Hashtable impl; make cmsg_bytes_t hold chars; SPKI SEXP impl

This commit is contained in:
Tony Garnock-Jones 2010-12-29 18:12:38 -05:00
parent f395f95fd3
commit 84219ff9dc
15 changed files with 1395 additions and 39 deletions

View File

@ -1,5 +1,5 @@
TARGET = cmsg
OBJECTS = main.o harness.o net.o util.o relay.o dataq.o
OBJECTS = main.o harness.o net.o util.o relay.o hashtable.o dataq.o sexp.o sexpio.o
CFLAGS = -D_XOPEN_SOURCE=600 -Wall -O0 -g
#CFLAGS = -D_XOPEN_SOURCE=600 -Wall -O3

699
Sexp.txt Normal file
View File

@ -0,0 +1,699 @@
Network Working Group R. Rivest
Internet Draft May 4, 1997
Expires November 4, 1997
S-Expressions
draft-rivest-sexp-00.txt
Status of this Memo
Distribution of this memo is unlimited.
This document is an Internet-Draft. Internet Drafts are working
documents of the Internet Engineering Task Force (IETF), its Areas,
and its Working Groups. Note that other groups may also distribute
working documents as Internet Drafts.
Internet Drafts are draft documents valid for a maximum of six
months, and may be updated, replaced, or obsoleted by other documents
at any time. It is not appropriate to use Internet Drafts as
reference material, or to cite them other than as a ``working draft''
or ``work in progress.''
To learn the current status of any Internet-Draft, please check the
``1id-abstracts.txt'' listing contained in the internet-drafts Shadow
Directories on: ftp.is.co.za (Africa), nic.nordu.net (Europe),
ds.internic.net (US East Coast), ftp.isi.edu (US West Coast),
or munnari.oz.au (Pacific Rim)
Abstract
This memo describes a data structure called "S-expressions" that are
suitable for representing arbitrary complex data structures. We make
precise the encodings of S-expressions: we give a "canonical form" for
S-expressions, described two "transport" representations, and also
describe an "advanced" format for display to people.
1. Introduction
S-expressions are data structures for representing complex data. They
are either byte-strings ("octet-strings") or lists of simpler
S-expressions. Here is a sample S-expression:
(snicker "abc" (#03# |YWJj|))
It is a list of length three:
-- the octet-string "snicker"
-- the octet-string "abc"
-- a sub-list containing two elements:
- the hexadecimal constant #03#
- the base-64 constant |YWJj| (which is the same as "abc")
This note gives a specific proposal for constructing and utilizing
S-expressions. The proposal is independent of any particular application.
Here are the design goals for S-expressions:
-- generality: S-expressions should be good at representing arbitrary
data.
-- readability: it should be easy for someone to examine and
understand the structure of an S-expression.
-- economy: S-expressions should represent data compactly.
-- tranportability: S-expressions should be easy to transport
over communication media (such as email) that are known to be
less than perfect.
-- flexibility: S-expressions should make it relatively simple to
modify and extend data structures.
-- canonicalization: it should be easy to produce a unique
"canonical" form of an S-expression, for digital signature purposes.
-- efficiency: S-expressions should admit in-memory representations
that allow efficient processing.
Section 2 gives an introduction to S-expressions.
Section 3 discusses the character sets used.
Section 4 presents the various representations of octet-strings.
Section 5 describes how to represent lists.
Section 6 discusses how S-expressions are represented for various uses.
Section 7 gives a BNF syntax for S-expressions.
Section 8 talks about how S-expressions might be represented in memory.
Section 9 briefly describes implementations for handling S-expressions.
Section 10 discusses how applications might utilize S-expressions.
Section 11 gives historical notes on S-expressions.
Section 12 gives references.
2. S-expressions -- informal introduction
Informally, an S-expression is either:
-- an octet-string, or
-- a finite list of simpler S-expressions.
An octet-string is a finite sequence of eight-bit octets. There may be
many different but equivalent ways of representing an octet-string
abc -- as a token
