Rearrange hs directory into an actual Haskell project

This commit is contained in:
Tony Garnock-Jones 2016-03-09 13:15:23 +00:00
parent ee0442b3e4
commit c97b39f9a9
15 changed files with 710 additions and 444 deletions

1
hs/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
dist/

165
hs/LICENSE Normal file
View File

@ -0,0 +1,165 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

3
hs/Setup.hs Executable file
View File

@ -0,0 +1,3 @@
#!/usr/bin/env runhaskell
import Distribution.Simple
main = defaultMain

View File

@ -0,0 +1,79 @@
module Syndicate.Dataspace.Trie.ESOP2016 where
-- ESOP 2016 implementation of dataspace tries.
-- Includes bug fixes wrt the paper.
import Prelude hiding (null, seq)
import qualified Data.Map.Strict as Map
import qualified Data.Set as Set
data Sigma = Open
| Close
| Wild
| Ch Char
deriving (Eq, Ord, Show)
data Trie a = Ok a
| Tl (Trie a)
| Br (Map.Map Sigma (Trie a))
deriving (Eq, Show)
empty = Br Map.empty
null (Br h) = Map.null h
null _ = False
tl r = if null r then empty else Tl r
untl (Tl r) = r
untl _ = empty
route [] (Ok v) f = v
route [] _ f = f
route (_ : _) (Ok v) f = f
route (x : s) (Br h) f = if Map.null h
then f
else route s (get h x) f
route (Close : s) (Tl r) f = route s r f
route (Open : s) (Tl r) f = route s (tl (tl r)) f
route (x : s) (Tl r) f = route s (tl r) f
get h x = case Map.lookup x h of
Just r -> r
Nothing -> case x of
Open -> tl (get h Wild)
Close -> untl (get h Wild)
Wild -> empty
x -> get h Wild
combine r1 r2 f leftEmpty rightEmpty = g r1 r2
where g (Tl r1) (Tl r2) = tl (g r1 r2)
g (Tl r1) r2 = g (expand r1) r2
g r1 (Tl r2) = g r1 (expand r2)
g (Ok v) r2 = f (Ok v) r2
g r1 (Ok v) = f r1 (Ok v)
g r1 r2 | null r1 = dedup $ leftEmpty r2
g r1 r2 | null r2 = dedup $ rightEmpty r1
g (Br h1) (Br h2) = dedup $ Br (foldKeys g h1 h2)
foldKeys g h1 h2 = Set.foldr f Map.empty keys
where f x acc = Map.insert x (g (get h1 x) (get h2 x)) acc
keys = Set.union (Map.keysSet h1) (Map.keysSet h2)
expand r = Br (Map.fromList [(Wild, tl r), (Close, r)])
dedup (Br h) = Br (Map.filterWithKey (distinct h) h)
distinct h Wild r = not (null r)
distinct h Open (Tl r) = r /= get h Wild
distinct h Open r = not (null r)
distinct h Close r = r /= untl (get h Wild)
distinct h x r = r /= get h Wild
---------------------------------------------------------------------------
union r1 r2 = combine r1 r2 unionCombine id id
unionCombine (Ok vs) (Ok ws) = Ok (Set.union vs ws)
unionCombine r1 r2 | null r1 = r2
unionCombine r1 r2 | null r2 = r1
unions rs = foldr union empty rs

View File

@ -1,10 +1,10 @@
module TreeTrie where
module Syndicate.Dataspace.Trie.ESOP2016v2 where
-- Close to the ESOP 2016 implementation of dataspace tries, but takes
-- a step toward efficiency by using collapse/update instead of dedup/distinct.
-- import Debug.Trace
import Prelude hiding (null, seq)
import qualified Data.Map.Strict as Map
import qualified Data.Set as Set
import Test.HUnit
data Sigma = Open
| Close
@ -96,52 +96,3 @@ unionCombine r1 r2 | null r1 = r2
unionCombine r1 r2 | null r2 = r1
unions rs = foldr union empty rs
---------------------------------------------------------------------------
ok vs = Ok (Set.fromList vs)
seq x r = if null r then r else Br (Map.singleton x r)
seqCh '<' = Open
seqCh '>' = Close
seqCh '*' = Wild
seqCh x = Ch x
seqs s r = foldr (\ x r -> seq (seqCh x) r) r s
main = runTestTT $
test [
"seqs simple" ~: seq Open (seq Close (Ok (Set.singleton 1))) ~=? seqs "<>" (ok [1]),
"union simple1" ~: Br (Map.fromList [(Ch 'a', ok [1]),
(Ch 'b', ok [2])]) ~=?
union (seqs "a" (ok [1])) (seqs "b" (ok [2])),
"union simple2" ~: Br (Map.fromList [(Ch 'a', ok [1,2]),
(Ch 'b', ok [2])]) ~=?
unions [seqs "a" (ok [1]),
seqs "b" (ok [2]),
seqs "a" (ok [2])],
"union idem" ~: (seqs "abc" (ok [1])) ~=?
union (seqs "abc" (ok [1])) (seqs "abc" (ok [1])),
"union wild" ~:
Br (Map.fromList [(Open,Br (Map.fromList [(Wild,Tl (ok [1])),
(Ch 'a',Br (Map.fromList [(Close,ok [1,2]),
(Wild,Tl (ok [1]))]))])),
(Wild,ok [1])])
~=? union (seqs "*" (ok [1])) (seqs "<a>" (ok [2])),
"route union wild1" ~: Set.fromList [1,2] ~=?
route [Open, Ch 'a', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild2" ~: Set.fromList [1] ~=?
route [Open, Ch 'b', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild3" ~: Set.fromList [1] ~=?
route [Open, Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild4" ~: Set.fromList [1] ~=?
route [Open, Ch 'a', Ch 'a', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty
]

