
The Network as a Language Construct

Tony Garnock-Jones1, Sam Tobin-Hochstadt2, and Matthias Felleisen1

1Northeastern University, Boston, Massachusetts, USA
2Indiana University, Bloomington, Indiana, USA

Abstract. The actor model inspires several important programming
languages. In this model, communicating concurrent actors collaborate
to produce a result. A pure actor language tends to turn systems into
an organization-free collection of processes, however, even though most
applications call for layered and tiered architectures. To address this lack
of an organizational principle, programmers invent design patterns.

This paper investigates integrating some of these basic patterns via
a programming language construct. Specifically, it extends a calculus
of communicating actors with a “network” construct so that actors can
conduct scoped, tiered conversations. The paper then sketches how to
articulate design ideas in the calculus, how to implement it, and how
such an implementation shapes application programming.

1 Organizing Squabbling Actors

Hewitt’s actor model [1] presents computation as a collaboration of concurrent
and possibly parallel agents. Collaboration necessitates communication, and all
communication among actors happens by message passing. The resulting sepa-
ration of actors isolates resources and thus prevents conflicting use due to com-
peting activities. Several programming languages and frameworks use the actor
model as a design guideline, most prominently Erlang [2] and Scala [3].

Like the λ-calculus, the actor model is an elegant foundation for language
design but fails to scale to real systems. Hence, a pure actor language turns
programs and systems into organization-free “soups of processes.” More precisely,
the model provides no organizational principle that helps programmers arrange
collections of actors into a layered or tiered architecture; also out of scope is
the management and monitoring of actors via actors. Similarly, the model does
not support common idioms of communication, such as multi-cast messaging,
sessions, or connections. Finally, it ignores exceptions and errors, meaning it
does not deal with partial failures.

Implementations of the actor model meet programmer demand for organiza-
tional principles with libraries whose APIs and protocols realize appropriate de-
sign patterns. Many such APIs hide a mini language that deserves the same kind
of focused study that proper linguistic features earn. In this paper, we explain
the network as such a hidden language feature. Our central innovation is the Net-
work Calculus, which explains how to equip a given programming language with
networks. Our prototype implementation of the calculus, Marketplace, illustrates
the potential of the network as a language construct.

2 Our Model of Actors

While Agha et al. [4] present an elegant operational semantics as a verification
framework for imperative actors, our goal is to create a calculus of actors to
articulate a language design idea. Specifically, we wish to show how to construct
an actor language from an arbitrary base language via the addition of a fixed
communication layer. To this end, we make the state of actors explicit, require
their specification as a state-transition function, and demand that they interact
exclusively via messages—not effects. This strict enforcement of the message-
passing discipline does not prevent us from using an imperative base language,
as long as its effects do not leak. In other words, the base could be a purely
functional language such as Haskell, a higher-order imperative language such as
Racket, or an object-oriented language such as JavaScript.1

The abstract syntax of our calculus is straightforward:

C = [α A] CQ = [·AQ] (Actor Configurations)
A = x : Σ AQ = x : ΣQ (Actors)
Σ = a / B ΣQ = · / B (Actor States)
B = f ;u (Simple Behaviors)
a = α | A (Actions)
α = 〈x, v〉 (Events)
v = u | x | v, v (Message Values)

We use p to denote a queue of ps. The xs in this grammar are drawn from an
unspecified set of names or atoms; u ranges over base language values.

An actor configuration C consists of some actors A and a queue α of pending
events. An actor is a named (x) state that combines a behavior B with a queue
a of pending actions. A behavior B pairs a function f with a state value u, both
from the base language. We use AQ to denote the set of quiescent actors, i.e.,
those with an empty queue of pending actions; a quiescent configuration CQ has
no pending events and all its actors are quiescent. Our actors may perform one
of two actions: send a message or create another actor. The latter is specified as
x : Σ, i.e., a complete actor, while 〈x, v〉 denotes a request to send message v to
the actor named x. On receipt of a message, actor x computes the actions a it
wishes to perform.

This response computation makes up the complete interface between the base
language and the communication layer.2 The interface consists of an interp0

function, which interprets an actor-level event α and yields actor-level actions a:

interp0 : f × α× u→ a× u
1 In fact, each base actor could in principle use a different language, turning the
network calculus into a semantics of middleware.

2 The traditional actor model includes a become primitive, updating an actor’s code
and its state simultaneously. Such a primitive would require that the interpretation
function delivers actions, a state, and a state-transformation function, i.e., f×a×u.

The base language itself must also include facilities for analyzing and construct-
ing representations of network-level events and actions, respectively.

We can now formulate the dispatch rule for communicating actors:

AQ
α−→ A′

(dispatch)
[αα0 AQ] −→ [α0 A

′
]

To keep the interactions between the base and the network simple, the dispatch
rule fires only when all the configuration’s actors are quiescent. It relies on an
event-indexed family of relations α−→ that dispatch events α to actors:

interp0 f α u = (a, u′)

x : · / f ;u α−→ x : a / f ;u′
α = 〈x, v〉

x : Σ
α−→ x : Σ

α 6= 〈x, v〉

Since the dispatch rule adds actions to an actor’s queue, we need two additional
rules to interpret these actions:

[α AQ (x : 〈y, v〉a / B)A] −→ [α〈y, v〉 AQ (x : a / B)A] (send)

[α AQ (x : Anewa / B)A] −→ [α AQ (x : a / B)AAnew] (spawn)

Due to their syntactic constraints, dispatch and interpretation alternate, and
messages sent by any given actor are received by peers in order.

While spawn is semantically straightforward, users of the model have a prag-
matic hurdle to overcome if they wish to ensure uniqueness of actor names in a
configuration. They may choose to use a “name-factory” service, to preallocate
names, or any other of a wide range of appropriate strategies. Unique naming in
a distributed setting is a well-known thorny issue, and it is one of our motivations
in separating actor naming and addressing from actor identity below.

In our calculus, actors do not block; they remain responsive to inputs. Tradi-
tional behaviors such as “nested receive” and mailbox filtering are still expressible
using well-known techniques [5].

Our actor calculus satisfies basic correctness theorems. First, the communi-
cation layer does not add any errors. Second, it is deterministic.

