starter for typed/syndicate/core

This commit is contained in:
Sam Caldwell 2018-05-02 13:20:59 -04:00
parent 2c88096861
commit 8d96543cfe
2 changed files with 591 additions and 0 deletions

589
racket/typed/core.rkt Normal file
View File

@ -0,0 +1,589 @@
#lang turnstile
(provide (rename-out [syndicate:#%module-begin #%module-begin])
(rename-out [typed-app #%app])
(rename-out [syndicate:begin-for-declarations declare-types])
#%top-interaction
require only-in
;; Types
Int Bool String Tuple Bind Discard
Observe Inbound Outbound Actor U
;; Statements
actor dataspace unsafe-do
tuple λ observe inbound outbound
;; values
#%datum
;; patterns
bind discard
;; primitives
+ - * / and or not > < >= <= = equal? displayln
;; making types
define-type-alias
define-constructor
;; DEBUG and utilities
print-type
(rename-out [printf- printf])
;; Extensions
)
(require (rename-in racket/match [match-lambda match-lambda-]))
(require (rename-in racket/math [exact-truncate exact-truncate-]))
(require (prefix-in syndicate: syndicate/core-lang))
(module+ test
(require rackunit)
(require turnstile/rackunit-typechecking))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Types
(define-base-types Int Bool String Discard FacetName)
(define-type-constructor Bind #:arity = 1)
(define-type-constructor Tuple #:arity >= 0)
(define-type-constructor U #:arity >= 0)
(define-type-constructor #:arity > 0)
(define-type-constructor Observe #:arity = 1)
(define-type-constructor Inbound #:arity = 1)
(define-type-constructor Outbound #:arity = 1)
(define-type-constructor Actor #:arity = 1)
(define-for-syntax (type-eval t)
((current-type-eval) t))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; User Defined Types, aka Constructors
;; τ.norm in 1st case causes "not valid type" error when file is compiled
;; (copied from ext-stlc example)
(define-syntax define-type-alias
(syntax-parser
[(_ alias:id τ:any-type)
#'(define-syntax- alias
(make-variable-like-transformer #'τ.norm))]
[(_ (f:id x:id ...) ty)
#'(define-syntax- (f stx)
(syntax-parse stx
[(_ x ...)
#:with τ:any-type #'ty
#'τ.norm]))]))
(begin-for-syntax
(define-splicing-syntax-class type-constructor-decl
(pattern (~seq #:type-constructor TypeCons:id))
(pattern (~seq) #:attr TypeCons #f))
(struct user-ctor (typed-ctor untyped-ctor)
#:property prop:procedure
(lambda (v stx)
(define transformer (user-ctor-typed-ctor v))
(syntax-parse stx
[(_ e ...)
#`(#,transformer e ...)]))))
(define-syntax (define-constructor stx)
(syntax-parse stx
[(_ (Cons:id slot:id ...)
ty-cons:type-constructor-decl
(~seq #:with
Alias AliasBody) ...)
#:with TypeCons (or (attribute ty-cons.TypeCons) (format-id stx "~a/t" (syntax-e #'Cons)))
#:with MakeTypeCons (format-id #'TypeCons "make-~a" #'TypeCons)
#:with GetTypeParams (format-id #'TypeCons "get-~a-type-params" #'TypeCons)
#:with TypeConsExpander (format-id #'TypeCons "~~~a" #'TypeCons)
#:with TypeConsExtraInfo (format-id #'TypeCons "~a-extra-info" #'TypeCons)
#:with (StructName Cons- type-tag) (generate-temporaries #'(Cons Cons Cons))
(define arity (stx-length #'(slot ...)))
#`(begin-
(struct- StructName (slot ...) #:reflection-name 'Cons #:transparent)
(define-syntax (TypeConsExtraInfo stx)
(syntax-parse stx
[(_ X (... ...)) #'('type-tag 'MakeTypeCons 'GetTypeParams)]))
(define-type-constructor TypeCons
#:arity = #,arity
#:extra-info 'TypeConsExtraInfo)
(define-syntax (MakeTypeCons stx)
(syntax-parse stx
[(_ t (... ...))
#:fail-unless (= #,arity (stx-length #'(t (... ...)))) "arity mismatch"
#'(TypeCons t (... ...))]))
(define-syntax (GetTypeParams stx)
(syntax-parse stx
[(_ (TypeConsExpander t (... ...)))
#'(t (... ...))]))
(define-syntax Cons
(user-ctor #'Cons- #'StructName))
(define-typed-syntax (Cons- e (... ...))
#:fail-unless (= #,arity (stx-length #'(e (... ...)))) "arity mismatch"
[ e e- ( : τ)] (... ...)