View File

@ -0,0 +1,84 @@
module Syndicate.Dataspace.Trie.ESOP2016v3 where
-- Explicitly separate Open/Close/Wild from other edges in Br nodes.
-- This gives an elegant presentation.
import Prelude hiding (null, seq)
import qualified Data.Map.Strict as Map
import qualified Data.Set as Set
data Trie a = Mt
| Ok a
| Tl (Trie a)
| Br (Trie a, Trie a, Trie a, Map.Map Char (Trie a)) -- Open, Close, Wild, rest
deriving (Eq, Show)
empty = Mt
null Mt = True
null _ = False
tl r = if null r then empty else Tl r
untl (Tl r) = r
untl _ = empty
route _ Mt f = f
route [] (Ok v) f = v
route [] _ f = f
route (_ : _) (Ok v) f = f
route ('<' : s) (Br (r, _, _, _)) f = route s r f
route ('>' : s) (Br (_, r, _, _)) f = route s r f
route (x : s) (Br (_, _, w, h)) f = route s (Map.findWithDefault w x h) f
route ('<' : s) (Tl r) f = route s (tl (tl r)) f
route ('>' : s) (Tl r) f = route s r f
route (x : s) (Tl r) f = route s (tl r) f
get w h x = Map.findWithDefault w x h
combine f leftEmpty rightEmpty r1 r2 = g r1 r2
where g (Tl r1) (Tl r2) = tl (g r1 r2)
g (Tl r1) r2 = g (expand r1) r2
g r1 (Tl r2) = g r1 (expand r2)
g (Ok v) r2 = f (Ok v) r2
g r1 (Ok v) = f r1 (Ok v)
g r1 r2 | null r1 = collapse $ leftEmpty r2
g r1 r2 | null r2 = collapse $ rightEmpty r1
g r1 r2 = collapse $ foldKeys g r1 r2
foldKeys g (Br (o1, c1, w1, h1)) (Br (o2, c2, w2, h2)) =
Br (g o1 o2, g c1 c2, w, Set.foldr f Map.empty keys)
where w = g w1 w2
f x acc = update x (g (get w1 h1 x) (get w2 h2 x)) w acc
keys = Set.union (Map.keysSet h1) (Map.keysSet h2)
expand r = Br (Mt, r, tl r, Map.empty)
collapse (Br (Mt, k, Tl k', h)) | Map.null h && k == k' = tl k
collapse (Br (Mt, Mt, Tl k, h)) | Map.null h = tl k
collapse (Br (Mt, Mt, Mt, h)) | Map.null h = empty
collapse r = r
update x k w h = if k == w then Map.delete x h else Map.insert x k h
---------------------------------------------------------------------------
union :: Ord t => Trie (Set.Set t) -> Trie (Set.Set t) -> Trie (Set.Set t)
union = combine unionCombine id id
unionCombine (Ok vs) (Ok ws) = Ok (Set.union vs ws)
unionCombine r1 r2 | null r1 = r2
unionCombine r1 r2 | null r2 = r1
unions rs = foldr union empty rs
intersection :: Ord t => Trie (Set.Set t) -> Trie (Set.Set t) -> Trie (Set.Set t)
intersection = combine intersectionCombine (const empty) (const empty)
intersectionCombine (Ok vs) (Ok ws) = Ok (Set.union vs ws)
intersectionCombine r1 r2 | null r1 = empty
intersectionCombine r1 r2 | null r2 = empty
difference :: Ord t => Trie (Set.Set t) -> Trie (Set.Set t) -> Trie (Set.Set t)
difference = combine differenceCombine (const empty) id
differenceCombine (Ok vs) (Ok ws) = let xs = Set.difference vs ws in
if Set.null xs then empty else (Ok xs)
differenceCombine r1 r2 | null r1 = empty
differenceCombine r1 r2 | null r2 = r1