Theorem 1 (Soundness). If interp0 is total, an actor configuration C is either
quiescent or there exists C ′ such that C −→ C ′.

Proof (Sketch). The lemma is a reasonably standard “progress lemma” and fol-
lows from a conventional proof approach [6]. ut

Theorem 2 (Determinism). For any actor configuration C, there is at most
one C ′ such that C −→ C ′ (modulo systematic actor renaming).

Proof (Sketch). The lemma is a conventional diamond lemma and follows from
an inspection of all possible critical pairs in the reduction relation. ut

3 Making Networks a Proper Part of the Language

The actor model of computation comes with one special, built-in network that
connects the actors to each other. Both our experience and the literature [7,8,9]
lead us to argue, however, that programmers must be able to create and manage
recursively-nestable networks. To make this point, we sketch and analyze the
implementation of a chat room server, a typical example. We assume that users
access this chat room over TCP via a telnet-like client and that the chat room
broadcasts each “line” from one user to every other user. As users connect, these
new connections are announced to the signed-up users, and the list of already-
connected peers is sent to the new user. Disconnections are announced in a
similar fashion.

broad-

cas t

A
B

C
D

EA natural starting point is to create one ac-
tor per connecting user. Unfortunately the point-to-
point messaging in an actor network conflicts with
the desire to broadcast messages among users. One
option is for each actor to maintain a list of peers,
but synchronizing so much state becomes challeng-
ing as the number of participants grows. A more
scalable, idiomatic option is to reify the medium of
communication as a “broadcasting” actor, shown at right.

Our service now involves two different classes of actor: one for relaying to
and from connected users and one for mediating the interactions of the former.
The system cleanly divides responsibilities among the two. Each “relay” actor
registers with the “chatroom” actor, relays messages from the chatroom to the
associated TCP socket, and parses incoming utterances from the TCP socket,
converting them into chatroom messages. The chatroom actor, for its part, must
manage a directory of active relay actors, announce comings and goings, and
broadcast chat messages received from the relays.

Both kinds of parties must detect failure in other actors. A failing relay actor
should be treated as if the user had requested disconnection, causing both the
closing of the associated TCP socket and an announcement of the departure of
the user to the remaining users. Similarly, if the chatroom actor fails, each relay
actor should take some emergency action such as announcing the problem and
presumably closing its connection.•

room1

room2

room3

room

directory

A

B

C

D

E

Now imagine that the service supports
several named chat rooms and that con-
necting users may join any number of
rooms. This refined design calls for a di-
rectory mapping room names to actor ad-
dresses. Again, it is natural to implement
this service as an actor. This “room direc-
tory” actor maintains a directory of avail-
able chat rooms and responds to room
lookup requests from relay actors. Each
chatroom actor now registers itself with the

room directory as it is created and relay actors query the room directory as users
ask to join individual chatrooms. Finally, all three types of actor are now com-
mitted to monitoring the health of other actors to maintain their own state.

As simple as it is, the scenario exemplifies a number of classic patterns in
actor architectures that internalize concepts from distributed object systems:

– dynamic naming service, illustrated by directory and chatroom actors;
– a multicast medium, implemented in the chatroom actor and also known as

a data distribution service [10] or a publish/subscribe broker [11];
– dealing with partial failure [12]; each actor must detect and handle failures

in the assembled system as part of its regular duties.

Furthermore, we can identify common patterns from layered architectures [13]:

– Members of each layer communicate using a layer-specific protocol. As mes-
sages cross layers, actors translate them from one protocol to another. In
our example, relay actors translate from TCP to chat messages.

– Layers isolate components. Explicit relaying and message transformation
protects services from external requests. For the chat service, the relay actors
make up the periphery, protecting chat rooms and room directories.

The chat room scenario is simple but not special. Programmers re-implement
naming services and multicast over and over. They ensure isolation and protec-
tion for layers of communication in actor systems. And they equip actors with
code to detect and signal partial failures. This happens regardless of whether
the system is sequential, concurrent or parallel, distributed or monolithic.

In response, we supply these services via a novel linguistic construct, dubbed
“network” because it internalizes networking-style programming into actor sys-
tems. A network is a communications medium and a resource container [7,9]
offering naming , delivery , relaying , and multiplexing services to its clients and
enabling them to monitor the coming and going of their peers.

4 The Network Calculus

To address the design concerns raised above, we experimented with three gen-
erations of actor middleware and a number of full-scale applications. Here we
distill our experience into a calculus of networks, which we consider a tool for
language re-design. This section presents the calculus, again as a layer atop a
sequential language, and sketches some variations. The next two illustrate how
to “code” in the calculus and how to use it as a guide to language design.

The Calculus We extend our actor calculus to the Network Calculus (NC) in
three syntax design steps: (1) we turn the communications substrate into a lin-
guistic construct; (2) we generalize from point-to-point messaging to broadcasts;
and (3) we signal routing changes as events alongside regular messages.

The first step is to promote configurations to behavior status:

B = f ;u | C BQ = f ;u | CQ BI = f ;u | CI (Behaviors)

C = [α π A] CQ = [· π AQ] CI = [· π AI] (Configurations)

This change allows programs to spawn entire networks recursively as actors. Mul-
tiple networks can thus exist side-by-side and nested within other configurations.
Each actor, except for the root configuration, is contained in a configuration.

The second step introduces a form of publish-subscribe messaging that al-
lows both point-to-point messaging and broadcasting. Actors thus no longer
come with names but subscriptions π describing their interests, and a network
maintains a set of subscriptions π, describing the interests of its environment:

A = π : Σ AQ = π : ΣQ AI = π : ΣI (Actors)
Σ = a / B ΣQ = · / B ΣI = · / BI (Actor States)

In addition to quiescent configurations CQ and actors AQ, we now distinguish
inert variations: CI ⊂ CQ ⊂ C and AI ⊂ AQ ⊂ A. While a quiescent configura-
tion has merely emptied its local queues, inert variants have empty queues at all
levels. In other words, inert actors or networks are waiting for external events.