"abc" -- as a quoted string
#616263# -- as a hexadecimal string
3:abc -- as a length-prefixed "verbatim" encoding
{MzphYmM=} -- as a base-64 encoding of the verbatim encoding
(that is, an encoding of "3:abc")
|YWJj| -- as a base-64 encoding of the octet-string "abc"
These encodings are all equivalent; they all denote the same octet string.
We will give details of these encodings later on, and also describe how to
give a "display type" to a byte string.
A list is a finite sequence of zero or more simpler S-expressions. A list
may be represented by using parentheses to surround the sequence of encodings
of its elements, as in:
(abc (de #6667#) "ghi jkl")
As we see, there is variability possible in the encoding of an
S-expression. In some cases, it is desirable to standardize or
restrict the encodings; in other cases it is desirable to have no
restrictions. The following are the target cases we aim to handle:
-- a "transport" encoding for transporting the S-expression between
computers.
-- a "canonical" encoding, used when signing the S-expression.
-- an "advanced" encoding used for input/output to people.
-- an "in-memory" encoding used for processing the S-expression in
the computer.
These need not be different; in this proposal the canonical encoding
is the same as the transport encoding, for example. In this note we
propose (related) encoding techniques for each of these uses.
3. Character set
We will be describing encodings of S-expressions. Except when giving
"verbatim" encodings, the character set used is limited to the following
characters in US-ASCII:
Alphabetic: A B ... Z a b ... z
numeric: 0 1 ... 9
whitespace: space, horizontal tab, vertical tab, form-feed
carriage-return, line-feed
The following graphics characters, which we call "pseudo-alphabetic":
- hyphen or minus
. period
/ slash
_ underscore
: colon
* asterisk
+ plus
= equal
The following graphics characters, which are "reserved punctuation":
( left parenthesis
) right parenthesis
[ left bracket
] right bracket
{ left brace
} right brace
| vertical bar
# number sign
" double quote
& ampersand
\ backslash
The following characters are unused and unavailable, except in
"verbatim" encodings:
! exclamation point
% percent
^ circumflex
~ tilde
; semicolon
' apostrophe
, comma
< less than
> greater than
? question mark
4. Octet string representations
This section describes in detail the ways in which an octet-string may
be represented.
We recall that an octet-string is any finite sequence of octets, and
that the octet-string may have length zero.
4.1 Verbatim representation
A verbatim encoding of an octet string consists of four parts:
-- the length (number of octets) of the octet-string,
given in decimal most significant digit first, with
no leading zeros.
-- a colon ":"
-- the octet string itself, verbatim.
There are no blanks or whitespace separating the parts. No "escape
sequences" are interpreted in the octet string. This encoding is also
called a "binary" or "raw" encoding.
Here are some sample verbatim encodings:
3:abc
7:subject
4:::::
12:hello world!
10:abcdefghij
0:
4.2 Quoted-string representation
The quoted-string representation of an octet-string consists of:
-- an optional decimal length field
-- an initial double-quote (")
-- the octet string with "C" escape conventions (\n,etc)
-- a final double-quote (")
The specified length is the length of the resulting string after any
escape sequences have been handled. The string does not have any
"terminating NULL" that C includes, and the length does not count such
a character.
The length is optional.
The escape conventions within the quoted string are as follows (these follow
the "C" programming language conventions, with an extension for
ignoring line terminators of just LF or CRLF):
\b -- backspace
\t -- horizontal tab
\v -- vertical tab
\n -- new-line
\f -- form-feed
\r -- carriage-return
\" -- double-quote
\' -- single-quote
\\ -- back-slash
\ooo -- character with octal value ooo (all three digits
must be present)
\xhh -- character with hexadecimal value hh (both digits
must be present)
\<carriage-return> -- causes carriage-return to be ignored.