View File

@ -0,0 +1,88 @@
{-# LANGUAGE FlexibleInstances #-}
module Syndicate.Dataspace.Trie.Prefix where
-- Alternate representation, where Open has an explicit *arity*
-- attached to it, and matching close-parens are implicitly tracked.
-- Where ESOP2016-style implementations have "<xyz>", this style has
-- "<3xyz".
import Prelude hiding (null, seq)
import qualified Data.Map.Strict as Map
import qualified Data.Set as Set
data Trie a = Mt
| Ok a
| Br (Map.Map Integer (Trie a), Trie a, Map.Map Char (Trie a)) -- Opens, Wild, rest
deriving (Eq, Show)
empty = Mt
null Mt = True
null _ = False
makeTail _ r | null r = r
makeTail 0 r = r
makeTail n r = Br (Map.empty, makeTail (n - 1) r, Map.empty)
stripTail _ r | null r = Just r
stripTail 0 r = Just r
stripTail n (Br (os, r, h)) | Map.null os && Map.null h = stripTail (n - 1) r
stripTail _ _ = Nothing
route _ Mt f = f
route [] (Ok v) f = v
route [] _ f = f
route (_ : _) (Ok v) f = f
route ('<' : nc : s) (Br (os, w, _)) f =
let n = (read (nc : []) :: Integer) in
case Map.lookup n os of
Just r -> route s r f
Nothing -> route s (makeTail n w) f
route (x : s) (Br (_, w, h)) f = route s (Map.findWithDefault w x h) f
get w h x = Map.findWithDefault w x h
combine f leftEmpty rightEmpty r1 r2 = g r1 r2
where g (Ok v) r2 = f (Ok v) r2
g r1 (Ok v) = f r1 (Ok v)
g r1 r2 | null r1 = collapse $ leftEmpty r2
g r1 r2 | null r2 = collapse $ rightEmpty r1
g r1 r2 = collapse $ foldKeys g r1 r2
foldKeys g (Br (os1, w1, h1)) (Br (os2, w2, h2)) =
Br (Set.foldr fo Map.empty sizes, w, Set.foldr f Map.empty keys)
where sizes = Set.union (Map.keysSet os1) (Map.keysSet os2)
w = g w1 w2
fo size acc = let o1 = Map.findWithDefault (makeTail size w1) size os1 in
let o2 = Map.findWithDefault (makeTail size w2) size os2 in
let o = g o1 o2 in
if stripTail size o == Just w then acc else Map.insert size o acc
f x acc = update x (g (get w1 h1 x) (get w2 h2 x)) w acc
keys = Set.union (Map.keysSet h1) (Map.keysSet h2)
collapse (Br (os, Mt, h)) | Map.null os && Map.null h = empty
collapse r = r
update x k w h = if k == w then Map.delete x h else Map.insert x k h
---------------------------------------------------------------------------
union :: Ord t => Trie (Set.Set t) -> Trie (Set.Set t) -> Trie (Set.Set t)
union = combine unionCombine id id
unionCombine (Ok vs) (Ok ws) = Ok (Set.union vs ws)
unionCombine r1 r2 | null r1 = r2
unionCombine r1 r2 | null r2 = r1
unions rs = foldr union empty rs
intersection :: Ord t => Trie (Set.Set t) -> Trie (Set.Set t) -> Trie (Set.Set t)
intersection = combine intersectionCombine (const empty) (const empty)
intersectionCombine (Ok vs) (Ok ws) = Ok (Set.union vs ws)
intersectionCombine r1 r2 | null r1 = empty
intersectionCombine r1 r2 | null r2 = empty
difference :: Ord t => Trie (Set.Set t) -> Trie (Set.Set t) -> Trie (Set.Set t)
difference = combine differenceCombine (const empty) id
differenceCombine (Ok vs) (Ok ws) = let xs = Set.difference vs ws in
if Set.null xs then empty else (Ok xs)
differenceCombine r1 r2 | null r1 = empty
differenceCombine r1 r2 | null r2 = r1

37
hs/syndicate.cabal Normal file
View File

@ -0,0 +1,37 @@
name: syndicate
version: 0.1.0.0
synopsis: An Actor-based language with multicast, managed shared state, and grouping.
copyright: Copyright © 2016 Tony Garnock-Jones
homepage: http://syndicate-lang.org/
license: LGPL-3
license-file: LICENSE
author: Tony Garnock-Jones
maintainer: tonyg@leastfixedpoint.com
category: Concurrency
build-type: Simple
cabal-version: >=1.10
library
exposed-modules: Syndicate.Dataspace.Trie.ESOP2016
, Syndicate.Dataspace.Trie.ESOP2016v2
, Syndicate.Dataspace.Trie.ESOP2016v3
, Syndicate.Dataspace.Trie.Prefix
build-depends: base
, containers
hs-source-dirs: src
default-language: Haskell2010
test-suite syndicate-dataspace-testsuite
type: exitcode-stdio-1.0
main-is: Main.hs
build-depends: base
, containers
, QuickCheck
, HUnit
, Cabal
, test-framework
, test-framework-hunit
, test-framework-quickcheck2
, syndicate
hs-source-dirs: test
default-language: Haskell2010

27
hs/test/Main.hs Normal file
View File

@ -0,0 +1,27 @@
{-# LANGUAGE FlexibleInstances #-}
module Main where
import Test.Framework
import Test.Framework.Providers.HUnit
import Test.Framework.Providers.QuickCheck2
import Syndicate.Dataspace.Trie.Tests.ESOP2016 as ESOP2016
import Syndicate.Dataspace.Trie.Tests.ESOP2016v2 as ESOP2016v2
import Syndicate.Dataspace.Trie.Tests.ESOP2016v3 as ESOP2016v3
import Syndicate.Dataspace.Trie.Tests.Prefix as Prefix
testOpts = (mempty :: TestOptions)
{ topt_maximum_generated_tests = Just 1000
, topt_maximum_unsuitable_generated_tests = Just 10000
}
runnerOpts = (mempty :: RunnerOptions) { ropt_test_options = Just testOpts }
runTests tests = defaultMainWithOpts tests runnerOpts
main = runTests
[ testGroup "ESOP2016" $ hUnitTestToTests ESOP2016.hUnitSuite
, testGroup "ESOP2016v2" $ hUnitTestToTests ESOP2016v2.hUnitSuite
, testGroup "ESOP2016v3" $ hUnitTestToTests ESOP2016v3.hUnitSuite
, testGroup "Prefix" [ testGroup "HUnit tests" $ hUnitTestToTests Prefix.hUnitSuite
, testGroup "QuickCheck tests" Prefix.quickCheckSuite
]
]