A subscription is an expression of interest in certain messages. Messages come
in two, symmetric varieties: 〈v〉, an ordinary data-bearing message, and (v), a
feedback message that travels along routes in the opposite direction to ordinary
messages. Feedback messages are useful for flow-control and acknowledgement
signalling. A message may also be prefixed by i ≥ 0 downward arrows �, indi-
cating that it should be relayed out to the ith-innermost containing network:

m = 〈v〉 | (v) | �m (Messages)
v = u | x | v, v (Message values)

Messages carry binary trees3 of values from the base language and atoms x from
an unspecified set.

Equipped with messages, we can describe subscriptions:

π = 〈p〉n | (p)n | �π (Subscriptions)
p = u | x | p, p | ? (Message patterns)

Temporarily ignoring the subscripts, the syntax of a subscription specifies a tree
over values and atoms and the wildcard ?. Semantically, a subscription π is an
expression of interest in messages:•

– (p)n, a subscriber pattern specifies interest in receiving ordinary data mes-
sages and sending feedback messages,

– 〈p〉n, a publisher pattern expresses an interest in receiving feedback messages
and sending ordinary messages.

3 Our choice of trees allows a convenient representation of arbitrary structured data
along with a simple definition of pattern-matching. Many other suitable choices exist.

Just as for message transmission, prefixing a subscription with i downward ar-
rows (�π) indicates the subscription pertains to the ith-innermost containing
network. A network aggregates subscriptions to form its routing table.

The third design step adds a novel form of event, a routing event π.4 Actions
are extended in an analogous manner to match the new class of events:

α = m | π (Events)
a = α | S (Actions)

S = π : a / f ;u | · : · / [· · (· : S / · ; ·)] (Spawnable actors)

Every time a network’s routing table changes, it sends routing events π to its
actors describing its current aggregate routing table. Each actor’s view of the
routing table is then filtered by its own subscriptions, and in particular by the
observer level (subscript n) attached to each subscription: a subscription (p1)n
is only signalled to actors with matching subscriptions 〈p2〉m where both m > n
and p1 || p2; see figure 1 for the definition of the matching functions (· || ·). Actors
interested in participating in conversations without observing other participants
subscribe at level n = 0; those interested in observing participants use n = 1;
those interested in observing observers use n = 2; and so on.

To formulate the semantics of the NC, we need to introduce the notion of
a spawnable actor because spawning an entire network requires restrictions to
preserve routing table consistency. A spawned network holds a list of spawn
actions, which start the configuration’s processes. They run within a special,
primordial process. A newly spawned actor whose subscription set is non-empty
is effectively assigned responsibilities from the very first moments of its existence.

Actor configurations evolve via two reduction relations: Σ −→ Σ′ encodes
internal reduction steps toward inertness, and A

α−→ A′ informs actors of the
event α. Our formulation of the semantics relies on the definitions in figure 1.

When a configuration’s actors are quiescent, it sends the next queued event:

AQ
α−→ A′

(dispatch)
a / [αα0 π1 AQ] −→ a / [α0 π1 A

′
]

Dispatched events are matched against the active subscriptions of each actor.
Events not matching are ignored,5 while matching events are delivered:

π : Σ
α−→ π : Σ α || π is undefined

interp0 f (α || π) u = (a, u′)

π : · / f ;u α−→ π : a / f ;u′
α || π is defined

inject(α || π) C = C ′

π : · / C α−→ π : · / C ′
α || π is defined

4 A routing event is, on the one hand, like “service presence” in XMPP [14] and, on the
other hand, resembles route advertisements in distance-vector routing protocols [15].

5 Inspired by the “discard” relation of Ene and Muntean’s broadcast π-calculus [16].

table : A→ π Extracts the current subscription set from an actor
lift : π → π “Lifts” a subscription set by prepending � to each subscription

drop : π → π Almost-inverse of lift : removes � from subscriptions in a sub-
scription set, omitting those lacking �.

α || π : α× π ⇀ α Filter/restrict an event by a subscription set
(v) || π = (v), if ∃〈p〉n ∈ π such that v ||v p
〈v〉 || π = 〈v〉, if ∃(p)n ∈ π such that v ||v p
�m || π =�m, if m || drop(π)
π1 || π2 = (π11 || π21) ·· (π11 || π2m)(π12 || π21) ·· (π1n || π2m)

where π11 · · ·π1n = π1 and π21 · · ·π2m = π2

π || π : π × π ⇀ π Intersection of two subscriptions, respecting observer level
(p1)n || 〈p2〉m = (p1 || p2)n, if n < m

〈p1〉n || (p2)m = 〈p1 || p2〉n, if n < m

�π1 || �π2 = �(π1 || π2)

p || p : p× p ⇀ p Intersection of patterns; standard unification-style algorithm
v ||v p : v × p ⇀ v Match v against p; standard unification-style algorithm

Fig. 1. Network Calculus metafunctions.

The function inject transforms events from the outside world before adding them
to a configuration’s event queue. Incoming messages are marked as originating
from one layer down and incoming routing table updates are similarly marked
with lift before they are aggregated with the routes of the network itself:

inject : α× C → C

inject m [α π A] = [α�m π A] (relay-in)

inject π′ [α π A] = [α πtotal πnew A] (routes-in)

where πnew = lift(π′) and πtotal = table(A) πnew

A dispatched event results in an enqueued action, which may trigger events
within the local configuration, actions for the containing network, or both:

a0 / [α π1 AQ(π : 〈v〉a / B)A] −→ a0 / [α〈v〉 π1 AQ(π : a / B)A] (send)

a0 / [α π1 AQ(π : (v)a / B)A] −→ a0 / [α(v) π1 AQ(π : a / B)A] (feedback)

a0 / [α π1 AQ(π : �ma / B)A] −→ a0m / [α π1 AQ(π : a / B)A] (relay-out)

a0 / [α π1 AQ(π : π′a / B)A] −→ a0drop(π
′′) / [α(π′′π1) π1 AQ(π

′ : a / B)A]

where π′′ = table(AQ) π
′ table(A) (routes-out)

The rule for spawning new actors is complex. Its essence is as follows:

a0/[α π1AQ(π : Anewa/B)A] −→ a0/[α π1AQ(π : a/B)AAnew] (spawn, draft)

The spawned actor Anew is lifted out of the spawning actor’s action queue and
placed at the end of the containing configuration’s actor list. This first draft elides

a critical detail, however. Since newly-spawned actors may arrive complete with
non-empty subscription sets, the subscriptions must be incorporated into the
configuration’s routing tables and propagated to other interested parties:

. . . −→ a0drop(π
′) / [α(π′π1) π1 AQ(π : a / B)AAnew]

where π′ = table(AQ) π table(A) table(Anew) (spawn)

The entire subscription table is sent to actors; if an actor needs the difference
between the old and the new table, it must perform the computation on its own.