\<line-feed> -- causes linefeed to be ignored
\<carriage-return><line-feed> -- causes CRLF to be ignored.
\<line-feed><carriage-return> -- causes LFCR to be ignored.
Here are some examples of quoted-string encodings:
"subject"
"hi there"
7"subject"
3"\n\n\n"
"This has\n two lines."
"This has\
one."
""
4.3 Token representation
An octet string that meets the following conditions may be given
directly as a "token".
-- it does not begin with a digit
-- it contains only characters that are
-- alphabetic (upper or lower case),
-- numeric, or
-- one of the eight "pseudo-alphabetic" punctuation marks:
- . / _ : * + =
(Note: upper and lower case are not equivalent.)
(Note: A token may begin with punctuation, including ":").
Here are some examples of token representations:
subject
not-before
class-of-1997
//microsoft.com/names/smith
*
4.4 Hexadecimal representation
An octet-string may be represented with a hexadecimal encoding consisting of:
-- an (optional) decimal length of the octet string
-- a sharp-sign "#"
-- a hexadecimal encoding of the octet string, with each octet
represented with two hexadecimal digits, most significant
digit first.
-- a sharp-sign "#"
There may be whitespace inserted in the midst of the hexadecimal
encoding arbitrarily; it is ignored. It is an error to have
characters other than whitespace and hexadecimal digits.
Here are some examples of hexadecimal encodings:
#616263# -- represents "abc"
3#616263# -- also represents "abc"
# 616
263 # -- also represents "abc"
4.5 Base-64 representation
An octet-string may be represented in a base-64 coding consisting of:
-- an (optional) decimal length of the octet string
-- a vertical bar "|"
-- the rfc 1521 base-64 encoding of the octet string.
-- a final vertical bar "|"
The base-64 encoding uses only the characters
A-Z a-z 0-9 + / =
It produces four characters of output for each three octets of input.
If the input has one or two left-over octets of input, it produces an
output block of length four ending in two or one equals signs, respectively.
Output routines compliant with this standard MUST output the equals signs
as specified. Input routines MAY accept inputs where the equals signs are
dropped.
There may be whitespace inserted in the midst of the base-64 encoding
arbitrarily; it is ignored. It is an error to have characters other
than whitespace and base-64 characters.
Here are some examples of base-64 encodings:
|YWJj| -- represents "abc"
| Y W
J j | -- also represents "abc"
3|YWJj| -- also represents "abc"
|YWJjZA==| -- represents "abcd"
|YWJjZA| -- also represents "abcd"
4.6 Display hint
Any octet string may be preceded by a single "display hint".
The purposes of the display hint is to provide information on how
to display the octet string to a user. It has no other function.
Many of the MIME types work here.
A display-hint is an octet string surrounded by square brackets.
There may be whitespace separating the octet string from the
surrounding brackets. Any of the legal formats may be used for the
octet string.
Here are some examples of display-hints:
[image/gif]
[URI]
[charset=unicode-1-1]
[text/richtext]
[application/postscript]
[audio/basic]
["http://abc.com/display-types/funky.html"]
In applications an octet-string that is untyped may be considered to have
a pre-specified "default" mime type. The mime type
"text/plain; charset=iso-8859-1"
is the standard default.
4.7 Equality of octet-strings
Two octet strings are considered to be "equal" if and only if they
have the same display hint and the same data octet strings.
Note that octet-strings are "case-sensitive"; the octet-string "abc"
is not equal to the octet-string "ABC".
An untyped octet-string can be compared to another octet-string (typed
or not) by considering it as a typed octet-string with the default
mime-type.
5. Lists
Just as with octet-strings, there are several ways to represent an
S-expression. Whitespace may be used to separate list elements, but
they are only required to separate two octet strings when otherwise
the two octet strings might be interpreted as one, as when one token
follows another. Also, whitespace may follow the initial left
