#lang turnstile (provide (rename-out [syndicate:#%module-begin #%module-begin]) (rename-out [typed-app #%app]) #%top-interaction require only-in ;; Types Int Bool String Tuple Bind Discard → List Role Reacts Shares Know ¬Know Message Stop FacetName Field ★/t Observe Inbound Outbound Actor U ;; Statements let let* if spawn dataspace start-facet set! begin stop #;unsafe-do ;; endpoints assert on ;; expressions tuple lambda ref observe inbound outbound ;; values #%datum ;; patterns bind discard ;; primitives + - * / and or not > < >= <= = equal? displayln printf ;; making types define-type-alias define-constructor ;; DEBUG and utilities print-type print-role ;; Extensions match cond ) (require (prefix-in syndicate: syndicate/actor-lang)) (require (for-meta 2 macrotypes/stx-utils racket/list syntax/stx)) (require (for-syntax turnstile/examples/util/filter-maximal)) (require macrotypes/postfix-in) (require (rename-in racket/math [exact-truncate exact-truncate-])) (require (postfix-in - racket/list)) (require (postfix-in - racket/set)) (require (postfix-in - racket/match)) (module+ test (require rackunit) (require turnstile/rackunit-typechecking)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Type Checking Conventions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; : describes the immediate result of evaluation ;; a key aggregates `assert` endpoints as `Shares` ;; r key aggregates each `on` endpoint as a `Reacts` ;; f key aggregates facet effects (starting a facet) as `Role`s ;; s key aggregates spawned actors as `Actor`s ;; TODO - chan the `a` and `r` keys be merged into one 'endpoint' key? ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Types ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (define-binding-type Role #:arity >= 0 #:bvs = 1) (define-type-constructor Shares #:arity = 1) (define-type-constructor Reacts #:arity >= 1) (define-type-constructor Know #:arity = 1) (define-type-constructor ¬Know #:arity = 1) (define-type-constructor Stop #:arity >= 1) (define-type-constructor Message #:arity = 1) (define-type-constructor Field #:arity = 1) (define-type-constructor Bind #:arity = 1) (define-base-types OnStart OnStop) (define-type-constructor Tuple #:arity >= 0) (define-type-constructor Observe #:arity = 1) (define-type-constructor Inbound #:arity = 1) (define-type-constructor Outbound #:arity = 1) (define-type-constructor Actor #:arity = 1) (define-type-constructor AssertionSet #:arity = 1) (define-type-constructor Patch #:arity = 2) (define-type-constructor List #:arity = 1) (define-type-constructor Set #:arity = 1) (define-type-constructor → #:arity > 0) ;; for describing the RHS ;; a value and a description of the effects (define-type-constructor Computation #:arity = 5) (define-type-constructor Value #:arity = 1) (define-type-constructor Asserts #:arity >= 0) (define-type-constructor Reactions #:arity >= 0) (define-type-constructor Roles #:arity >= 0) (define-type-constructor Spawns #:arity >= 0) (define-base-types Int Bool String Discard ★/t FacetName) (define-for-syntax (type-eval t) ((current-type-eval) t)) (define-type-constructor U* #:arity >= 0) (define-for-syntax (prune+sort tys) (stx-sort (filter-maximal (stx->list tys) typecheck?))) (define-syntax (U stx) (syntax-parse stx [(_ . tys) ;; canonicalize by expanding to U*, with only (sorted and pruned) leaf tys #:with ((~or (~U* ty1- ...) ty2-) ...) (stx-map (current-type-eval) #'tys) #:with tys- (prune+sort #'(ty1- ... ... ty2- ...)) (if (= 1 (stx-length #'tys-)) (stx-car #'tys-) (syntax/loc stx (U* . tys-)))])) ;; for looking at the "effects" (begin-for-syntax (define-syntax ~effs (pattern-expander (syntax-parser [(_ eff:id ...) #:with tmp (generate-temporary 'effss) #'(~and tmp (~parse (eff ...) (stx-or #'tmp #'())))]))) (define (stx-truth? a) (and a (not (and (syntax? a) (false? (syntax-e a)))))) (define (stx-or a b) (cond [(stx-truth? a) a] [else b]))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; User Defined Types, aka Constructors ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; τ.norm in 1st case causes "not valid type" error when referring to ⊥ in another file. ;; however, this version expands the type at every reference, incurring a potentially large ;; overhead---2x in the case of book-club.rkt ;; (copied from ext-stlc example) (define-syntax define-type-alias (syntax-parser [(_ alias:id τ) #'(define-syntax- alias (make-variable-like-transformer #'τ))] [(_ (f:id x:id ...) ty) #'(define-syntax- (f stx) (syntax-parse stx [(_ x ...) #:with τ:any-type #'ty #'τ.norm]))])) (begin-for-syntax (define-splicing-syntax-class type-constructor-decl (pattern (~seq #:type-constructor TypeCons:id)) (pattern (~seq) #:attr TypeCons #f)) (struct user-ctor (typed-ctor untyped-ctor) #:property prop:procedure (lambda (v stx) (define transformer (user-ctor-typed-ctor v)) (syntax-parse stx [(_ e ...) #`(#,transformer e ...)])))) (define-syntax (define-constructor stx) (syntax-parse stx [(_ (Cons:id slot:id ...) ty-cons:type-constructor-decl (~seq #:with Alias AliasBody) ...) #:with TypeCons (or (attribute ty-cons.TypeCons) (format-id stx "~a/t" (syntax-e #'Cons))) #:with MakeTypeCons (format-id #'TypeCons "make-~a" #'TypeCons) #:with GetTypeParams (format-id #'TypeCons "get-~a-type-params" #'TypeCons) #:with TypeConsExpander (format-id #'TypeCons "~~~a" #'TypeCons) #:with TypeConsExtraInfo (format-id #'TypeCons "~a-extra-info" #'TypeCons) #:with (StructName Cons- type-tag) (generate-temporaries #'(Cons Cons Cons)) (define arity (stx-length #'(slot ...))) #`(begin- (struct- StructName (slot ...) #:reflection-name 'Cons #:transparent) (define-syntax (TypeConsExtraInfo stx) (syntax-parse stx [(_ X (... ...)) #'('type-tag 'MakeTypeCons 'GetTypeParams)])) (define-type-constructor TypeCons #:arity = #,arity #:extra-info 'TypeConsExtraInfo) (define-syntax (MakeTypeCons stx) (syntax-parse stx [(_ t (... ...)) #:fail-unless (= #,arity (stx-length #'(t (... ...)))) "arity mismatch" #'(TypeCons t (... ...))])) (define-syntax (GetTypeParams stx) (syntax-parse stx [(_ (TypeConsExpander t (... ...))) #'(t (... ...))])) (define-syntax Cons (user-ctor #'Cons- #'StructName)) (define-typed-syntax (Cons- e (... ...)) ≫ #:fail-unless (= #,arity (stx-length #'(e (... ...)))) "arity mismatch" [⊢ e ≫ e- (⇒ : τ) (⇒ a (~effs)) (⇒ r (~effs)) (⇒ f (~effs)) (⇒ s (~effs))] (... ...) ---------------------- [⊢ (#%app- StructName e- (... ...)) (⇒ : (TypeCons τ (... ...)))]) (define-type-alias Alias AliasBody) ...)])) (begin-for-syntax (define-syntax ~constructor-extra-info (pattern-expander (syntax-parser [(_ tag mk get) #'(_ (_ tag) (_ mk) (_ get))]))) (define-syntax ~constructor-type (pattern-expander (syntax-parser [(_ tag . rst) #'(~and it (~fail #:unless (user-defined-type? #'it)) (~parse tag (get-type-tag #'it)) (~Any _ . rst))]))) (define-syntax ~constructor-exp (pattern-expander (syntax-parser [(_ cons . rst) #'(~and (cons . rst) (~fail #:unless (ctor-id? #'cons)))]))) (define (inspect t) (syntax-parse t [(~constructor-type tag t ...) (list (syntax-e #'tag) (stx-map type->str #'(t ...)))])) (define (tags-equal? t1 t2) (equal? (syntax-e t1) (syntax-e t2))) (define (user-defined-type? t) (get-extra-info (type-eval t))) (define (get-type-tag t) (syntax-parse (get-extra-info t) [(~constructor-extra-info tag _ _) (syntax-e #'tag)])) (define (get-type-args t) (syntax-parse (get-extra-info t) [(~constructor-extra-info _ _ get) (define f (syntax-local-value #'get)) (syntax->list (f #`(get #,t)))])) (define (make-cons-type t args) (syntax-parse (get-extra-info t) [(~constructor-extra-info _ mk _) (define f (syntax-local-value #'mk)) (type-eval (f #`(mk #,@args)))])) (define (ctor-id? stx) (and (identifier? stx) (user-ctor? (syntax-local-value stx (const #f))))) (define (untyped-ctor stx) (user-ctor-untyped-ctor (syntax-local-value stx (const #f))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Conveniences ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Syntax ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (begin-for-syntax ;; constructors with arity one (define-syntax-class kons1 (pattern (~or (~datum observe) (~datum inbound) (~datum outbound)))) (define (kons1->constructor stx) (syntax-parse stx #:datum-literals (observe inbound outbound) [observe #'syndicate:observe] [inbound #'syndicate:inbound] [outbound #'syndicate:outbound])) (define-syntax-class basic-val (pattern (~or boolean integer string))) (define-syntax-class prim-op (pattern (~or (~literal +) (~literal -) (~literal displayln))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Utilities Over Types ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (define-for-syntax (bot? t) (<: t (type-eval #'(U*)))) (define-for-syntax (flat-type? τ) (syntax-parse τ [(~→ τ ...) #f] [(~Actor τ) #f] [_ #t])) (define-for-syntax (strip-? t) (type-eval (syntax-parse t [(~U* τ ...) #`(U #,@(stx-map strip-? #'(τ ...)))] [~★/t #'★/t] [(~Observe τ) #'τ] [_ #'(U*)]))) (define-for-syntax (strip-inbound t) (type-eval (syntax-parse t [(~U* τ ...) #`(U #,@(stx-map strip-? #'(τ ...)))] [~★/t #'★/t] [(~Inbound τ) #'τ] [_ #'(U*)]))) (define-for-syntax (strip-outbound t) (type-eval (syntax-parse t [(~U* τ ...) #`(U #,@(stx-map strip-? #'(τ ...)))] [~★/t #'★/t] [(~Outbound τ) #'τ] [_ #'(U*)]))) (define-for-syntax (relay-interests t) (type-eval (syntax-parse t ;; TODO: probably need to `normalize` the result [(~U* τ ...) #`(U #,@(stx-map strip-? #'(τ ...)))] [~★/t #'★/t] [(~Observe (~Inbound τ)) #'(Observe τ)] [_ #'(U*)]))) ;; (SyntaxOf RoleType ...) -> (Syntaxof InputType OutputType SpawnType) (define-for-syntax (analyze-roles rs) (define-values (lis los lss) (for/fold ([is '()] [os '()] [ss '()]) ([r (in-syntax rs)]) (define-values (i o s) (analyze-role-input/output r)) (values (cons i is) (cons o os) (cons s ss)))) #`(#,(type-eval #`(U #,@lis)) #,(type-eval #`(U #,@los)) #,(type-eval #`(U #,@lss)))) ;; Wanted test case, but can't use it bc it uses things defined for-syntax #;(module+ test (let ([r (type-eval #'(Role (x) (Shares Int)))]) (syntax-parse (analyze-role-input/output r) [(τ-i τ-o) (check-true (type=? #'τ-o (type-eval #'Int)))]))) ;; RoleType -> (Values InputType OutputType SpawnType) (define-for-syntax (analyze-role-input/output t) (syntax-parse t [(~Stop name:id τ-r ...) #:with (τi τo τa) (analyze-roles #'(τ-r ...)) (values #'τi #'τo #'τa)] [(~Actor τc) (values (mk-U*- '()) (mk-U*- '()) t)] [(~Role (name:id) (~or (~Shares τ-s) (~Reacts τ-if τ-then ...)) ... (~and (~Role _ ...) sub-role) ...) (define-values (is os ss) (for/fold ([ins '()] [outs '()] [spawns '()]) ([t (in-syntax #'(τ-then ... ... sub-role ...))]) (define-values (i o s) (analyze-role-input/output t)) (values (cons i ins) (cons o outs) (cons s spawns)))) (define pat-types (stx-map event-desc-type #'(τ-if ...))) (values (type-eval #`(U #,@is #,@pat-types)) (type-eval #`(U τ-s ... #,@os #,@(stx-map pattern-sub-type pat-types))) (type-eval #`(U #,@ss)))])) ;; EventDescriptorType -> Type (define-for-syntax (event-desc-type desc) (syntax-parse desc [(~Know τ) #'τ] [(~¬Know τ) #'τ] [(~Message τ) desc] [_ (type-eval #'(U*))])) ;; PatternType -> Type (define-for-syntax (pattern-sub-type pt) (define t (replace-bind-and-discard-with-★ pt)) (type-eval #`(Observe #,t))) (define-for-syntax (replace-bind-and-discard-with-★ t) (syntax-parse t [(~Bind _) (type-eval #'★/t)] [~Discard (type-eval #'★/t)] [(~U* τ ...) (type-eval #`(U #,@(stx-map replace-bind-and-discard-with-★ #'(τ ...))))] [(~Tuple τ ...) (type-eval #`(Tuple #,@(stx-map replace-bind-and-discard-with-★ #'(τ ...))))] [(~Observe τ) (type-eval #`(Observe #,(replace-bind-and-discard-with-★ #'τ)))] [(~Inbound τ) (type-eval #`(Inbound #,(replace-bind-and-discard-with-★ #'τ)))] [(~Outbound τ) (type-eval #`(Outbound #,(replace-bind-and-discard-with-★ #'τ)))] [(~constructor-type _ τ ...) (make-cons-type t (stx-map replace-bind-and-discard-with-★ #'(τ ...)))] [_ t])) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Subtyping and Judgments on Types ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Type Type -> Bool (define-for-syntax (<: t1 t2) (syntax-parse #`(#,t1 #,t2) [((~U* τ1 ...) _) (stx-andmap (lambda (t) (<: t t2)) #'(τ1 ...))] [(_ (~U* τ2:type ...)) (stx-ormap (lambda (t) (<: t1 t)) #'(τ2 ...))] [((~Actor τ1) (~Actor τ2)) (and (<: #'τ1 #'τ2) (<: (∩ (strip-? #'τ1) #'τ2) #'τ1))] [((~AssertionSet τ1) (~AssertionSet τ2)) (<: #'τ1 #'τ2)] [((~Set τ1) (~Set τ2)) (<: #'τ1 #'τ2)] [((~Patch τ11 τ12) (~Patch τ21 τ22)) (and (<: #'τ11 #'τ21) (<: #'τ12 #'τ22))] [((~Tuple τ1:type ...) (~Tuple τ2:type ...)) #:when (stx-length=? #'(τ1 ...) #'(τ2 ...)) (stx-andmap <: #'(τ1 ...) #'(τ2 ...))] [(_ ~★/t) (flat-type? t1)] [((~Observe τ1:type) (~Observe τ2:type)) (<: #'τ1 #'τ2)] [((~Inbound τ1:type) (~Inbound τ2:type)) (<: #'τ1 #'τ2)] [((~Outbound τ1:type) (~Outbound τ2:type)) (<: #'τ1 #'τ2)] [((~constructor-type t1 τ1:type ...) (~constructor-type t2 τ2:type ...)) #:when (tags-equal? #'t1 #'t2) (and (stx-length=? #'(τ1 ...) #'(τ2 ...)) (stx-andmap <: #'(τ1 ...) #'(τ2 ...)))] [((~→ τ-in1 ... τ-out1) (~→ τ-in2 ... τ-out2)) #:when (stx-length=? #'(τ-in1 ...) #'(τ-in2 ...)) (and (stx-andmap <: #'(τ-in2 ...) #'(τ-in1 ...)) (<: #'τ-out1 #'τ-out2))] [(~Discard _) #t] ;; TODO: clauses for Roles, and so on ;; should probably put this first. [_ (type=? t1 t2)])) ;; Flat-Type Flat-Type -> Type (define-for-syntax (∩ t1 t2) (unless (and (flat-type? t1) (flat-type? t2)) (error '∩ "expected two flat-types")) (syntax-parse #`(#,t1 #,t2) [(_ ~★/t) t1] [(~★/t _) t2] [(_ _) #:when (type=? t1 t2) t1] [((~U* τ1:type ...) _) (type-eval #`(U #,@(stx-map (lambda (t) (∩ t t2)) #'(τ1 ...))))] [(_ (~U* τ2:type ...)) (type-eval #`(U #,@(stx-map (lambda (t) (∩ t1 t)) #'(τ2 ...))))] [((~AssertionSet τ1) (~AssertionSet τ2)) #:with τ12 (∩ #'τ1 #'τ2) (type-eval #'(AssertionSet τ12))] [((~Set τ1) (~Set τ2)) #:with τ12 (∩ #'τ1 #'τ2) (type-eval #'(Set τ12))] [((~Patch τ11 τ12) (~Patch τ21 τ22)) #:with τ1 (∩ #'τ11 #'τ12) #:with τ2 (∩ #'τ21 #'τ22) (type-eval #'(Patch τ1 τ2))] ;; all of these fail-when/unless clauses are meant to cause this through to ;; the last case and result in ⊥. ;; Also, using <: is OK, even though <: refers to ∩, because <:'s use of ∩ is only ;; in the Actor case. [((~Tuple τ1:type ...) (~Tuple τ2:type ...)) #:fail-unless (stx-length=? #'(τ1 ...) #'(τ2 ...)) #f #:with (τ ...) (stx-map ∩ #'(τ1 ...) #'(τ2 ...)) ;; I don't think stx-ormap is part of the documented api of turnstile *shrug* #:fail-when (stx-ormap (lambda (t) (<: t (type-eval #'(U)))) #'(τ ...)) #f (type-eval #'(Tuple τ ...))] [((~constructor-type tag1 τ1:type ...) (~constructor-type tag2 τ2:type ...)) #:when (tags-equal? #'tag1 #'tag2) #:with (τ ...) (stx-map ∩ #'(τ1 ...) #'(τ2 ...)) #:fail-when (stx-ormap (lambda (t) (<: t (type-eval #'(U)))) #'(τ ...)) #f (make-cons-type t1 #'(τ ...))] ;; these three are just the same :( [((~Observe τ1:type) (~Observe τ2:type)) #:with τ (∩ #'τ1 #'τ2) #:fail-when (<: #'τ (type-eval #'(U))) #f (type-eval #'(Observe τ))] [((~Inbound τ1:type) (~Inbound τ2:type)) #:with τ (∩ #'τ1 #'τ2) #:fail-when (<: #'τ (type-eval #'(U))) #f (type-eval #'(Inbound τ))] [((~Outbound τ1:type) (~Outbound τ2:type)) #:with τ (∩ #'τ1 #'τ2) #:fail-when (<: #'τ (type-eval #'(U))) #f (type-eval #'(Outbound τ))] [_ (type-eval #'(U))])) ;; Type Type -> Bool ;; first type is the contents of the set ;; second type is the type of a pattern (define-for-syntax (project-safe? t1 t2) (syntax-parse #`(#,t1 #,t2) [(_ (~Bind τ2:type)) (and (finite? t1) (<: t1 #'τ2))] [(_ ~Discard) #t] [(_ ~★/t) #t] [((~U* τ1:type ...) _) (stx-andmap (lambda (t) (project-safe? t t2)) #'(τ1 ...))] [(_ (~U* τ2:type ...)) (stx-andmap (lambda (t) (project-safe? t1 t)) #'(τ2 ...))] [((~Tuple τ1:type ...) (~Tuple τ2:type ...)) #:when (overlap? t1 t2) (stx-andmap project-safe? #'(τ1 ...) #'(τ2 ...))] [((~constructor-type _ τ1:type ...) (~constructor-type _ τ2:type ...)) #:when (overlap? t1 t2) (stx-andmap project-safe? #'(τ1 ...) #'(τ2 ...))] [((~Observe τ1:type) (~Observe τ2:type)) (project-safe? #'τ1 #'τ2)] [((~Inbound τ1:type) (~Inbound τ2:type)) (project-safe? #'τ1 #'τ2)] [((~Outbound τ1:type) (~Outbound τ2:type)) (project-safe? #'τ1 #'τ2)] [_ #t])) ;; AssertionType PatternType -> Bool ;; Is it possible for things of these two types to match each other? ;; Flattish-Type = Flat-Types + ★/t, Bind, Discard (assertion and pattern types) (define-for-syntax (overlap? t1 t2) (syntax-parse #`(#,t1 #,t2) [(~★/t _) #t] [(_ (~Bind _)) #t] [(_ ~Discard) #t] [(_ ~★/t) #t] [((~U* τ1:type ...) _) (stx-ormap (lambda (t) (overlap? t t2)) #'(τ1 ...))] [(_ (~U* τ2:type ...)) (stx-ormap (lambda (t) (overlap? t1 t)) #'(τ2 ...))] [((~List _) (~List _)) ;; share the empty list #t] [((~Tuple τ1:type ...) (~Tuple τ2:type ...)) (and (stx-length=? #'(τ1 ...) #'(τ2 ...)) (stx-andmap overlap? #'(τ1 ...) #'(τ2 ...)))] [((~constructor-type t1 τ1:type ...) (~constructor-type t2 τ2:type ...)) (and (tags-equal? #'t1 #'t2) (stx-andmap overlap? #'(τ1 ...) #'(τ2 ...)))] [((~Observe τ1:type) (~Observe τ2:type)) (overlap? #'τ1 #'τ2)] [((~Inbound τ1:type) (~Inbound τ2:type)) (overlap? #'τ1 #'τ2)] [((~Outbound τ1:type) (~Outbound τ2:type)) (overlap? #'τ1 #'τ2)] [_ (<: t1 t2)])) ;; Flattish-Type -> Bool (define-for-syntax (finite? t) (syntax-parse t [~★/t #f] [(~U* τ:type ...) (stx-andmap finite? #'(τ ...))] [(~Tuple τ:type ...) (stx-andmap finite? #'(τ ...))] [(~constructor-type _ τ:type ...) (stx-andmap finite? #'(τ ...))] [(~Observe τ:type) (finite? #'τ)] [(~Inbound τ:type) (finite? #'τ)] [(~Outbound τ:type) (finite? #'τ)] [(~Set τ:type) (finite? #'τ)] [_ #t])) ;; !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ;; MODIFYING GLOBAL TYPECHECKING STATE!!!!! ;; !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! (begin-for-syntax (current-typecheck-relation <:)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Effect Checking ;; DesugaredSyntax EffectName -> Bool (define-for-syntax (effect-free? e- eff) (define prop (syntax-property e- eff)) (or (false? prop) (stx-null? prop))) ;; DesugaredSyntax -> Bool (define-for-syntax (pure? e-) (for/and ([key (in-list '(a r f s))]) (effect-free? e- key))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Core forms (define-typed-syntax (start-facet name:id ((~datum fields) [x:id τ-f:type e:expr] ...) ep ...