View File

@ -0,0 +1,55 @@
module Syndicate.Dataspace.Trie.Tests.ESOP2016 where
import Prelude hiding (null, seq)
import Syndicate.Dataspace.Trie.ESOP2016
import qualified Data.Map.Strict as Map
import qualified Data.Set as Set
import Test.HUnit
ok vs = Ok (Set.fromList vs)
seq x r = if null r then r else Br (Map.singleton x r)
seqCh '<' = Open
seqCh '>' = Close
seqCh '*' = Wild
seqCh x = Ch x
seqs s r = foldr (\ x r -> seq (seqCh x) r) r s
hUnitSuite = test
[ "seqs simple" ~: seq Open (seq Close (Ok (Set.singleton 1))) ~=? seqs "<>" (ok [1]),
"union simple1" ~: Br (Map.fromList [(Ch 'a', ok [1]),
(Ch 'b', ok [2])]) ~=?
union (seqs "a" (ok [1])) (seqs "b" (ok [2])),
"union simple2" ~: Br (Map.fromList [(Ch 'a', ok [1,2]),
(Ch 'b', ok [2])]) ~=?
unions [seqs "a" (ok [1]),
seqs "b" (ok [2]),
seqs "a" (ok [2])],
"union idem" ~: (seqs "abc" (ok [1])) ~=?
union (seqs "abc" (ok [1])) (seqs "abc" (ok [1])),
"union wild" ~:
-- This is noisier than it needs to be.
Br (Map.fromList [(Open,Br (Map.fromList [(Close, ok [1]),
(Wild,Br (Map.fromList [(Wild,Tl (ok [1]))])),
(Ch 'a',Br (Map.fromList [(Close, ok [1,2]),
(Wild,Br (Map.fromList [(Wild,Tl (ok [1]))]))]))])),
(Wild, ok [1])])
~=? union (seqs "*" (ok [1])) (seqs "<a>" (ok [2])),
"route union wild1" ~: Set.fromList [1,2] ~=?
route [Open, Ch 'a', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild2" ~: Set.fromList [1] ~=?
route [Open, Ch 'b', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild3" ~: Set.fromList [1] ~=?
route [Open, Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild4" ~: Set.fromList [1] ~=?
route [Open, Ch 'a', Ch 'a', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty
]

View File

@ -0,0 +1,55 @@
module Syndicate.Dataspace.Trie.Tests.ESOP2016v2 where
-- Close to the ESOP 2016 implementation of dataspace tries, but takes
-- a step toward efficiency by using collapse/update instead of dedup/distinct.
import Prelude hiding (null, seq)
import Syndicate.Dataspace.Trie.ESOP2016v2
import qualified Data.Map.Strict as Map
import qualified Data.Set as Set
import Test.HUnit
ok vs = Ok (Set.fromList vs)
seq x r = if null r then r else Br (Map.singleton x r)
seqCh '<' = Open
seqCh '>' = Close
seqCh '*' = Wild
seqCh x = Ch x
seqs s r = foldr (\ x r -> seq (seqCh x) r) r s
hUnitSuite = test
[ "seqs simple" ~: seq Open (seq Close (Ok (Set.singleton 1))) ~=? seqs "<>" (ok [1]),
"union simple1" ~: Br (Map.fromList [(Ch 'a', ok [1]),
(Ch 'b', ok [2])]) ~=?
union (seqs "a" (ok [1])) (seqs "b" (ok [2])),
"union simple2" ~: Br (Map.fromList [(Ch 'a', ok [1,2]),
(Ch 'b', ok [2])]) ~=?
unions [seqs "a" (ok [1]),
seqs "b" (ok [2]),
seqs "a" (ok [2])],
"union idem" ~: (seqs "abc" (ok [1])) ~=?
union (seqs "abc" (ok [1])) (seqs "abc" (ok [1])),
"union wild" ~:
Br (Map.fromList [(Open,Br (Map.fromList [(Wild,Tl (ok [1])),
(Ch 'a',Br (Map.fromList [(Close,ok [1,2]),
(Wild,Tl (ok [1]))]))])),
(Wild,ok [1])])
~=? union (seqs "*" (ok [1])) (seqs "<a>" (ok [2])),
"route union wild1" ~: Set.fromList [1,2] ~=?
route [Open, Ch 'a', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild2" ~: Set.fromList [1] ~=?
route [Open, Ch 'b', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild3" ~: Set.fromList [1] ~=?
route [Open, Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild4" ~: Set.fromList [1] ~=?
route [Open, Ch 'a', Ch 'a', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty
]