----------------------
[ (#%app- StructName e- (... ...)) ( : (TypeCons τ (... ...)))])
(define-type-alias Alias AliasBody) ...)]))
(begin-for-syntax
(define-syntax ~constructor-extra-info
(pattern-expander
(syntax-parser
[(_ tag mk get)
#'(_ (_ tag) (_ mk) (_ get))])))
(define-syntax ~constructor-type
(pattern-expander
(syntax-parser
[(_ tag . rst)
#'(~and it
(~fail #:unless (user-defined-type? #'it))
(~parse tag (get-type-tag #'it))
(~Any _ . rst))])))
(define-syntax ~constructor-exp
(pattern-expander
(syntax-parser
[(_ cons . rst)
#'(~and (cons . rst)
(~fail #:unless (ctor-id? #'cons)))])))
(define (inspect t)
(syntax-parse t
[(~constructor-type tag t ...)
(list (syntax-e #'tag) (stx-map type->str #'(t ...)))]))
(define (tags-equal? t1 t2)
(equal? (syntax-e t1) (syntax-e t2)))
(define (user-defined-type? t)
(get-extra-info (type-eval t)))
(define (get-type-tag t)
(syntax-parse (get-extra-info t)
[(~constructor-extra-info tag _ _)
(syntax-e #'tag)]))
(define (get-type-args t)
(syntax-parse (get-extra-info t)
[(~constructor-extra-info _ _ get)
(define f (syntax-local-value #'get))
(syntax->list (f #`(get #,t)))]))
(define (make-cons-type t args)
(syntax-parse (get-extra-info t)
[(~constructor-extra-info _ mk _)
(define f (syntax-local-value #'mk))
(type-eval (f #`(mk #,@args)))]))
(define (ctor-id? stx)
(and (identifier? stx)
(user-ctor? (syntax-local-value stx (const #f)))))
(define (untyped-ctor stx)
(user-ctor-untyped-ctor (syntax-local-value stx (const #f)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Syntax
(begin-for-syntax
;; constructors with arity one
(define-syntax-class kons1
(pattern (~or (~datum observe)
(~datum inbound)
(~datum outbound))))
(define (kons1->constructor stx)
(syntax-parse stx
#:datum-literals (observe inbound outbound)
[observe #'syndicate:observe]
[inbound #'syndicate:inbound]
[outbound #'syndicate:outbound]))
(define-syntax-class basic-val
(pattern (~or boolean
integer
string)))
(define-syntax-class prim-op
(pattern (~or (~literal +)
(~literal -)
(~literal displayln)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Subtyping
;; Type Type -> Bool
(define-for-syntax (<: t1 t2)
#;(printf "Checking ~a <: ~a\n" (type->str t1) (type->str t2))
;; should add a check for type=?
(syntax-parse #`(#,t1 #,t2)
#;[(τ1 τ2) #:do [(displayln (type->str #'τ1))
(displayln (type->str #'τ2))]
#:when #f
(error "")]
[((~U τ1 ...) _)
(stx-andmap (lambda (t) (<: t t2)) #'(τ1 ...))]
[(_ (~U τ2:type ...))
(stx-ormap (lambda (t) (<: t1 t)) #'(τ2 ...))]
[((~Actor τ1:type) (~Actor τ2:type))
;; should these be .norm? Is the invariant that inputs are always fully
;; evalutated/expanded?
(and (<: #'τ1 #'τ2)
(<: ( (strip-? #'τ1) #'τ2) #'τ1))]
[((~Tuple τ1:type ...) (~Tuple τ2:type ...))
#:when (stx-length=? #'(τ1 ...) #'(τ2 ...))
(stx-andmap <: #'(τ1 ...) #'(τ2 ...))]
[(_ ~★)
(flat-type? t1)]
[((~Observe τ1:type) (~Observe τ2:type))
(<: #'τ1 #'τ2)]
[((~Inbound τ1:type) (~Inbound τ2:type))
(<: #'τ1 #'τ2)]
[((~Outbound τ1:type) (~Outbound τ2:type))
(<: #'τ1 #'τ2)]
[((~constructor-type t1 τ1:type ...) (~constructor-type t2 τ2:type ...))
#:when (tags-equal? #'t1 #'t2)
(and (stx-length=? #'(τ1 ...) #'(τ2 ...))
(stx-andmap <: #'(τ1 ...) #'(τ2 ...)))]
[((~→ τ-in1 ... τ-out1) (~→ τ-in2 ... τ-out2))
#:when (stx-length=? #'(τ-in1 ...) #'(τ-in2 ...))