Finally, a network may step if a contained actor state can step:

ΣQ −→ Σ′

a0 / [· π1 AI(π : ΣQ)AQ] −→ a0 / [· π1 AQ AI(π : Σ′)]
(schedule)

This rule allows variations in scheduling. As written, the rule preserves deter-
ministic stepping, picking the leftmost non-inert actor, and it rotates the queue
of contained actors, giving each a chance to take a step.

NC satisfies the same basic correctness theorems as our actor calculus. First,
the communication layer never fails. Second, the calculus remains deterministic.

Theorem 3 (Soundness). If interp0 is total, a behavior B is either inert or
there exists some Σ′ such that · / B −→ Σ′.

Proof (Sketch). We employ the same Wright/Felleisen technique as for theo-
rem 1, with a slight modification embodied in the progress lemma below.

Definition 1 (Height). Let the height of an actor be defined as follows:

height : A→ N
height(π : a / f ;u) = 0

height(π : a / [α π1 A]) = 1 +max (height A)

Let the height of a configuration C be height(· : · / C).

Lemma 1 (Progress). If interp0 is total, for all a / C and H ∈ N with
height(C) ≤ H, C is either inert or there exists some Σ′ such that a/C −→ Σ′.

Proof (Sketch). By nested induction on the height bound and structure of C. ut

Theorem 4 (Deterministic Evaluation). For any actor state Σ there exists
at most one Σ′ such that Σ −→ Σ′ (modulo systematic renaming).

Proof (Sketch). The proof shows that, due to the restrictions on the scheduling
rule, the reduction system cannot create non-trivial diamonds. ut

We modeled NC with Redex [17] and Coq [18]; testing the theorems in the
former and proving them in the latter.6

6 Models and proofs available at http://www.ccs.neu.edu/home/tonyg/esop2014/.

http://www.ccs.neu.edu/home/tonyg/esop2014/

An Interpretation NC comes with several novelties, including concepts such
as routing events, subscription, and connection. Together these concepts help
address a number of programming problems:

Starting up services Assembling service components into a complete ap-
plication involves determining a suitable startup order. Otherwise a service may
attempt to access another service before the latter is initialised. Routing events
solve this problem in a natural fashion. Once a service is ready, it subscribes
to incoming requests via (service, ?)0 and therefore its clients can notice it via
subscriptions to 〈service, ?〉1.

Session management A connection is a relationship between two commu-
nicating stateful parties. If some peer A subscribes to 〈A, c, ?〉0 (for connection
identifier c) and (B, c, ?)1 while B subscribes to (A, c, ?)1 and 〈B, c, ?〉0, they not
only construct two unidirectional streams, but also each observes the presence
of the other. During their conversation, if A receives a routing event in which
〈B, c, ?〉0 is absent, it knows that B disconnected or faulted and that it may now
release any state associated with the connection.

Demultiplexing A network automatically demultiplexes incoming events
via subscription-based message filtering. Imagine an NC program that imple-
ments an SSH server and uses an SSH-styled protocol. Each SSH packet carries
a type identifier number. If each packet type handler subscribes with a pattern
identifying a specific type number, e.g. (ssh, 21, ?)0, and each actor responsible
for dispatching incoming packets subscribes to 〈ssh, ?, ?〉1, the dispatcher can
use the resulting routing events to decide whether an “unhandled packet type”
error response to an incoming packet is required.

Demand tracking By keeping track of active service instances and monitor-
ing client connections via routing events, “management” actors can match supply
to demand for a service, spawning new service instances as clients appear.

VPNs With layering comes a need for coordinating actors, not just direct
peers, but also those communicating across levels of containment. By tunneling
encoded routing events as messages to remote parties, subscriptions can be prop-
agated between subnets; the relaying actor becomes a proxy for remote peers.
This approach is analogous to the topology notifications in distance-vector rout-
ing protocols; it yields a form of “virtual private network.”

Design Variations Like λ-calculus, NC is a flexible system that can easily serve
as the basis for variations and extensions.

Non-determinism While NC is intrinsically concurrent, connecting event-
driven and message-exchanging actors, it remains deterministic. Its design care-
fully ensures that the addition of networks to a deterministic base language
yields a deterministic result. Real-world communicating systems are often non-
deterministic, however. There are two obvious ways to introduce forms of non-
determinism that allow the calculus to exhibit parallelism and racing. First, we
can loosen the quiescence and inertness restrictions on the reduction rules. Do-
ing so introduces new interleavings that make the system truly parallel. Second,
we can weaken the network’s guarantee of delivering messages in order or at all.
For out-of-order delivery, the dispatch rule can be modified to select arbitrar-

ily from the queue. For packet loss, the system needs a new rule for discarding
messages from the queue. This form of non-determinism primitively reflects the
uncertainty that comes with actors relaying messages across layers.

Routing Since routing events do not distinguish entire networks from atomic
actors, actors cannot tell the two apart. It is therefore possible to introduce
new types of network with the same interface but different internal routing and
delivery rules. For example, altering the dispatch rule for message events to
select only the first actor matching the message, instead of all matching actors,
gives “anycast” routing [19]. If, in addition, unroutable events are retained in the
event queue until a matching subscription is created, the network behaves as a
“message queue” in the terminology of messaging middleware [11].

Furthermore, protocol-specific routing optimizations can be applied to indi-
vidual layers without breaking encapsulation. For example, IP datagrams are
routed on target IP address alone; an IP-specific layer could restrict patterns
to permit matching only on target IP address, enabling traditional routing ta-
ble implementation techniques. In general, each network instance can enforce its
own message formats and protocols, for which a session type system [20] is likely
to provide the matching static checking.