View File

@ -0,0 +1,95 @@
module Syndicate.Dataspace.Trie.Tests.ESOP2016v3 where
-- Explicitly separate Open/Close/Wild from other edges in Br nodes.
-- This gives an elegant presentation.
import Prelude hiding (null, seq)
import Syndicate.Dataspace.Trie.ESOP2016v3
import qualified Data.Map.Strict as Map
import qualified Data.Set as Set
import Test.HUnit
ok vs = Ok (Set.fromList vs)
seq _ r | null r = r
seq '<' r = Br (r, Mt, Mt, Map.empty)
seq '>' r = Br (Mt, r, Mt, Map.empty)
seq '*' r = Br (tl r, untl r, r, Map.empty)
seq x r = Br (Mt, Mt, Mt, Map.singleton x r)
seqs s r = foldr seq r s
hUnitSuite = test
[ "seqs simple" ~:
Br (Br (Mt, ok [1], Mt, Map.empty), Mt, Mt, Map.empty) ~=? seqs "<>" (ok [1]),
"union simple1" ~:
Br (Mt, Mt, Mt,
Map.fromList [('a', ok [1]),
('b', ok [2])]) ~=?
union (seqs "a" (ok [1])) (seqs "b" (ok [2])),
"union simple2" ~:
Br (Mt, Mt, Mt,
Map.fromList [('a', ok [1,2]),
('b', ok [2])]) ~=?
unions [seqs "a" (ok [1]),
seqs "b" (ok [2]),
seqs "a" (ok [2])],
"union idem" ~:
(seqs "abc" (ok [1])) ~=?
union (seqs "abc" (ok [1])) (seqs "abc" (ok [1])),
"union wild" ~:
Br (Br (Mt,
ok [1],
Tl (ok [1]),
Map.fromList [('a', Br (Mt,
ok [1,2],
Tl (ok [1]),
Map.empty))]),
Mt,
ok [1],
Map.empty) ~=?
union (seqs "*" (ok [1])) (seqs "<a>" (ok [2])),
"route union wild1" ~: Set.fromList [1,2] ~=?
route "<a>" (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild2" ~: Set.fromList [1] ~=?
route "<b>" (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild3" ~: Set.fromList [1] ~=?
route "<>" (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild4" ~: Set.fromList [1] ~=?
route "<aa>" (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"intersection simple1" ~:
seqs "a" (ok [1,2]) ~=? intersection (seqs "a" (ok [1])) (seqs "a" (ok [2])),
"intersection simple2" ~:
empty ~=? intersection (seqs "a" (ok [1])) (seqs "b" (ok [2])),
"intersection idem" ~:
(seqs "abc" (ok [1])) ~=?
intersection (seqs "abc" (ok [1])) (seqs "abc" (ok [1])),
"difference simple1" ~:
seqs "a" (ok [1]) ~=? difference (seqs "a" (ok [1,2])) (seqs "a" (ok [2])),
"difference simple1a" ~:
seqs "ab" (ok [1]) ~=? difference (seqs "ab" (ok [1,2])) (seqs "ab" (ok [2])),
"difference simple2" ~:
empty ~=? difference (seqs "a" (ok [1])) (seqs "a" (ok [1])),
"difference wild" ~:
Br (Tl (ok [1]),
Mt,
ok [1],
Map.fromList [('a', Mt)]) ~=?
difference (seqs "*" (ok [1])) (seqs "a" (ok [1])),
"union after difference" ~:
seqs "*" (ok [1]) ~=?
union (difference (seqs "*" (ok [1])) (seqs "a" (ok [1]))) (seqs "a" (ok [1])),
"union after difference 2" ~:
Br (Tl (ok [1]),
Mt,
ok [1],
Map.fromList [('a', ok [2])]) ~=?
union (difference (seqs "*" (ok [1])) (seqs "a" (ok [1]))) (seqs "a" (ok [2]))
]