parenthesis, or precede the final right parenthesis.
Here are some examples of encodings of lists:
(a b c)
( a ( b c ) ( ( d e ) ( e f ) ) )
(11:certificate(6:issuer3:bob)(7:subject5:alice))
({3Rt=} "1997" murphy 3:{XC++})
6. Representation types
There are three "types" of representations:
-- canonical
-- basic transport
-- advanced transport
The first two MUST be supported by any implementation; the last is
optional.
6.1 Canonical representation
This canonical representation is used for digital signature purposes,
transmission, etc. It is uniquely defined for each S-expression. It
is not particularly readable, but that is not the point. It is
intended to be very easy to parse, to be reasonably economical, and to
be unique for any S-expression.
The "canonical" form of an S-expression represents each octet-string
in verbatim mode, and represents each list with no blanks separating
elements from each other or from the surrounding parentheses.
Here are some examples of canonical representations of S-expressions:
(6:issuer3:bob)
(4:icon[12:image/bitmap]9:xxxxxxxxx)
(7:subject(3:ref5:alice6:mother))
6.2 Basic transport representation
There are two forms of the "basic transport" representation:
-- the canonical representation
-- an rfc-2045 base-64 representation of the canonical representation,
surrounded by braces.
The transport mechanism is intended to provide a universal means of
representing S-expressions for transport from one machine to another.
Here are some examples of an S-expression represented in basic
transport mode:
(1:a1:b1:c)
{KDE6YTE6YjE6YykA}
(this is the same S-expression encoded in base-64)
There is a difference between the brace notation for base-64 used here
and the || notation for base-64'd octet-strings described above. Here
the base-64 contents are converted to octets, and then re-scanned as
if they were given originally as octets. With the || notation, the
contents are just turned into an octet-string.
6.3 Advanced transport representation
The "advanced transport" representation is intended to provide more
flexible and readable notations for documentation, design, debugging,
and (in some cases) user interface.
The advanced transport representation allows all of the representation
forms described above, include quoted strings, base-64 and hexadecimal
representation of strings, tokens, representations of strings with
omitted lengths, and so on.
7. BNF for syntax
We give separate BNF's for canonical and advanced forms of S-expressions.
We use the following notation:
<x>* means 0 or more occurrences of <x>
<x>+ means 1 or more occurrences of <x>
<x>? means 0 or 1 occurrences of <x>
parentheses are used for grouping, as in (<x> | <y>)*
For canonical and basic transport:
<sexpr> :: <string> | <list>
<string> :: <display>? <simple-string> ;
<simple-string> :: <raw> ;
<display> :: "[" <simple-string> "]" ;
<raw> :: <decimal> ":" <bytes> ;
<decimal> :: <decimal-digit>+ ;
-- decimal numbers should have no unnecessary leading zeros
<bytes> -- any string of bytes, of the indicated length
<list> :: "(" <sexp>* ")" ;
<decimal-digit> :: "0" | ... | "9" ;
For advanced transport:
<sexpr> :: <string> | <list>
<string> :: <display>? <simple-string> ;
<simple-string> :: <raw> | <token> | <base-64> | <hexadecimal> |
<quoted-string> ;
<display> :: "[" <simple-string> "]" ;
<raw> :: <decimal> ":" <bytes> ;
<decimal> :: <decimal-digit>+ ;
-- decimal numbers should have no unnecessary leading zeros
<bytes> -- any string of bytes, of the indicated length
<token> :: <tokenchar>+ ;
<base-64> :: <decimal>? "|" ( <base-64-char> | <whitespace> )* "|" ;
<hexadecimal> :: "#" ( <hex-digit> | <white-space> )* "#" ;
<quoted-string> :: <decimal>? <quoted-string-body>
<quoted-string-body> :: "\"" <bytes> "\""
<list> :: "(" ( <sexp> | <whitespace> )* ")" ;
<whitespace> :: <whitespace-char>* ;
<token-char> :: <alpha> | <decimal-digit> | <simple-punc> ;
<alpha> :: <upper-case> | <lower-case> | <digit> ;
<lower-case> :: "a" | ... | "z" ;
<upper-case> :: "A" | ... | "Z" ;
<decimal-digit> :: "0" | ... | "9" ;
<hex-digit> :: <decimal-digit> | "A" | ... | "F" | "a" | ... | "f" ;