(and (stx-andmap <: #'(τ-in2 ...) #'(τ-in1 ...))
(<: #'τ-out1 #'τ-out2))]
[(~Discard _)
#t]
[((~Bind τ1) (~Bind τ2))
(<: #'τ1 #'τ2)]
;; should probably put this first.
[_ (type=? t1 t2)]))
;; Flat-Type Flat-Type -> Type
(define-for-syntax ( t1 t2)
(unless (and (flat-type? t1) (flat-type? t2))
(error ' "expected two flat-types"))
(syntax-parse #`(#,t1 #,t2)
[(_ ~★)
t1]
[(~★ _)
t2]
[(_ _)
#:when (type=? t1 t2)
t1]
[((~U τ1:type ...) _)
(type-eval #`(U #,@(stx-map (lambda (t) ( t t2)) #'(τ1 ...))))]
[(_ (~U τ2:type ...))
(type-eval #`(U #,@(stx-map (lambda (t) ( t1 t)) #'(τ2 ...))))]
;; all of these fail-when/unless clauses are meant to cause this through to
;; the last case and result in ⊥.
;; Also, using <: is OK, even though <: refers to ∩, because <:'s use of ∩ is only
;; in the Actor case.
[((~Tuple τ1:type ...) (~Tuple τ2:type ...))
#:fail-unless (stx-length=? #'(τ1 ...) #'(τ2 ...)) #f
#:with (τ ...) (stx-map #'(τ1 ...) #'(τ2 ...))
;; I don't think stx-ormap is part of the documented api of turnstile *shrug*
#:fail-when (stx-ormap (lambda (t) (<: t (type-eval #'(U)))) #'(τ ...)) #f
(type-eval #'(Tuple τ ...))]
[((~constructor-type tag1 τ1:type ...) (~constructor-type tag2 τ2:type ...))
#:when (tags-equal? #'tag1 #'tag2)
#:with (τ ...) (stx-map #'(τ1 ...) #'(τ2 ...))
#:fail-when (stx-ormap (lambda (t) (<: t (type-eval #'(U)))) #'(τ ...)) #f
(make-cons-type t1 #'(τ ...))]
;; these three are just the same :(
[((~Observe τ1:type) (~Observe τ2:type))
#:with τ ( #'τ1 #'τ2)
#:fail-when (<: #'τ (type-eval #'(U))) #f
(type-eval #'(Observe τ))]
[((~Inbound τ1:type) (~Inbound τ2:type))
#:with τ ( #'τ1 #'τ2)
#:fail-when (<: #'τ (type-eval #'(U))) #f
(type-eval #'(Inbound τ))]
[((~Outbound τ1:type) (~Outbound τ2:type))
#:with τ ( #'τ1 #'τ2)
#:fail-when (<: #'τ (type-eval #'(U))) #f
(type-eval #'(Outbound τ))]
[_ (type-eval #'(U))]))
;; Type Type -> Bool
;; first type is the contents of the set
;; second type is the type of a pattern
(define-for-syntax (project-safe? t1 t2)
(syntax-parse #`(#,t1 #,t2)
[(_ (~Bind τ2:type))
(and (finite? t1) (<: t1 #'τ2))]
[(_ ~Discard)
#t]
[((~U τ1:type ...) _)
(stx-andmap (lambda (t) (project-safe? t t2)) #'(τ1 ...))]
[(_ (~U τ2:type ...))
(stx-andmap (lambda (t) (project-safe? t1 t)) #'(τ2 ...))]
[((~Tuple τ1:type ...) (~Tuple τ2:type ...))
#:when (overlap? t1 t2)
(stx-andmap project-safe? #'(τ1 ...) #'(τ2 ...))]
[((~constructor-type t1 τ1:type ...) (~constructor-type t2 τ2:type ...))
#:when (tags-equal? #'t1 #'t2)
(stx-andmap project-safe? #'(τ1 ...) #'(τ2 ...))]
[((~Observe τ1:type) (~Observe τ2:type))
(project-safe? #'τ1 #'τ2)]
[((~Inbound τ1:type) (~Inbound τ2:type))
(project-safe? #'τ1 #'τ2)]
[((~Outbound τ1:type) (~Outbound τ2:type))
(project-safe? #'τ1 #'τ2)]
[_ #t]))
;; AssertionType PatternType -> Bool
;; Is it possible for things of these two types to match each other?
;; Flattish-Type = Flat-Types + ★, Bind, Discard (assertion and pattern types)
(define-for-syntax (overlap? t1 t2)
(syntax-parse #`(#,t1 #,t2)
[(~★ _) #t]
[(_ (~Bind _)) #t]
[(_ ~Discard) #t]
[((~U τ1:type ...) _)
(stx-ormap (lambda (t) (overlap? t t2)) #'(τ1 ...))]