View File

@ -1,93 +1,22 @@
{-# LANGUAGE FlexibleInstances #-}
module TreeTrie where
module Syndicate.Dataspace.Trie.Tests.Prefix where
-- Alternate representation, where Open has an explicit *arity*
-- attached to it, and matching close-parens are implicitly tracked.
-- Where ESOP2016-style implementations have "<xyz>", this style has
-- "<3xyz".
-- import Debug.Trace
import Prelude hiding (null, seq)
import Prelude hiding (null)
import Syndicate.Dataspace.Trie.Prefix
import qualified Data.Map.Strict as Map
import qualified Data.Set as Set
import Test.HUnit
import Test.QuickCheck
import Test.Framework
import Test.Framework.Providers.HUnit
import Test.Framework.Providers.QuickCheck2
import Control.Monad
data Trie a = Mt
| Ok a
| Br (Map.Map Integer (Trie a), Trie a, Map.Map Char (Trie a)) -- Opens, Wild, rest
deriving (Eq, Show)
empty = Mt
null Mt = True
null _ = False
makeTail _ r | null r = r
makeTail 0 r = r
makeTail n r = Br (Map.empty, makeTail (n - 1) r, Map.empty)
stripTail _ r | null r = Just r
stripTail 0 r = Just r
stripTail n (Br (os, r, h)) | Map.null os && Map.null h = stripTail (n - 1) r
stripTail _ _ = Nothing
route _ Mt f = f
route [] (Ok v) f = v
route [] _ f = f
route (_ : _) (Ok v) f = f
route ('<' : nc : s) (Br (os, w, _)) f =
let n = (read (nc : []) :: Integer) in
case Map.lookup n os of
Just r -> route s r f
Nothing -> route s (makeTail n w) f
route (x : s) (Br (_, w, h)) f = route s (Map.findWithDefault w x h) f
get w h x = Map.findWithDefault w x h
combine f leftEmpty rightEmpty r1 r2 = g r1 r2
where g (Ok v) r2 = f (Ok v) r2
g r1 (Ok v) = f r1 (Ok v)
g r1 r2 | null r1 = collapse $ leftEmpty r2
g r1 r2 | null r2 = collapse $ rightEmpty r1
g r1 r2 = collapse $ foldKeys g r1 r2
foldKeys g (Br (os1, w1, h1)) (Br (os2, w2, h2)) =
Br (Set.foldr fo Map.empty sizes, w, Set.foldr f Map.empty keys)
where sizes = Set.union (Map.keysSet os1) (Map.keysSet os2)
w = g w1 w2
fo size acc = let o1 = Map.findWithDefault (makeTail size w1) size os1 in
let o2 = Map.findWithDefault (makeTail size w2) size os2 in
let o = g o1 o2 in
if stripTail size o == Just w then acc else Map.insert size o acc
f x acc = update x (g (get w1 h1 x) (get w2 h2 x)) w acc
keys = Set.union (Map.keysSet h1) (Map.keysSet h2)
collapse (Br (os, Mt, h)) | Map.null os && Map.null h = empty
collapse r = r
update x k w h = if k == w then Map.delete x h else Map.insert x k h
---------------------------------------------------------------------------
union :: Ord t => Trie (Set.Set t) -> Trie (Set.Set t) -> Trie (Set.Set t)
union = combine unionCombine id id
unionCombine (Ok vs) (Ok ws) = Ok (Set.union vs ws)
unionCombine r1 r2 | null r1 = r2
unionCombine r1 r2 | null r2 = r1
unions rs = foldr union empty rs
intersection = combine intersectionCombine (const empty) (const empty)
intersectionCombine (Ok vs) (Ok ws) = Ok (Set.union vs ws)
intersectionCombine r1 r2 | null r1 = empty
intersectionCombine r1 r2 | null r2 = empty
difference = combine differenceCombine (const empty) id
differenceCombine (Ok vs) (Ok ws) = let xs = Set.difference vs ws in
if Set.null xs then empty else (Ok xs)
differenceCombine r1 r2 | null r1 = empty
differenceCombine r1 r2 | null r2 = r1
---------------------------------------------------------------------------
ok vs = Ok (Set.fromList vs)
seqs _ r | null r = r
@ -96,8 +25,8 @@ seqs ('<' : n : s) r = Br (Map.singleton (read (n : []) :: Integer) (seqs s r),
seqs ('*' : s) r = Br (Map.empty, seqs s r, Map.empty)
seqs (x : s) r = Br (Map.empty, Mt, Map.singleton x (seqs s r))
simpleTestCases = test [
"seqs simple" ~:
hUnitSuite = test
[ "seqs simple" ~:
Br (Map.singleton 0 (ok [1]), Mt, Map.empty) ~=? seqs "<0" (ok [1]),
"union simple1" ~:
Br (Map.empty, Mt,
@ -198,7 +127,7 @@ simpleTestCases = test [
(intersection
(union (seqs "*" (ok [3])) (seqs "<2aa" (ok [1])))
(union (seqs "*" (ok [4])) (seqs "<1b" (ok [2]))))
]
]
---------------------------------------------------------------------------
@ -275,10 +204,7 @@ unionBasics = combineBasics union (||)
intersectionBasics = combineBasics intersection (&&)
differenceBasics = combineBasics difference (\ x y -> x && not y)
qCheck name t = do putStrLn name
quickCheckWith stdArgs { maxSuccess = 500 } t
main = do runTestTT simpleTestCases
qCheck "differenceBasics" differenceBasics
qCheck "intersectionBasics" intersectionBasics
qCheck "unionBasics" unionBasics
quickCheckSuite = [ testProperty "differenceBasics" differenceBasics
, testProperty "intersectionBasics" intersectionBasics
, testProperty "unionBasics" unionBasics
]