Fairness NC does not guarantee fairness. If an atomic actor constantly sends
itself events, it can starve its siblings. To avoid such starvations, the network
could buffer events for atomic actors or rotate the actor queue as part of every
action-interpretation step.

Faults and supervisionWhile the interpretation rule also assumes totality,
a practical variant of NC can easily handle crashes. If interp0 can return some
exception token indicating failure, the rule

interp0 f (α || π) u = exception

π : · / f ;u α−→ π : (·) / · ; ·
α || π is defined

causes a crashing actor to retract its subscriptions. If a “supervisor” actor [2]
exists, it may then deploy matching recovery strategies as failures are detected.

5 Programming with the Network Calculus

Network Calculus, like λ-calculus, is too spare for programming. To make such
an exercise reasonably convenient, we assume a purely functional base lan-
guage extended with a conventional pattern-matching facility. We choose to
model atomic behaviors f ;u using functions in this base language, meaning that
interp0 f α u = f α u. This assumption also means that events α and actions a
are data structures in the base language.

To illustrate NC, we implement the chat room of section 3. Bold identifiers
denote NC terms, monospace literal atoms, and italics base language concepts.

The chat service is structured as a single network. Contained actors communi-
cate with each other using a chat-network-specific protocol, namely the exchange
of 〈chat, username, text〉 messages. Each such message conveys the information
that username said text .

The chat users necessarily exist outside the service itself. Instead of regarding
users and their telnet connections as meta-entities, we take advantage of the
layered structure of NC. While our chat network communicates internally with
a chat-specific protocol, we simulate the external world as if it were another
network layer below the chat network. Actors receive and send messages on
both the internal chat network and the simulated network that connects the
entire service to the outside world. Ordinary messages are delivered to siblings
within the chat network, while arrow-prefixed messages �m are delivered to the
outside world, where the users are. Figure 2 shows the layering.

Our telnet-like protocol rests on four message types: 〈connect, username〉,
〈disconnect, username〉, 〈input, username, line〉 and 〈output, username, line〉.
The actors in our chat network are then responsible for (1) interpreting these
messages and transforming them into messages for their direct peers on the inner,
chat-specific network, and (2) vice versa.

The service’s starting configuration room both creates the chat network and
spawns within it the single stateless actor acceptor, which responds to connect
messages received from the outer network:

room = · : · / [· · (· : acceptor / · ; ·)]
acceptor = · : �(connect, ?)0 / acceptor ; ·

The � prefix on the acceptor’s subscription indicates that it pertains to the
network containing the whole service, shaded in figure 2, rather than the chat-
specific inner network. The acceptor wishes to receive connect messages from
the outside world, but takes action locally in response.

The base-language function acceptor implements acceptor’s behavior. When
it receives a connect message, it spawns a relay actor responsible for managing
communication with the newly-arrived user:

acceptor �〈connect, user〉 state = (relay user , state)

relay user = · : (�(input, user , ?)0
�〈output, user , ?〉0
�(disconnect, user)0
〈chat, user , ?〉0
(chat, ?, ?)1) / relay ; (user , {})

The relay actor advertises subscriptions for telnet-like input, output and dis-
connection events taking place in the outside world, and advertises its intent

user user . . .

acceptor relay relay . . .
(chat,*,*)

Chat network

(connect,*) / (disconnect,*) / (input,*,*) / (output,*,*)

"outside world"

Fig. 2. Chat service layering. Shaded regions are implicit, not part of the program.

to send chat messages into the inner network on behalf of the connected user.
All these subscriptions are marked with a subscript 0, because relay is only
interested in receiving these messages, and is not interested in receiving related
routing event notifications. In contrast, its final subscription, (chat, ?, ?)1, has
a subscript of 1, indicating interest not only in receiving chat messages from the
inner network, but also in hearing about related changes to the routing table.

As its peers come and go, their 〈chat, user , ?〉0 subscriptions match the
(chat, ?, ?)1 subscription and are delivered to relay as routing events. The actor
thus uses information about the routing table to inform the remote user of the
arrival and departure of other users. In order to do so, it maintains in its actor
state not only its own name but also the set of peers it has seen so far; initially,
the empty set {}.

The base-language function relay handles both routing and message events:

relay �〈input, user , line〉 (user , peers) = (〈chat, user , line〉, (user , peers))
relay �〈disconnect, user〉 (user , peers) = (π′, nil) where π′ = ·

relay 〈chat,who, line〉 (user , peers) =
(�〈output, user ,who ++ “ says ” ++ line〉, (user , peers))

relay π (user , peers) = (arrvls ++ dprt , (user , peers ′))

where peers ′ = {u | 〈chat, u, ?〉0 ∈ π}
arrvls = [�〈output, user , u++ “ arrived”〉 | u ∈ peers ′ − peers]

dprt = [�〈output, user , u++ “ departed”〉 | u ∈ peers − peers ′] (†)

Text arriving from the user via the remote network is relayed to peers in the
chat network. Next, a disconnection notice from the outside world translates into
withdrawal of all the relay’s subscriptions. Messages from peers are relayed to
the user via outputmessages on the outer network. Finally, when a routing event
arrives, relay computes routing table differences and announces corresponding
arrivals and departures to its user.

The subscription withdrawals triggered by disconnect events cause routing
events to be delivered to other relays. Because subscriptions are being withdrawn,
the routing table has shrunk, and so (peers − peers ′) on line (†) is nonempty,
resulting in a “departed” notification being sent to the remaining users.

With the model in place, we can now simulate communication and computa-
tion using the inject metafunction from section 4. For example, to simulate the
connection of user A, reduce the configuration state

· / (inject 〈connect, A〉 room)

to a /C ′
I . The actions a include output messages for connected users, and C ′

I is
the final state of the server, waiting for the next event from the outside world.

In this way, inject and the resulting a provide an I/O interface between an
NC program and its context. Our layered structure cleanly accounts for “real
I/O” performed by a group of actors in a way that is impossible in a non-layered
actor model, lacking any facility for distinguishing actions intended for sibling
actors from actions intended for entities outside the actor configuration.