+) ≫ #:fail-unless (stx-andmap flat-type? #'(τ-f ...)) "keep your uppity data outta my fields" [⊢ e ≫ e- (⇐ : τ-f)] ... #:fail-unless (stx-andmap pure? #'(e- ...)) "field initializers not allowed to have effects" [[name ≫ name- : FacetName] [x ≫ x- : (Field τ-f.norm)] ... ⊢ [ep ≫ ep- (⇒ r (~effs τ-r ...)) (⇒ a (~effs τ-a ...)) (⇒ f (~effs)) (⇒ s (~effs))] ...] #:with τ (type-eval #'(Role (name-) τ-a ... ... τ-r ... ...)) -------------------------------------------------------------- [⊢ (syndicate:react (let- ([name- (syndicate:current-facet-id)]) #,(make-fields #'(x- ...) #'(e- ...)) ep- ...)) (⇒ : ★/t) (⇒ r ()) (⇒ a ()) (⇒ s ()) (⇒ f (τ))]) (define-for-syntax (make-fields names inits) (syntax-parse #`(#,names #,inits) [((x:id ...) (e ...)) #'(syndicate:field [x e] ...)])) (define-typed-syntax (assert e:expr) ≫ [⊢ e ≫ e- (⇒ : τ)] #:fail-unless (pure? #'e-) "expression not allowed to have effects" ------------------------------------- [⊢ (syndicate:assert e-) (⇒ : ★/t) (⇒ a ((Shares τ))) (⇒ r ()) (⇒ f ()) (⇒ s ())]) (define-typed-syntax (stop facet-name:id cont ...) ≫ [⊢ facet-name ≫ facet-name- (⇐ : FacetName)] [⊢ (begin #f cont ...) ≫ cont- (⇒ a (~effs)) (⇒ r (~effs)) (⇒ s (~effs)) (⇒ f (~effs τ-f ...))] #:with τ (mk-Stop- #`(facet-name- τ-f ...)) --------------------------------------------------------------------------------- [⊢ (syndicate:stop-facet facet-name- cont-) (⇒ : ★/t) (⇒ s ()) (⇒ a ()) (⇒ r ()) (⇒ f (τ))]) (begin-for-syntax (define-syntax-class asserted-or-retracted #:datum-literals (asserted retracted) (pattern (~or (~and asserted (~bind [syndicate-kw #'syndicate:asserted] [react-con #'Know])) (~and retracted (~bind [syndicate-kw #'syndicate:retracted] [react-con #'¬Know])))))) (define-typed-syntax on [(on (~literal start) s ...) ≫ [⊢ (begin s ...) ≫ s- (⇒ a (~effs)) (⇒ r (~effs)) (⇒ f (~effs τ-f ...)) (⇒ s (~effs τ-s ...))] #:with τ-r #'(Reacts OnStart τ-f ... τ-s ...) ----------------------------------- [⊢ (syndicate:on-start s-) (⇒ : ★/t) (⇒ a ()) (⇒ r (τ-r)) (⇒ f ()) (⇒ s ())]] [(on (~literal stop) s ...) ≫ [⊢ (begin s ...) ≫ s- (⇒ a (~effs)) (⇒ r (~effs)) (⇒ f (~effs τ-f ...)) (⇒ s (~effs τ-s ...))] #:with τ-r #'(Reacts OnStop τ-f ... τ-s ...) ----------------------------------- [⊢ (syndicate:on-stop s-) (⇒ : ★/t) (⇒ a ()) (⇒ r (τ-r)) (⇒ f ()) (⇒ s ())]] [(on (a/r:asserted-or-retracted p) s ...) ≫ [⊢ p ≫ p-- (⇒ : τp)] #:fail-unless (pure? #'p--) "pattern not allowed to have effects" #:with ([x:id τ:type] ...) (pat-bindings #'p) [[x ≫ x- : τ] ... ⊢ (begin s ...) ≫ s- (⇒ a (~effs)) (⇒ r (~effs)) (⇒ f (~effs τ-f ...)) (⇒ s (~effs τ-s ...))] #:with p- (substs #'(x- ...) #'(x ...) (compile-syndicate-pattern #'p)) #:with τ-r #'(Reacts (a/r.react-con τp) τ-f ... τ-s ...) ----------------------------------- [⊢ (syndicate:on (a/r.syndicate-kw p-) s-) (⇒ : ★/t) (⇒ r (τ-r)) (⇒ f ()) (⇒ a ()) (⇒ s ())]]) ;; pat -> ([Id Type] ...) (define-for-syntax (pat-bindings stx) (syntax-parse stx #:datum-literals (bind tuple) [(bind x:id τ:type) #'([x τ])] [(tuple p ...) #:with (([x:id τ:type] ...) ...) (stx-map pat-bindings #'(p ...)) #'([x τ] ... ...)] [(k:kons1 p) (pat-bindings #'p)] [(~constructor-exp cons p ...) #:with (([x:id τ:type] ...) ...) (stx-map pat-bindings #'(p ...)) #'([x τ] ... ...)] [_ #'()])) (define-for-syntax (compile-pattern pat bind-id-transformer exp-transformer) (define (l-e stx) (local-expand stx 'expression '())) (let loop ([pat pat]) (syntax-parse pat #:datum-literals (tuple discard bind) [(tuple p ...) #`(list 'tuple #,@(stx-map loop #'(p ...)))] [(k:kons1 p) #`(#,(kons1->constructor #'k) #,(loop #'p))] [(bind x:id τ:type) (bind-id-transformer #'x)] [discard #'_] [(~constructor-exp ctor p ...) (define/with-syntax uctor (untyped-ctor #'ctor)) #`(uctor #,@(stx-map loop #'(p ...)))] [_ ;; local expanding "expression-y" syntax allows variable references to transform ;; according to the mappings set up by turnstile. (exp-transformer (l-e pat))]))) (define-for-syntax (compile-syndicate-pattern pat) (compile-pattern pat (lambda (id) #`($ #,id)) identity)) (define-for-syntax (compile-match-pattern pat) (compile-pattern pat identity (lambda (exp) #`(==- #,exp)))) (define-typed-syntax (spawn τ-c:type s) ≫ #:fail-unless (flat-type? #'τ-c.norm) "Communication type must be first-order" ;; TODO: check that each τ-f is a Role [⊢ s ≫ s- (⇒ a (~effs)) (⇒ r (~effs)) (⇒ s (~effs)) (⇒ f (~effs τ-f ...))] ;; TODO: s shouldn't refer to facets or fields! #:with (τ-i τ-o τ-a) (analyze-roles #'(τ-f ...)) #:fail-unless (<: #'τ-o #'τ-c.norm) (format "Output ~a not valid in dataspace ~a" (type->str #'τ-o) (type->str #'τ-c.norm)) #:fail-unless (<: #'τ-a (type-eval #'(Actor τ-c.norm))) "Spawned actors not valid in dataspace" #:fail-unless (project-safe? (∩ (strip-? #'τ-o) #'τ-c.norm) #'τ-i) "Not prepared to handle all inputs" #:with τ-final (type-eval #'(Actor τ-c.norm)) -------------------------------------------------------------------------------------------- [⊢ (syndicate:spawn (syndicate:on-start s-)) (⇒ : ★/t) (⇒ s (τ-final)) (⇒ a ()) (⇒ r ()) (⇒ f ())]) (define-typed-syntax (dataspace τ-c:type s ...) ≫ #:fail-unless (flat-type? #'τ-c.norm) "Communication type must be first-order" [⊢ s ≫ s- (⇒ a (~effs)) (⇒ r (~effs)) (⇒ s (~effs τ-s ...)) (⇒ f (~effs))] ... #:with τ-actor (type-eval #'(Actor τ-c.norm)) #:fail-unless (stx-andmap (lambda (t) (<: t #'τ-actor)) #'(τ-s ... ...)) "Not all actors conform to communication type" #:with τ-ds-i (strip-inbound #'τ-c.norm) #:with τ-ds-o (strip-outbound #'τ-c.norm) #:with τ-relay (relay-interests #'τ-c.norm) ----------------------------------------------------------------------------------- [⊢ (syndicate:dataspace s- ...) (⇒ : ★/t) (⇒ s ((Actor (U τ-ds-i τ-ds-o τ-relay)))) (⇒ a ()) (⇒ r ()) (⇒ f ())]) (define-typed-syntax (set! x:id e:expr) ≫ [⊢ e ≫ e- (⇒ : τ)] #:fail-unless (pure? #'e-) "expression not allowed to have effects" [⊢ x ≫ x- (⇒ : (~Field τ-x:type))] #:fail-unless (<: #'τ #'τ-x) "Ill-typed field write" ---------------------------------------------------- [⊢ (x- e-) (⇒ : ★/t)]) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Expressions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (define-typed-syntax (ref x:id) ≫ [⊢ x ≫ x- ⇒ (~Field τ)] ------------------------ [⊢ (x-) (⇒ : τ)]) (define-typed-syntax (lambda ([x:id (~optional (~datum :)) τ:type] ...) body ...+) ≫ [[x ≫ x- : τ] ... ⊢ (begin body ...) ≫ body- (⇒ : τ-e) (⇒ a (~effs τ-a ...)) (⇒ r (~effs τ-r ...)) (⇒ s (~effs τ-s ...)) (⇒ f (~effs τ-f ...))] ---------------------------------------- [⊢ (lambda- (x- ...) body-) (⇒ : (→ τ ... (Computation (Value τ-e) (Asserts τ-a ...) (Reactions τ-r ...) (Roles τ-f ...) (Spawns τ-s ...))))]) (define-typed-syntax (typed-app e_fn e_arg ...) ≫ [⊢ e_fn ≫ e_fn- (⇒ : (~→ τ_in ... (~Computation (~Value τ-out) (~Asserts τ-a ...) (~Reactions τ-r ...) (~Roles τ-f ...) (~Spawns τ-s ...))))] #:fail-unless (pure? #'e_fn-) "expression not allowed to have effects" #:fail-unless (stx-length=? #'[τ_in ...] #'[e_arg ...]) (num-args-fail-msg #'e_fn #'[τ_in ...] #'[e_arg ...]) [⊢ e_arg ≫ e_arg- (⇐ : τ_in)] ... #:fail-unless (stx-andmap pure? #'(e_arg- ...)) "expressions not allowed to have effects" ------------------------------------------------------------------------ [⊢ (#%app- e_fn- e_arg- ...) (⇒ : τ-out) (⇒ a (τ-a ...)) (⇒ r (τ-r ...)) (⇒ s (τ-s ...)) (⇒ f (τ-f ...))]) (define-typed-syntax (tuple e:expr ...) ≫ [⊢ e ≫ e- (⇒ : τ)] ... #:fail-unless (stx-andmap pure? #'(e- ...)) "expressions not allowed to have effects" ----------------------- [⊢ (list- 'tuple e- ...) (⇒ : (Tuple τ ...))]) (define-typed-syntax (select n:nat e:expr) ≫ [⊢ e ≫ e- (⇒ : (~Tuple τ ...))] #:fail-unless (pure? #'e-) "expression not allowed to have effects" #:do [(define i (syntax->datum #'n))] #:fail-unless (< i (stx-length #'(τ ...))) "index out of range" #:with τr (list-ref (stx->list #'(τ ...)) i) -------------------------------------------------------------- [⊢ (tuple-select n e-) (⇒ : τr)]) (define- (tuple-select n t) (list-ref- t (add1 n))) ;; it would be nice to abstract over these three (define-typed-syntax (observe e:expr) ≫ [⊢ e ≫ e- (⇒ : τ)] #:fail-unless (pure? #'e-) "expression not allowed to have effects" --------------------------------------------------------------------------- [⊢ (syndicate:observe e-) (⇒ : (Observe τ))]) (define-typed-syntax (inbound e:expr) ≫ [⊢ e ≫ e- (⇒ : τ)] #:fail-unless (pure? #'e-) "expression not allowed to have effects" --------------------------------------------------------------------------- [⊢ (syndicate:inbound e-) (⇒ : (Inbound τ))]) (define-typed-syntax (outbound e:expr) ≫ [⊢ e ≫ e- (⇒ : τ)] #:fail-unless (pure? #'e-) "expression not allowed to have effects" --------------------------------------------------------------------------- [⊢ (syndicate:outbound e-) (⇒ : (Outbound τ))]) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Patterns ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (define-typed-syntax (bind x:id τ:type) ≫ ---------------------------------------- [⊢ (error- 'bind "escaped") (⇒ : (Bind τ))]) (define-typed-syntax discard [_ ≫ -------------------- [⊢ (error- 'discard "escaped") (⇒ : Discard)]]) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Core-ish forms ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; copied from stlc (define-typed-syntax (ann e (~optional (~datum :)) τ:type) ≫ [⊢ e ≫ e- (⇐ : τ.norm)] #:fail-unless (pure? #'e-) "expression must be pure" ------------------------------------------------ [⊢ e- (⇒ : τ.norm) ]) ;; copied from ext-stlc (define-typed-syntax define [(_ x:id (~datum :) τ:type e:expr) ≫ ;[⊢ e ≫ e- ⇐ τ.norm] #:with x- (generate-temporary #'x) -------- [≻ (begin- (define-typed-variable-rename x ≫ x- : τ.norm) (define- x- (ann e : τ.norm)))]] [(_ x:id e) ≫ ;This won't work with mutually recursive definitions [⊢ e ≫ e- ⇒ τ] #:fail-unless (pure? #'e-) "expression must be pure" #:with y (generate-temporary #'x) #:with y+props (transfer-props #'e- (assign-type #'y #'τ #:wrap? #f)) -------- [≻ (begin- (define-syntax x (make-rename-transformer #'y+props)) (define- y e-))]] ;; TODO - not sure how to get this to work with effects ;; right now `ann` forces the body to be pure [(_ (f [x (~optional (~datum :)) ty] ... (~or (~datum →) (~datum ->)) ty_out) e ...