View File

@ -1,130 +0,0 @@
module TreeTrie where
-- import Debug.Trace
import Prelude hiding (null, seq)
import qualified Data.Map.Strict as Map
import qualified Data.Set as Set
import Test.HUnit
data Sigma = Open
| Close
| Wild
| Ch Char
deriving (Eq, Ord, Show)
data Trie a = Ok a
| Tl (Trie a)
| Br (Map.Map Sigma (Trie a))
deriving (Eq, Show)
empty = Br Map.empty
null (Br h) = Map.null h
null _ = False
tl r = if null r then empty else Tl r
untl (Tl r) = r
untl _ = empty
route [] (Ok v) f = v
route [] _ f = f
route (_ : _) (Ok v) f = f
route (x : s) (Br h) f = if Map.null h
then f
else route s (get h x) f
route (Close : s) (Tl r) f = route s r f
route (Open : s) (Tl r) f = route s (tl (tl r)) f
route (x : s) (Tl r) f = route s (tl r) f
get h x = case Map.lookup x h of
Just r -> r
Nothing -> case x of
Open -> tl (get h Wild)
Close -> untl (get h Wild)
Wild -> empty
x -> get h Wild
combine r1 r2 f leftEmpty rightEmpty = g r1 r2
where g (Tl r1) (Tl r2) = tl (g r1 r2)
g (Tl r1) r2 = g (expand r1) r2
g r1 (Tl r2) = g r1 (expand r2)
g (Ok v) r2 = f (Ok v) r2
g r1 (Ok v) = f r1 (Ok v)
g r1 r2 | null r1 = dedup $ leftEmpty r2
g r1 r2 | null r2 = dedup $ rightEmpty r1
g (Br h1) (Br h2) = dedup $ Br (foldKeys g h1 h2)
foldKeys g h1 h2 = Set.foldr f Map.empty keys
where f x acc = Map.insert x (g (get h1 x) (get h2 x)) acc
keys = Set.union (Map.keysSet h1) (Map.keysSet h2)
expand r = Br (Map.fromList [(Wild, tl r), (Close, r)])
dedup (Br h) = Br (Map.filterWithKey (distinct h) h)
distinct h Wild r = not (null r)
distinct h Open (Tl r) = r /= get h Wild
distinct h Open r = not (null r)
distinct h Close r = r /= untl (get h Wild)
distinct h x r = r /= get h Wild
---------------------------------------------------------------------------
union r1 r2 = combine r1 r2 unionCombine id id
unionCombine (Ok vs) (Ok ws) = Ok (Set.union vs ws)
unionCombine r1 r2 | null r1 = r2
unionCombine r1 r2 | null r2 = r1
unions rs = foldr union empty rs
---------------------------------------------------------------------------
ok vs = Ok (Set.fromList vs)
seq x r = if null r then r else Br (Map.singleton x r)
seqCh '<' = Open
seqCh '>' = Close
seqCh '*' = Wild
seqCh x = Ch x
seqs s r = foldr (\ x r -> seq (seqCh x) r) r s
main = runTestTT $
test [
"seqs simple" ~: seq Open (seq Close (Ok (Set.singleton 1))) ~=? seqs "<>" (ok [1]),
"union simple1" ~: Br (Map.fromList [(Ch 'a', ok [1]),
(Ch 'b', ok [2])]) ~=?
union (seqs "a" (ok [1])) (seqs "b" (ok [2])),
"union simple2" ~: Br (Map.fromList [(Ch 'a', ok [1,2]),
(Ch 'b', ok [2])]) ~=?
unions [seqs "a" (ok [1]),
seqs "b" (ok [2]),
seqs "a" (ok [2])],
"union idem" ~: (seqs "abc" (ok [1])) ~=?
union (seqs "abc" (ok [1])) (seqs "abc" (ok [1])),
"union wild" ~:
-- This is noisier than it needs to be.
Br (Map.fromList [(Open,Br (Map.fromList [(Close, ok [1]),
(Wild,Br (Map.fromList [(Wild,Tl (ok [1]))])),
(Ch 'a',Br (Map.fromList [(Close, ok [1,2]),
(Wild,Br (Map.fromList [(Wild,Tl (ok [1]))]))]))])),
(Wild, ok [1])])
~=? union (seqs "*" (ok [1])) (seqs "<a>" (ok [2])),
"route union wild1" ~: Set.fromList [1,2] ~=?
route [Open, Ch 'a', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild2" ~: Set.fromList [1] ~=?
route [Open, Ch 'b', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild3" ~: Set.fromList [1] ~=?
route [Open, Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild4" ~: Set.fromList [1] ~=?
route [Open, Ch 'a', Ch 'a', Close] (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty
]