[(_ (~U τ2:type ...))
(stx-ormap (lambda (t) (overlap? t1 t)) #'(τ2 ...))]
[((~Tuple τ1:type ...) (~Tuple τ2:type ...))
(and (stx-length=? #'(τ1 ...) #'(τ2 ...))
(stx-andmap overlap? #'(τ1 ...) #'(τ2 ...)))]
[((~constructor-type t1 τ1:type ...) (~constructor-type t2 τ2:type ...))
(and (tags-equal? #'t1 #'t2)
(stx-andmap overlap? #'(τ1 ...) #'(τ2 ...)))]
[((~Observe τ1:type) (~Observe τ2:type))
(overlap? #'τ1 #'τ2)]
[((~Inbound τ1:type) (~Inbound τ2:type))
(overlap? #'τ1 #'τ2)]
[((~Outbound τ1:type) (~Outbound τ2:type))
(overlap? #'τ1 #'τ2)]
[_ (<: t1 t2)]))
;; Flattish-Type -> Bool
(define-for-syntax (finite? t)
(syntax-parse t
[~★ #f]
[(~U τ:type ...)
(stx-andmap finite? #'(τ ...))]
[(~Tuple τ:type ...)
(stx-andmap finite? #'(τ ...))]
[(~constructor-type _ τ:type ...)
(stx-andmap finite? #'(τ ...))]
[(~Observe τ:type)
(finite? #'τ)]
[(~Inbound τ:type)
(finite? #'τ)]
[(~Outbound τ:type)
(finite? #'τ)]
[_ #t]))
;; !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
;; MODIFYING GLOBAL TYPECHECKING STATE!!!!!
;; !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
(begin-for-syntax
(current-typecheck-relation <:))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Statements
(define-typed-syntax (dataspace τ-c:type s ...)
;; #:do [(printf "τ-c: ~a\n" (type->str #'τ-c.norm))]
#:fail-unless (flat-type? #'τ-c.norm) "Communication type must be first-order"
[ s s- ( : τ-s:type)] ...
;; #:do [(printf "dataspace types: ~a\n" (stx-map type->str #'(τ-s.norm ...)))
;; (printf "dataspace type: ~a\n" (type->str ((current-type-eval) #'(Actor τ-c.norm))))]
#:fail-unless (stx-andmap (lambda (t) (<: t
(type-eval #'(Actor τ-c.norm))))
#'(τ-s.norm ...))
"Not all actors conform to communication type"
#:with τ-ds-i (strip-inbound #'τ-c.norm)
#:with τ-ds-o (strip-outbound #'τ-c.norm)
#:with τ-relay (relay-interests #'τ-c.norm)
-----------------------------------------------------------------------------------
[ (syndicate:dataspace s- ...) ( : (U τ-ds-i τ-ds-o τ-relay))])
(define-for-syntax (strip-? t)
(type-eval
(syntax-parse t
;; TODO: probably need to `normalize` the result
[(~U τ ...) #`(U #,@(stx-map strip-? #'(τ ...)))]
[~★ #']
[(~Observe τ) #'τ]
[_ #'(U)])))
(define-for-syntax (strip-inbound t)
(type-eval
(syntax-parse t
;; TODO: probably need to `normalize` the result
[(~U τ ...) #`(U #,@(stx-map strip-? #'(τ ...)))]
[~★ #']
[(~Inbound τ) #'τ]
[_ #'(U)])))
(define-for-syntax (strip-outbound t)
(type-eval
(syntax-parse t
;; TODO: probably need to `normalize` the result
[(~U τ ...) #`(U #,@(stx-map strip-? #'(τ ...)))]
[~★ #']
[(~Outbound τ) #'τ]
[_ #'(U)])))
(define-for-syntax (relay-interests t)
(type-eval
(syntax-parse t
;; TODO: probably need to `normalize` the result
[(~U τ ...) #`(U #,@(stx-map strip-? #'(τ ...)))]
[~★ #']
[(~Observe (~Inbound τ)) #'(Observe τ)]
[_ #'(U)])))
(define-typed-syntax (actor τ-c:type beh st0 as0)
#:fail-unless (flat-type? #'τ-c.norm) "Communication type must be first-order"
[ beh beh- τ-b:type]
[ st0 st0- τ-s:type]
[ as0 as0- τ-a:type]
--------------------------------------------------------------------------------------------
[ (syndicate:actor beh- st0- as0-) (Actor τ-c)])
(define-for-syntax (procedure-type? τ)
(syntax-parse τ
[(~→ τ ...+) #t]
[_ #f]))
(define-for-syntax (flat-type? τ)
(syntax-parse τ
[(~→ τ ...) #f]
[_ #t]))
(define-typed-syntax (unsafe-do rkt:expr ...)
