocol: Protocol Specifica-
tion version 0-9-1.”. [22]

Tobin-Hochstadt, Sam and Matthias Felleisen. 2008. “The design and implementation of typed
scheme.” Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages - POPL ’08 p. 395. [130, 144]

Ungar, David, Craig Chambers, Bay-Wei Chang and Urs Hölzle. 1991. “Organizing programs
without classes.” Lisp and Symbolic Computation 4(3):223–242. [220]

Van Cutsem, Tom, Elisa González Boix, Christophe Scholliers, Andoni Lombide Carreton, Dries
Harnie, Kevin Pinte and Wolfgang De Meuter. 2014. “AmbientTalk: programming responsive
mobile peer-to-peer applications with actors.” Computer Languages, Systems & Structures 40(3-
4):112–136. [29, 37]

van Ditmarsch, Hans, Wiebe van der Hoek and Barteld Kooi. 2017. “Dynamic Epistemic Logic.”
Internet Encyclopedia of Philosophy .
URL: http://www.iep.utm.edu/de-logic/ [8, 188]

Varela, Carlos A. and Gul Agha. 1999. A Hierarchical Model for Coordination of Concurrent
Activities. In Proc. Int. Conf. on Coordination Languages and Models. pp. 166–182. [23, 249, 250]

Vieira, Hugo T., Luís Caires and João C. Seco. 2008. The Conversation Calculus: A Model of
Service Oriented Computation. In European Symposium on Programming. pp. 269—-283. [248]
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