View File

@ -1,170 +0,0 @@
module TreeTrie where
-- import Debug.Trace
import Prelude hiding (null, seq)
import qualified Data.Map.Strict as Map
import qualified Data.Set as Set
import Test.HUnit
data Trie a = Mt
| Ok a
| Tl (Trie a)
| Br (Trie a, Trie a, Trie a, Map.Map Char (Trie a)) -- Open, Close, Wild, rest
deriving (Eq, Show)
empty = Mt
null Mt = True
null _ = False
tl r = if null r then empty else Tl r
untl (Tl r) = r
untl _ = empty
route _ Mt f = f
route [] (Ok v) f = v
route [] _ f = f
route (_ : _) (Ok v) f = f
route ('<' : s) (Br (r, _, _, _)) f = route s r f
route ('>' : s) (Br (_, r, _, _)) f = route s r f
route (x : s) (Br (_, _, w, h)) f = route s (Map.findWithDefault w x h) f
route ('<' : s) (Tl r) f = route s (tl (tl r)) f
route ('>' : s) (Tl r) f = route s r f
route (x : s) (Tl r) f = route s (tl r) f
get w h x = Map.findWithDefault w x h
combine f leftEmpty rightEmpty r1 r2 = g r1 r2
where g (Tl r1) (Tl r2) = tl (g r1 r2)
g (Tl r1) r2 = g (expand r1) r2
g r1 (Tl r2) = g r1 (expand r2)
g (Ok v) r2 = f (Ok v) r2
g r1 (Ok v) = f r1 (Ok v)
g r1 r2 | null r1 = collapse $ leftEmpty r2
g r1 r2 | null r2 = collapse $ rightEmpty r1
g r1 r2 = collapse $ foldKeys g r1 r2
foldKeys g (Br (o1, c1, w1, h1)) (Br (o2, c2, w2, h2)) =
Br (g o1 o2, g c1 c2, w, Set.foldr f Map.empty keys)
where w = g w1 w2
f x acc = update x (g (get w1 h1 x) (get w2 h2 x)) w acc
keys = Set.union (Map.keysSet h1) (Map.keysSet h2)
expand r = Br (Mt, r, tl r, Map.empty)
collapse (Br (Mt, k, Tl k', h)) | Map.null h && k == k' = tl k
collapse (Br (Mt, Mt, Tl k, h)) | Map.null h = tl k
collapse (Br (Mt, Mt, Mt, h)) | Map.null h = empty
collapse r = r
update x k w h = if k == w then Map.delete x h else Map.insert x k h
---------------------------------------------------------------------------
union = combine unionCombine id id
unionCombine (Ok vs) (Ok ws) = Ok (Set.union vs ws)
unionCombine r1 r2 | null r1 = r2
unionCombine r1 r2 | null r2 = r1
unions rs = foldr union empty rs
intersection = combine intersectionCombine (const empty) (const empty)
intersectionCombine (Ok vs) (Ok ws) = Ok (Set.union vs ws)
intersectionCombine r1 r2 | null r1 = empty
intersectionCombine r1 r2 | null r2 = empty
difference = combine differenceCombine (const empty) id
differenceCombine (Ok vs) (Ok ws) = let xs = Set.difference vs ws in
if Set.null xs then empty else (Ok xs)
differenceCombine r1 r2 | null r1 = empty
differenceCombine r1 r2 | null r2 = r1
---------------------------------------------------------------------------
ok vs = Ok (Set.fromList vs)
seq _ r | null r = r
seq '<' r = Br (r, Mt, Mt, Map.empty)
seq '>' r = Br (Mt, r, Mt, Map.empty)
seq '*' r = Br (tl r, untl r, r, Map.empty)
seq x r = Br (Mt, Mt, Mt, Map.singleton x r)
seqs s r = foldr seq r s
main = runTestTT $
test [
"seqs simple" ~:
Br (Br (Mt, ok [1], Mt, Map.empty), Mt, Mt, Map.empty) ~=? seqs "<>" (ok [1]),
"union simple1" ~:
Br (Mt, Mt, Mt,
Map.fromList [('a', ok [1]),
('b', ok [2])]) ~=?
union (seqs "a" (ok [1])) (seqs "b" (ok [2])),
"union simple2" ~:
Br (Mt, Mt, Mt,
Map.fromList [('a', ok [1,2]),
('b', ok [2])]) ~=?
unions [seqs "a" (ok [1]),
seqs "b" (ok [2]),
seqs "a" (ok [2])],
"union idem" ~:
(seqs "abc" (ok [1])) ~=?
union (seqs "abc" (ok [1])) (seqs "abc" (ok [1])),
"union wild" ~:
Br (Br (Mt,
ok [1],
Tl (ok [1]),
Map.fromList [('a', Br (Mt,
ok [1,2],
Tl (ok [1]),
Map.empty))]),
Mt,
ok [1],
Map.empty) ~=?
union (seqs "*" (ok [1])) (seqs "<a>" (ok [2])),
"route union wild1" ~: Set.fromList [1,2] ~=?
route "<a>" (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild2" ~: Set.fromList [1] ~=?
route "<b>" (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild3" ~: Set.fromList [1] ~=?
route "<>" (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"route union wild4" ~: Set.fromList [1] ~=?
route "<aa>" (union
(seqs "*" (ok [1]))
(seqs "<a>" (ok [2]))) Set.empty,
"intersection simple1" ~:
seqs "a" (ok [1,2]) ~=? intersection (seqs "a" (ok [1])) (seqs "a" (ok [2])),
"intersection simple2" ~:
empty ~=? intersection (seqs "a" (ok [1])) (seqs "b" (ok [2])),
"intersection idem" ~:
(seqs "abc" (ok [1])) ~=?
intersection (seqs "abc" (ok [1])) (seqs "abc" (ok [1])),
"difference simple1" ~:
seqs "a" (ok [1]) ~=? difference (seqs "a" (ok [1,2])) (seqs "a" (ok [2])),
"difference simple1a" ~:
seqs "ab" (ok [1]) ~=? difference (seqs "ab" (ok [1,2])) (seqs "ab" (ok [2])),
"difference simple2" ~:
empty ~=? difference (seqs "a" (ok [1])) (seqs "a" (ok [1])),
"difference wild" ~:
Br (Tl (ok [1]),
Mt,
ok [1],
Map.fromList [('a', Mt)]) ~=?
difference (seqs "*" (ok [1])) (seqs "a" (ok [1])),
"union after difference" ~:
seqs "*" (ok [1]) ~=?
union (difference (seqs "*" (ok [1])) (seqs "a" (ok [1]))) (seqs "a" (ok [1])),
"union after difference 2" ~:
Br (Tl (ok [1]),
Mt,
ok [1],
Map.fromList [('a', ok [2])]) ~=?
union (difference (seqs "*" (ok [1])) (seqs "a" (ok [1]))) (seqs "a" (ok [2]))
]