<simple-punc> :: "-" | "." | "/" | "_" | ":" | "*" | "+" | "=" ;
<whitespace-char> :: " " | "\t" | "\r" | "\n" ;
<base-64-char> :: <alpha> | <decimal-digit> | "+" | "/" | "=" ;
<null> :: "" ;
8. In-memory representations
For processing, the S-expression would typically be parsed and represented
in memory in a more more amenable to efficient processing. We suggest
two alternatives:
-- "list-structure"
-- "array-layout"
We only sketch these here, as they are only suggestive. The code referenced
below illustrates these styles in more detail.
8.1. List-structure memory representation
Here there are separate records for simple-strings, strings, and
lists. An S-expression of the form ("abc" "de") would require two
records for the simple strings, two for the strings, and two for the
list elements. This is a fairly conventional representation, and
details are omitted here.
8.2 Array-layout memory representation
Here each S-expression is represented as a contiguous array of bytes.
The first byte codes the "type" of the S-expression:
01 octet-string
02 octet-string with display-hint
03 beginning of list (and 00 is used for "end of list")
Each of the three types is immediately followed by a k-byte integer
indicating the size (in bytes) of the following representation. Here
k is an integer that depends on the implementation, it might be
anywhere from 2 to 8, but would be fixed for a given implementation;
it determines the size of the objects that can be handled. The transport
and canonical representations are independent of the choice of k made by
the implementation.
Although the length of lists are not given in the usual S-expression
notations, it is easy to fill them in when parsing; when you reach a
right-parenthesis you know how long the list representation was, and
where to go back to fill in the missing length.
8.2.1 Octet string
This is represented as follows:
01 <length> <octet-string>
For example (here k = 2)
01 0003 a b c
8.2.2 Octet-string with display-hint
This is represented as follows:
02 <length>
01 <length> <octet-string> /* for display-type */
01 <length> <octet-string> /* for octet-string */
For example, the S-expression
[gif] #61626364#
would be represented as (with k = 2)
02 000d
01 0003 g i f
01 0004 61 62 63 64
8.2.3 List
This is represented as
03 <length> <item1> <item2> <item3> ... <itemn> 00
For example, the list (abc [d]ef (g)) is represented in memory as (with k=2)
03 001b
01 0003 a b c
02 0009
01 0001 d
01 0002 e f
03 0005
01 0001 g
00
00
9. Code
There is code available for reading and parsing the various
S-expression formats proposed here.
See http://theory.lcs.mit.edu/~rivest/sexp.html
10. Utilization of S-expressions
This note has described S-expressions in general form. Application writers
may wish to restrict their use of S-expressions in various ways. Here are
some possible restrictions that might be considered:
-- no display-hints
-- no lengths on hexadecimal, quoted-strings, or base-64 encodings
-- no empty lists
-- no empty octet-strings
-- no lists having another list as its first element
-- no base-64 or hexadecimal encodings
-- fixed limits on the size of octet-strings
11. Historical note
The S-expression technology described here was originally developed
for ``SDSI'' (the Simple Distributed Security Infrastructure by
Lampson and Rivest [SDSI]) in 1996, although the origins clearly date
back to McCarthy's LISP programming language. It was further refined
and improved during the merger of SDSI and SPKI [SPKI] during the
first half of 1997. S-expressions are similar to, but more readable
and flexible than, Bernstein's "net-strings" [BERN].
12. References
[SDSI] "A Simple Distributed Security Architecture", by
Butler Lampson, and Ronald L. Rivest
http://theory.lcs.mit.edu/~cis/sdsi.html
[SPKI] <a href="http://www.clark.net/pub/cme/html/spki.html">SPKI--A
Simple Public Key Infrastructure</a>
[BERN] Dan Bernstein's "net-strings"; Internet Draft
draft-bernstein-netstrings-02.txt
Author's Address
Ronald L. Rivest
Room 324, 545 Technology Square
MIT Laboratory for Computer Science
Cambridge, MA 02139
rivest@theory.lcs.mit.edu