6 Implementing the Network Calculus

Marketplace is a Racket-based [21] implementation of NC. Event handlers are
Racket functions, and data structures represent events and actions. Marketplace
actor behaviors are also plain Racket functions, meaning interp0 becomes apply.
In turn, Marketplace’s networks are ordinary actors. A second prototype, Mar-
ketplace/JS, uses Javascript as the base language and runs in the browser.

To connect to the outside world, Marketplace provides a ground network [22].
Its subscriptions are interpreted as subscriptions to Racket’s I/O events. It ob-
serves the routing table and creates corresponding Racket event descriptors. For
example, a Marketplace program may subscribe to a timer or a TCP socket.

Marketplace implements one of the variants of NC discussed in section 4.
The Marketplace scheduler is fair. Exceptions thrown by Racket code are trans-
lated into failures of actors. Support libraries assist with the manipulation of
subscriptions and the interpretation of routing events.

We have written a chat server in Marketplace, comparing it with Python,
Haskell and Erlang implementations. Much socket- and state-management is
automatic, a consequence of our routing events. Our Python and Haskell im-
plementations initially came with subtle flaws in handling simultaneous discon-
nections; doing so corrupted shared state in the server. Marketplace avoids such
problems by construction, with no shared state but the routing table, and no
in-place mutation at all.

We have also implemented two major applications to explore Marketplace’s
potential: a DNS system and an SSH protocol implementation and server.7

Our Marketplace DNS service is a two-layered network system. While the
bottom layer speaks UDP, the upper layer implements a DNS protocol. Relay
actors encode and decode DNS packets as they traverse the UDP/DNS layer
boundary. Within the DNS layer, actors cooperate to enact the DNS protocol
for iteratively discovering the answers to incoming DNS questions. Questions
are processed concurrently, with one actor allocated to each DNS inquiry. The
system uses broadcasting to keep the internal DNS cache database up-to-date.
The cache management actor subscribes to a wildcard so that it can eavesdrop
on actors as they communicate DNS answers to each other; it populates the
cache based on what it hears.

Our Marketplace SSH server consists of three network layers; see figure 3.
Its organization directly matches the specification of the protocol [23]. Each new
connection results in new Session and Application layer instances. Relay actors
receive encrypted TCP data from the ground layer, decrypting and parsing it
before sending the results into the session-specific layer. Packet-handler actors
in that layer enact the SSH protocol, relaying application data packets to the
innermost, application-specific layer. If any actor within the session layer exits
unexpectedly, a “watchdog” supervisory actor notices via routing events and
disconnects the session. Nesting of layers separates groups of related actors by

7 All code is available via http://www.ccs.neu.edu/home/tonyg/esop2014/.

http://www.ccs.neu.edu/home/tonyg/esop2014/

T
C

P
 d

ri
v
e
r

T
im

e
r

d
ri

v
e
r

S
e
s
s
io

n
 f

a
c
to

ry

T
C

P
 s

o
c
k
e
t

m
g
r.

E
v
e
n
t

re
la

y

T
im

e
r

re
la

y

W
a
tc

h
d
o
g

In
b
o
u
n
d
 r

e
la

y

O
u
tb

o
u
n
d
 r

e
la

y

P
a
c
k
e
t

h
a
n
d
le

r

C
h
a
n
n
e
l
fa

c
to

ry

C
h
a
n
n
e
l
1

. . .

C
h
a
n
n
e
l
n

Application-speci c conversations

Application Layer
SSH command packets + Timers + Channel management

Session Layer

. . .

TCP + Timers

Ground Layer

Fig. 3. Layered structure of the SSH implementation

clearly defining the available channels for communication between groups. Each
network also provides a crisp boundary for the resources under its control.

Our prototype Marketplace implementations take a simple, unoptimized ap-
proach to routing. Nevertheless, the performance of our DNS resolver is ade-
quate; it has been quietly serving web browsers in our lab for the past year.

7 Related Work

On the theoretical level, our work on NC extends previous work on event-driven
systems [8], and invites comparison with process calculi and actor-based models
of concurrency. On the practical level, our Marketplace language is comparable
to actor-inspired languages and their libraries, especially Erlang, Scala, E and
AmbientTalk.

In general, most related work concerns point-to-point communication be-
tween named entities within a single layer, dealing with broadcasting and layered
architectures as derived concepts. In contrast, NC eschews names, treats broad-
casting as fundamental, and adds novel routing events. The latter solve many
problems: startup ordering, session lifetimes, failures, supervisors, etc. Lacking
routing events completely, related systems address these problems on an ad-hoc
basis, if at all, rather than as consequences of a unifying mechanism.

The Conversation Calculus Spiritually closest to our work is the Conversation
Calculus [24,25], based on π-calculus. Its conversational contexts scope multi-
party interactions. Named contexts nest hierarchically, forming a tree. Processes
running within a context may communicate with others in the same context
and processes running in their context’s immediate container. Contexts on dis-
tinct tree branches may share a name and thus connect transparently through
hyperlinks. The Conversation Calculus also provides a Lisp-style throw facility
that aborts to the closest catch clause. This mechanism enables supervisor-like
recovery strategies for exceptions.

Although Conversational and NC serve different goals—the former is a cal-
culus of services while the latter is a language design guideline—the two are
strikingly similar. Like a network, a conversational context has both a spatial
meaning as a location for computation and a behavioral meaning as a delimiter

for a session or protocol instance. Both calculi permit communication within
their respective kinds of boundary as well as across them.

The two calculi starkly differ in three aspects. First, NC cannot transpar-
ently link subnets into logical overlay networks because its actors are nameless.
Instead, inter-subnet routing has to be implemented in an explicit manner, based
on NC’s routing events. Proxy actors tunnel events and actions across links be-
tween subnets; once such a link is established, actors may ignore the actual
route. Any implementation of Conversation Calculus must realize just such ex-
plicit routing; NC can provide the same expressiveness as a library feature.

Second, Conversation Calculus lacks routing events and does not automat-
ically signal peers when conversations come to an end—normally or through
failure. Normal termination in Conversation Calculus is a matter of convention,
while exceptions signal failure to containing contexts but not to remote par-
ticipants in the conversational context. In contrast, Network Calculus’s routing
events signal failure to all interested parties transparently.