------------------------
[ (let- () rkt ...) ( : (U)) ( :i (U)) ( :o (U)) ( :a (U))])
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Expressions
(define-typed-syntax (tuple e:expr ...)
[ e e- ( : τ)] ...
-----------------------
[ (list 'tuple e- ...) ( : (Tuple τ ...))])
(define-typed-syntax (typed-app e_fn e_arg ...)
[ e_fn e_fn- ( : (~→ τ_in:type ... τ_out:type))]
#:fail-unless (stx-length=? #'[τ_in ...] #'[e_arg ...])
(num-args-fail-msg #'e_fn #'[τ_in ...] #'[e_arg ...])
[ e_arg e_arg- τ_in] ...
------------------------------------------------------------------------
[ (#%app- e_fn- e_arg- ...) ( : τ_out)])
;; it would be nice to abstract over these three
(define-typed-syntax (observe e:expr)
[ e e- ( : τ)]
---------------------------------------------------------------------------
[ (syndicate:observe e-) ( : (Observe τ))])
(define-typed-syntax (inbound e:expr)
[ e e- τ]
---------------------------------------------------------------------------
[ (syndicate:inbound e-) ( : (Inbound τ))])
(define-typed-syntax (outbound e:expr)
[ e e- τ]
---------------------------------------------------------------------------
[ (syndicate:outbound e-) ( : (Outbound τ))])
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Patterns
(define-typed-syntax (bind x:id τ:type)
----------------------------------------
;; TODO: at some point put $ back in
[ (void-) ( : (Bind τ))])
(define-typed-syntax discard
[_
--------------------
;; TODO: change void to _
[ (void-) ( : Discard)]])
;; pat -> ([Id Type] ...)
(define-for-syntax (pat-bindings stx)
(syntax-parse stx
#:datum-literals (bind tuple)
[(bind x:id τ:type)
#'([x τ])]
[(tuple p ...)
#:with (([x:id τ:type] ...) ...) (stx-map pat-bindings #'(p ...))
#'([x τ] ... ...)]
[(k:kons1 p)
(pat-bindings #'p)]
[(~constructor-exp cons p ...)
#:with (([x:id τ:type] ...) ...) (stx-map pat-bindings #'(p ...))
#'([x τ] ... ...)]
[_
#'()]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Primitives
;; hmmm
(define-primop + ( Int Int Int))
(define-primop - ( Int Int Int))
(define-primop * ( Int Int Int))
#;(define-primop and ( Bool Bool Bool))
(define-primop or ( Bool Bool Bool))
(define-primop not ( Bool Bool))
(define-primop < ( Int Int Bool))
(define-primop > ( Int Int Bool))
(define-primop <= ( Int Int Bool))
(define-primop >= ( Int Int Bool))
(define-primop = ( Int Int Bool))
(define-typed-syntax (/ e1 e2)
[ e1 e1- ( : Int)]
[ e2 e2- ( : Int)]
------------------------
[ (exact-truncate- (/- e1- e2-)) ( : Int)])
;; for some reason defining `and` as a prim op doesn't work
(define-typed-syntax (and e ...)
[ e e- ( : Bool)] ...
------------------------
[ (and- e- ...) ( : Bool)])
(define-typed-syntax (equal? e1:expr e2:expr)
[ e1 e1- ( : τ1:type)]
#:fail-unless (flat-type? #'τ1.norm)
(format "equality only available on flat data; got ~a" (type->str #'τ1))
[ e2 e2- ( : τ1)]
---------------------------------------------------------------------------
[ (equal?- e1- e2-) ( : Bool)])
(define-typed-syntax (displayln e:expr)
[ e e- τ]
---------------
[ (displayln- e-) ( : (U))])
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Basic Values
(define-typed-syntax #%datum
[(_ . n:integer)
----------------
[ (#%datum- . n) ( : Int)]]
[(_ . b:boolean)
----------------
[ (#%datum- . b) ( : Bool)]]
[(_ . s:string)
----------------
[ (#%datum- . s) ( : String)]])
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Utilities
(define-typed-syntax (print-type e)
[ e e- τ]
#:do [(displayln (type->str #'τ))]
----------------------------------
[ e- τ])
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Extensions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Tests

View File

@ -0,0 +1,2 @@
#lang s-exp syntax/module-reader
typed/core