+) ≫ #:with f- (add-orig (generate-temporary #'f) #'f) -------- [≻ (begin- (define-typed-variable-rename f ≫ f- : (→ ty ... (Compuation (Value ty_out) (Asserts) (Reactions) (Roles) (Spawns)))) (define- f- (lambda ([x : ty] ...) (ann (begin e ...) : ty_out))))]]) ;; copied from ext-stlc (define-typed-syntax if [(_ e_tst e1 e2) ⇐ τ-expected ≫ [⊢ e_tst ≫ e_tst- ⇒ _] ; Any non-false value is truthy. #:fail-unless (pure? #'e_tst-) "expression must be pure" [⊢ e1 ≫ e1- (⇐ : τ-expected) (⇒ a (~effs as1 ...)) (⇒ r (~effs rs1 ...)) (⇒ f (~effs fs1 ...)) (⇒ s (~effs ss1 ...))] [⊢ e2 ≫ e2- (⇐ : τ-expected) (⇒ a (~effs as2 ...)) (⇒ r (~effs rs2 ...)) (⇒ f (~effs fs2 ...)) (⇒ s (~effs ss2 ...))] -------- [⊢ (if- e_tst- e1- e2-) (⇒ a (as1 ... as2 ...)) (⇒ r (rs1 ... rs2 ...)) (⇒ f (fs1 ... fs2 ...)) (⇒ s (ss1 ... ss2 ...))]] [(_ e_tst e1 e2) ≫ [⊢ e_tst ≫ e_tst- ⇒ _] ; Any non-false value is truthy. #:fail-unless (pure? #'e_tst-) "expression must be pure" [⊢ e1 ≫ e1- (⇒ : τ1) (⇒ a (~effs as1 ...)) (⇒ r (~effs rs1 ...)) (⇒ f (~effs fs1 ...)) (⇒ s (~effs ss1 ...))] [⊢ e2 ≫ e2- (⇒ : τ2) (⇒ a (~effs as2 ...)) (⇒ r (~effs rs2 ...)) (⇒ f (~effs fs2 ...)) (⇒ s (~effs ss2 ...))] #:with τ (type-eval #'(U τ1 τ2)) -------- [⊢ (if- e_tst- e1- e2-) (⇒ : τ) (⇒ a (as1 ... as2 ...)) (⇒ r (rs1 ... rs2 ...)) (⇒ f (fs1 ... fs2 ...)) (⇒ s (ss1 ... ss2 ...))]]) ;; copied from ext-stlc (define-typed-syntax begin [(_ e_unit ... e) ⇐ τ_expected ≫ [⊢ e_unit ≫ e_unit- (⇒ : _) (⇒ a (~effs as1 ...)) (⇒ r (~effs rs1 ...)) (⇒ f (~effs fs1 ...)) (⇒ s (~effs ss1 ...))] ... [⊢ e ≫ e- (⇐ : τ_expected) (⇒ a (~effs as2 ...)) (⇒ r (~effs rs2 ...)) (⇒ f (~effs fs2 ...)) (⇒ s (~effs ss2 ...))] -------- [⊢ (begin- e_unit- ... e-) (⇒ a (as1 ... ... as2 ...)) (⇒ r (rs1 ... ... rs2 ...)) (⇒ f (fs1 ... ... fs2 ...)) (⇒ s (ss1 ... ... ss2 ...))]] [(_ e_unit ... e) ≫ [⊢ e_unit ≫ e_unit- (⇒ : _) (⇒ a (~effs as1 ...)) (⇒ r (~effs rs1 ...)) (⇒ f (~effs fs1 ...)) (⇒ s (~effs ss1 ...))] ... [⊢ e ≫ e- (⇒ : τ_e) (⇒ a (~effs as2 ...)) (⇒ r (~effs rs2 ...)) (⇒ f (~effs fs2 ...)) (⇒ s (~effs ss2 ...))] -------- [⊢ (begin- e_unit- ... e-) (⇒ : τ_e) (⇒ a (as1 ... ... as2 ...)) (⇒ r (rs1 ... ... rs2 ...)) (⇒ f (fs1 ... ... fs2 ...)) (⇒ s (ss1 ... ... ss2 ...))]]) ;; copied from ext-stlc (define-typed-syntax let [(_ ([x e] ...) e_body ...) ⇐ τ_expected ≫ [⊢ e ≫ e- ⇒ : τ_x] ... #:fail-unless (stx-andmap pure? #'(e- ...)) "expressions must be pure" [[x ≫ x- : τ_x] ... ⊢ (begin e_body ...) ≫ e_body- (⇐ : τ_expected) (⇒ a (~effs as ...)) (⇒ r (~effs rs ...)) (⇒ f (~effs fs ...)) (⇒ s (~effs ss ...))] ---------------------------------------------------------- [⊢ (let- ([x- e-] ...) e_body-) (⇒ a (as ...)) (⇒ r (rs ...)) (⇒ f (fs ...)) (⇒ s (ss ...))]] [(_ ([x e] ...) e_body ...) ≫ [⊢ e ≫ e- ⇒ : τ_x] ... #:fail-unless (stx-andmap pure? #'(e- ...)) "expressions must be pure" [[x ≫ x- : τ_x] ... ⊢ (begin e_body ...) ≫ e_body- (⇒ : τ_body) (⇒ a (~effs as ...)) (⇒ r (~effs rs ...)) (⇒ f (~effs fs ...)) (⇒ s (~effs ss ...))] ---------------------------------------------------------- [⊢ (let- ([x- e-] ...) e_body-) (⇒ : τ_body) (⇒ a (as ...)) (⇒ r (rs ...)) (⇒ f (fs ...)) (⇒ s (ss ...))]]) ;; copied from ext-stlc (define-typed-syntax let* [(_ () e_body ...) ≫ -------- [≻ (begin e_body ...)]] [(_ ([x e] [x_rst e_rst] ...) e_body ...) ≫ -------- [≻ (let ([x e]) (let* ([x_rst e_rst] ...) e_body ...))]]) (define-typed-syntax (cond [pred:expr s ...+] ...+) ≫ [⊢ pred ≫ pred- (⇐ : Bool)] ... #:fail-unless (stx-andmap pure? #'(pred- ...)) "predicates must be pure" [⊢ (begin s ...) ≫ s- (⇒ : τ-s) (⇒ a (~effs as ...)) (⇒ r (~effs rs ...)) (⇒ f (~effs fs ...)) (⇒ s (~effs ss ...))] ... ------------------------------------------------ [⊢ (cond- [pred- s-] ...) (⇒ : (U τ-s ...)) (⇒ a (as ... ...)) (⇒ r (rs ... ...)) (⇒ f (fs ... ...)) (⇒ s (ss ... ...))]) (define-typed-syntax (match e [p s ...+] ...+) ≫ [⊢ e ≫ e- (⇒ : τ-e)] #:fail-unless (pure? #'e-) "expression must be pure" #:with (([x τ] ...) ...) (stx-map pat-bindings #'(p ...)) [[x ≫ x- : τ] ... ⊢ (begin s ...) ≫ s- (⇒ : τ-s) (⇒ a (~effs as ...)) (⇒ r (~effs rs ...)) (⇒ f (~effs fs ...)) (⇒ s (~effs ss ...))] ... ;; REALLY not sure how to handle p/p-/p.match-pattern, ;; particularly w.r.t. typed terms that appear in p.match-pattern [⊢ p ≫ p-- ⇒ τ-p] ... #:fail-unless (project-safe? #'τ-e (type-eval #'(U τ-p ...))) "possibly unsafe pattern match" #:fail-unless (stx-andmap pure? #'(p-- ...)) "patterns must be pure" #:with (p- ...) (stx-map (lambda (p x-s xs) (substs x-s xs (compile-match-pattern p))) #'(p ...) #'((x- ...) ...) #'((x ...) ...)) -------------------------------------------------------------- [⊢ (match- e- [p- s-] ... [_ (error "incomplete pattern match")]) (⇒ : (U τ-s ...)) (⇒ a (as ... ...)) (⇒ r (rs ... ...)) (⇒ f (fs ... ...)) (⇒ s (ss ... ...))]) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Primitives ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; hmmm (define-primop + (→ Int Int (Computation (Value Int) (Asserts) (Reactions) (Roles) (Spawns)))) (define-primop - (→ Int Int (Computation (Value Int) (Asserts) (Reactions) (Roles) (Spawns)))) (define-primop * (→ Int Int (Computation (Value Int) (Asserts) (Reactions) (Roles) (Spawns)))) #;(define-primop and (→ Bool Bool Bool)) (define-primop or (→ Bool Bool (Computation (Value Bool) (Asserts) (Reactions) (Roles) (Spawns)))) (define-primop not (→ Bool (Computation (Value Bool) (Asserts) (Reactions) (Roles) (Spawns)))) (define-primop < (→ Int Int (Computation (Value Bool) (Asserts) (Reactions) (Roles) (Spawns)))) (define-primop > (→ Int Int (Computation (Value Bool) (Asserts) (Reactions) (Roles) (Spawns)))) (define-primop <= (→ Int Int (Computation (Value Bool) (Asserts) (Reactions) (Roles) (Spawns)))) (define-primop >= (→ Int Int (Computation (Value Bool) (Asserts) (Reactions) (Roles) (Spawns)))) (define-primop = (→ Int Int (Computation (Value Bool) (Asserts) (Reactions) (Roles) (Spawns)))) (define-typed-syntax (/ e1 e2) ≫ [⊢ e1 ≫ e1- (⇐ : Int)] [⊢ e2 ≫ e2- (⇐ : Int)] #:fail-unless (pure? #'e1-) "expression not allowed to have effects" #:fail-unless (pure? #'e2-) "expression not allowed to have effects" ------------------------ [⊢ (exact-truncate- (/- e1- e2-)) (⇒ : Int)]) ;; for some reason defining `and` as a prim op doesn't work (define-typed-syntax (and e ...) ≫ [⊢ e ≫ e- (⇐ : Bool)] ... #:fail-unless (stx-andmap pure? #'(e- ...)) "expressions not allowed to have effects" ------------------------ [⊢ (and- e- ...) (⇒ : Bool)]) (define-typed-syntax (equal? e1:expr e2:expr) ≫ [⊢ e1 ≫ e1- (⇒ : τ1)] #:fail-unless (flat-type? #'τ1) (format "equality only available on flat data; got ~a" (type->str #'τ1)) [⊢ e2 ≫ e2- (⇐ : τ1)] #:fail-unless (pure? #'e1-) "expression not allowed to have effects" #:fail-unless (pure? #'e2-) "expression not allowed to have effects" --------------------------------------------------------------------------- [⊢ (equal?- e1- e2-) (⇒ : Bool)]) (define-typed-syntax (empty? e) ≫ [⊢ e ≫ e- (⇒ : (~List _))] #:fail-unless (pure? #'e-) "expression not allowed to have effects" ----------------------- [⊢ (empty?- e-) (⇒ : Bool)]) (define-typed-syntax (first e) ≫ [⊢ e ≫ e- (⇒ : (~List τ))] #:fail-unless (pure? #'e-) "expression not allowed to have effects" ----------------------- [⊢ (first- e-) (⇒ : τ)]) (define-typed-syntax (rest e) ≫ [⊢ e ≫ e- (⇒ : (~List τ))] #:fail-unless (pure? #'e-) "expression not allowed to have effects" ----------------------- [⊢ (rest- e-) (⇒ : (List τ))]) (define-typed-syntax (member? e l) ≫ [⊢ e ≫ e- (⇒ : τe:type)] [⊢ l ≫ l- (⇒ : (~List τl:type))] #:fail-unless (<: #'τe.norm #'τl.norm) "incompatible list" #:fail-unless (pure? #'e-) "expression not allowed to have effects" #:fail-unless (pure? #'l-) "expression not allowed to have effects" ---------------------------------------- [⊢ (member?- e- l-) (⇒ : Bool)]) (define- (member?- v l) (and- (member- v l) #t)) (define-typed-syntax (displayln e:expr) ≫ [⊢ e ≫ e- (⇒ : τ)] #:fail-unless (pure? #'e-) "expression not allowed to have effects" --------------- [⊢ (displayln- e-) (⇒ : ★/t)]) (define-typed-syntax (printf e ...+) ≫ [⊢ e ≫ e- (⇒ : τ)] ... #:fail-unless (stx-andmap pure? #'(e- ...)) "expression not allowed to have effects" --------------- [⊢ (printf- e- ...) (⇒ : ★/t)]) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Basic Values ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (define-typed-syntax #%datum [(_ . n:integer) ≫ ---------------- [⊢ (#%datum- . n) (⇒ : Int)]] [(_ . b:boolean) ≫ ---------------- [⊢ (#%datum- . b) (⇒ : Bool)]] [(_ . s:string) ≫ ---------------- [⊢ (#%datum- . s) (⇒ : String)]]) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Utilities ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (define-typed-syntax (print-type e) ≫ [⊢ e ≫ e- (⇒ : τ) (⇒ a as) (⇒ r rs) (⇒ f es)] #:do [(displayln (type->str #'τ))] ---------------------------------- [⊢ e- (⇒ : τ) (⇒ a as) (⇒ r rs) (⇒ f es)]) (define-typed-syntax (print-role e) ≫ [⊢ e ≫ e- (⇒ : τ) (⇒ a as) (⇒ r rs) (⇒ f es)] #:do [(for ([r (in-syntax #'es)]) (displayln (type->str r)))] ---------------------------------- [⊢ e- (⇒ : τ) (⇒ a as) (⇒ r rs) (⇒ f es)]) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Tests ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;