Finally, our implementation experiences with Marketplace suggest that map-
ping context names to “wire level” identifiers poses a steep obstacle for a similar
effort for Conversation Calculus. After all, different parts of the system are go-
ing to be written in different base languages. With the explicit demultiplexing
in Network Calculus, managing a heterogeneous system poses no problems.

Actors One major family of Actor models is due to Agha and colleagues [4,26,27].
Varela and Agha’s variation [27] groups actors into hierarchical casts via di-

rector actors, which control some aspects of communication between their casts
and other actors. If multicast is desired, it must be explicitly implemented by
a director. While casts and directors have some semblance to the layered Net-
work Calculus, the two differ in many aspects. Our system’s use of pub/sub
automatically provides multicast without forcing all members of a layer to use
the same conversational pattern. Directors are computationally active, but our
networks are not. In their place, Network Calculus employs relay actors that
connect adjacent layers. Finally, Varela and Agha’s system lacks routing events
and thus cannot deal with failures easily. They propose mobile messenger actors
for localizing failure instead.

In Callsen and Agha’s ActorSpace [26] actors join and leave actorspaces. Each
actorspace provides a scoping mechanism for pattern-based multicast and any-
cast message delivery. Besides communication via actorspace, a separate mecha-
nism exists to let actors address each other directly. In contrast, our system per-
forms all communication with subscription-based routing and treats networks as
specialized actors, enforcing abstraction boundaries and making it impossible to
distinguish between a single actor or an entire network providing some service.
Actors may join multiple actorspaces, whereas Network Calculus actors may
only inhabit a single network, reflecting physical and logical layering of networks
and giving an account of locality. In our system, actors join multiple networks
by spawning proxy actors, which tunnel events and actions through intervening
layered networks. Finally, ActorSpace does not specify a failure model, whereas
Network Calculus signals failure with routing events.

All actor models lack an explicit interface to the outside world. I/O remains
a brute-force side-effect instead of a messaging mechanism. Our functional ap-
proach to messaging and recursive layers empowers us to treat this question as
an implementation decision.

Mobile Ambients Cardelli and Gordon [28] describe the Mobile Ambient Calcu-
lus. An ambient is a nestable grouping of processes, an “administrative domain”
within which computation and communication occur.

At first glance, the two pieces of work are duals. While Network Calculus fo-
cuses on routing data between domains, from which code mobility can be derived,
Mobile Ambients derives message routing from a primitive notion of process mo-
bility. By restricting ourselves to transporting data rather than code from place
to place, we avoid a large class of mobility-related complication and closely re-
flect real networks, which transport only first-order data. Moving higher-order
data (functions, objects) happens via encodings. Furthermore, mobility of code
is inherently point-to-point, and the π-calculus-like names attached to ambients
reflect this fact. Our pattern-based routing is a natural fit for a more general
class of conversational patterns in which duplication of messages is desired.

Mobile Ambients can directly express locks, trading broadcast communica-
tion for the ability to express guaranteed-two-party atomic protocols. Network
Calculus comes without such locks and guarantees, because communications are
always broadcast even if they are intended to be two-party conversations. This
seeming weakness is a reflection of our desire to align Network Calculus with
the abilities of real networks, which likewise have no means of expressing atomic
transfer of ownership. Hence, programs in Network Calculus must, like Actors,
implement distributed locking algorithms explicitly.

Process Calculi Fournet and Gonthier’s Distributed Join Calculus [29] arranges
processes in a tree of locations, with automatic mobility and communication
between them; Network Calculus manages such nonlocal interaction explicitly.
Similarly, neither first- nor higher-order π-calculi [30] represent layered or nested
process groups; the spatial arrangement of their processes remains implicit.

Middleware A comparison with publish/subscribe brokers [11] supplies an ad-
ditional perspective. Essentially, a network corresponds to a broker: the routing
table of a network is the subscription table of a broker; the network buffers are
broker “queues;” characteristic protocols are used for communication between
parties connected to a broker; etc. In short, Network Calculus can be viewed as
the first formal semantics of brokers.

Erlang/OTP The closest relative to Marketplace is Erlang/OTP [31,2]. Both
support isolated “shared-nothing” message-passing processes; crash reporting in
the form of explicit events to interested parties; and supervisory processes. Er-
lang’s gen_server interface corresponds closely to our interp0 signature.

Marketplace differs from Erlang in its use of: broadcasting in lieu of point-
to-point communication; abstract topics to name services versus Erlang’s use of

process IDs; nesting to demultiplex conversations versus explicit demultiplexing;
and routing events versus exit signals and process monitors.

Many of the OTP design patterns are linguistic constructs in Marketplace.
For example, debugging and tracing of subsystems requires explicit handling of
“debug facilities” and “system messages” by OTP processes, whereas in Mar-
ketplace the uniform type of an actor behavior allows tracing actors without
changing any code. OTP’s global service registries are Marketplace’s built-in
routing tables. Each Erlang application is responsible for solving its startup or-
dering problem, whereas Marketplace applications can use routing events to find
the required topological dependency ordering implicitly.

Scala Several Scala [3] libraries support Actor-style programming. Most of them
implement Erlang-style actor supervision. Notable among the implementations
is Akka, which arranges actors in a tree—spawned actors are considered children
of the spawning actor—and uses the tree as the basis of supervision. Akka’s tree
arrangement does not constrain communication, and Akka does not support
routing events. Akka’s multiple distinct broadcast mechanisms, especially the
EventBus, resemble our pub/sub mechanism. As in Erlang, no special support
is provided for solving startup ordering problems.

E and AmbientTalk The E programming language provides language-level sup-
port for vats [32], which like actors, take atomic turns at responding to events.
Their state persists between turns for fault-tolerance and recovery. In addition to
Miller and his colleagues [33,34], work on AmbientTalk [35] continues to explore
vats. AmbientTalk adds distributed service discovery, error handling, anycast
and multicast within a mobile, ad-hoc network context. In contrast to Market-
place, AmbientTalk lacks layering and does not exploit pub/sub communication
for service discovery, failures, error handling, etc.

8 Conclusion

Existing programming languages fail to support layered communication architec-
tures with linguistic constructs. Instead, programmers develop design patterns
and support them with frameworks and libraries. The prevalence of these con-
cepts suggests that language designers should consider the inclusion of appropri-
ate programming constructs. In response, our paper presents a novel language
idea—the network—in the form of the Network Calculus, building on existing
actor-model designs. With the addition of a network construct, language design-
ers can automatically provide services that programmers routinely redevelop.
Programmers in turn can internalize idioms from the networking world to sim-
plify their architectures.

The paper explains how to program in this calculus and how to use it as
the basis for a language implementation. We have used Marketplace, our imple-
mentation of NC, to create and deploy two major systems. Our experience with
this prototype suggests that the resulting applications are more modular than
comparable systems while providing sufficient performance for daily use.

NC is a malleable design. In its basic form, it is a deterministic concur-
rency theory. As discussed, it can readily be extended to a parallel and non-
deterministic variant and optimised in protocol-specific ways. We expect to ex-
plore both the theoretical framework and its implementation.

Acknowledgements This work was supported in part by the DARPA CRASH
program and NSF Infrastructure grant CNS-0855140. The authors would like to
thank Olin Shivers and Mitch Wand for listening to many rough presentations
on this material. In addition the participants of NU PLT’s coffee round posed
many helpful questions that helped hone this research.

References

1. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for ar-
tificial intelligence. In: Proc. 3rd Int. Joint Conf. on Artificial Intelligence, Morgan
Kaufmann Publishers Inc. (August 1973) 235–245

2. Ericsson(AB): Erlang/OTP Design Principles (2012) http://www.erlang.org/
doc/design_principles/des_princ.html.

3. Haller, P., Odersky, M.: Scala Actors: Unifying thread-based and event-based
programming. Theoretical Computer Science 410(2-3) (2009) 202–220

4. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A Foundation for Actor
Computation. J. Functional Programming 7(1) (1997)

5. Li, P., Zdancewic, S.: Combining Events and Threads for Scalable Network Ser-
vices. In: Proc. Conf. on Programming Language Design and Implementation.
(2007) 189–199

6. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115 (1992) 38–94

7. Day, J.: Patterns in Network Architecture: A Return to Fundamentals. Prentice
Hall (2008)

8. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: A Functional I/O Sys-
tem. In: ICFP. (2009)

9. Zave, P., Rexford, J.: The geomorphic view of networking: A network model and
its uses. In: Proc. of the Middleware for Next Generation Internet Computing
Workshop. (2012)

10. Object Management Group: Data Distribution Service for Real-time Systems (Jan-
uary 2007)

11. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35(2) (2003) 114–131

12. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A Note on Distributed Comput-
ing. Sun Microsystems Laboratories Technical Report SMLI TR-94-29 (November
1994)

13. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall (1996)

14. Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Core. RFC
6120 (March 2011)

15. Heart, F.E., Kahn, R.E., Ornstein, S.M., Crowther, W.R., Walden, D.C.: The
interface message processor for the ARPA computer network. In: Proc. Spring
Joint Computer Conference (AFIPS ’70). (May 1970) 551–567

http://www.erlang.org/doc/design_principles/des_princ.html
http://www.erlang.org/doc/design_principles/des_princ.html

16. Ene, C., Muntean, T.: A Broadcast-based Calculus for Communicating Systems.
In: Proc. of the Workshop on Formal Methods for Parallel Programming. (2001)

17. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
The MIT Press (2009)

18. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project. (2004) Version 8.0.

19. Partridge, C., Mendez, T., Milliken, W.: Host Anycasting Service. RFC 1546
(Informational) (November 1993)

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proc. Symp. on Principles of Programming Languages. (January 2008) 273–284

21. Flatt, M., PLT: Reference: Racket. Technical Report PLT-TR-2010-1, PLT Inc.
(2010) http://racket-lang.org/tr1/.

22. Lieberman, H.: Concurrent Object-Oriented Programming in Act 1. In Yonezawa,
A., Tokoro, M., eds.: Object-Oriented Concurrent Programming. MIT Press (1987)

23. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Protocol Architecture. RFC 4251
(January 2006)

24. Caires, L., Vieira, H.T.: Analysis of Service Oriented Software Systems with the
Conversation Calculus. In: Proc. 7th Int. Conf. on Formal Aspects of Component
Software. (2010)

25. Vieira, H.T., Caires, L., Seco, J.a.C.: The Conversation Calculus: A Model of
Service Oriented Computation. In: European Symp. on Programming. (2008)

26. Callsen, C.J., Agha, G.: Open Heterogeneous Computing in ActorSpace. J. Parallel
and Distributed Computing 21(3) (1994) 300–289

27. Varela, C.A., Agha, G.: A Hierarchical Model for Coordination of Concurrent
Activities. In: Proc. Int. Conf. on Coordination Languages and Models. (1999)

28. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1)
(June 2000) 177–213

29. Fournet, C., Gonthier, G.: The Join Calculus: a Language for Distributed Mobile
Programming. In: Applied Semantics: International Summer School. (2000)

30. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press (October 2003)

31. Armstrong, J.: Making reliable distributed systems in the presence of software
errors. PhD thesis, Royal Institute of Technology, Stockholm (2003)

32. Miller, M.S.: Robust composition: Towards a unified approach to access control
and concurrency control. PhD thesis, Johns Hopkins University (2006)

33. Miller, M.S., Cutsem, T.V., Tulloh, B.: Distributed Electronic Rights in JavaScript.
In: Proc. European Symp. on Programming. (2013)

34. Yoo, S., Killian, C., Kelly, T., Cho, H.K., Plite, S.: Composable Reliability for
Asynchronous Systems. In: Proc. USENIX Annual Technical Conference. (June
2012)

35. Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter, W.:
AmbientTalk: Object-oriented Event-driven Programming in Mobile Ad hoc Net-
works. In: Intl. Conf. of the Chilean Society of Computer Science (SCCC), IEEE
(November 2007) 3–12

http://racket-lang.org/tr1/

	The Network as a Language Construct