View File

@ -3,10 +3,14 @@
typedef struct cmsg_bytes_t {
size_t len;
void *bytes;
unsigned char *bytes;
} cmsg_bytes_t;
#define EMPTY_BYTES ((cmsg_bytes_t) { .len = 0, .bytes = NULL })
#define CMSG_BYTES(length, bytes_ptr) ((cmsg_bytes_t) { \
.len = (length), \
.bytes = (unsigned char *) (bytes_ptr) \
})
#define EMPTY_BYTES CMSG_BYTES(0, NULL)
extern cmsg_bytes_t cmsg_cstring_bytes(char const *cstr);
extern cmsg_bytes_t cmsg_bytes_malloc_dup(cmsg_bytes_t src);
@ -17,7 +21,7 @@ extern void cmsg_bytes_free(cmsg_bytes_t bytes);
#define BCHECK(result, message) do { if ((result) == 0) { perror(message); exit(2); } } while (0)
#define PCHECK(result, message) do { if ((result) == NULL) { perror(message); exit(2); } } while (0)
extern void die(char const *format, ...);
extern __attribute__((noreturn)) void die(char const *format, ...);
extern void warn(char const *format, ...);
extern void info(char const *format, ...);

View File

@ -186,10 +186,7 @@ cmsg_bytes_t iohandle_readwait(IOHandle *h, size_t at_least) {
block_on_io(h, EV_READ);
ICHECK(bufferevent_disable(h->io, EV_READ), "bufferevent_disable");
}
return (cmsg_bytes_t) {
.len = EVBUFFER_LENGTH(h->io->input),
.bytes = EVBUFFER_DATA(h->io->input)
};
return CMSG_BYTES(EVBUFFER_LENGTH(h->io->input), EVBUFFER_DATA(h->io->input));
}
void iohandle_drain(IOHandle *h, size_t count) {

View File

@ -21,8 +21,8 @@ typedef struct IOHandle {
Process *p;
int fd;
struct bufferevent *io;
short error_direction;
short error_kind;
unsigned short error_direction;
unsigned short error_kind;
} IOHandle;
extern Process *current_process;

136
hashtable.c Normal file
View File

@ -0,0 +1,136 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <assert.h>
#include "cmsg_private.h"
#include "hashtable.h"
uint32_t hash_bytes(cmsg_bytes_t bytes) {
/* http://en.wikipedia.org/wiki/Jenkins_hash_function */
uint32_t hash = 0;
size_t i;
for (i = 0; i < bytes.len; i++) {
hash += bytes.bytes[i];
hash += (hash << 10);
hash ^= (hash >> 6);
}
hash += (hash << 3);
hash ^= (hash >> 11);
hash += (hash << 15);
return hash;
}
void init_hashtable(hashtable_t *table,
size_t initial_bucket_count,
void *(*dup_value)(void *),
void (*free_value)(void *))
{
table->bucket_count = initial_bucket_count;
table->entry_count = 0;
table->buckets = NULL;
table->dup_value = dup_value;
table->free_value = free_value;
if (initial_bucket_count > 0) {
table->buckets = realloc(table->buckets,
initial_bucket_count * sizeof(hashtable_entry_t *));
}
}
static void destroy_entry(hashtable_t *table, hashtable_entry_t *entry) {
cmsg_bytes_free(entry->key);
if (table->free_value != NULL) {
table->free_value(entry->value);
}
free(entry);
}
void destroy_hashtable(hashtable_t *table) {
if (table->buckets != NULL) {
int i;
for (i = 0; i < table->bucket_count; i++) {
hashtable_entry_t *chain = table->buckets[i];
table->buckets[i] = NULL;
while (chain != NULL) {
hashtable_entry_t *next = chain->next;
destroy_entry(table, chain);
chain = next;
}
}
free(table->buckets);
}
}
static hashtable_entry_t **hashtable_find(hashtable_t *table, cmsg_bytes_t key) {
uint32_t h = hash_bytes(key) % table->bucket_count;
hashtable_entry_t **entryptr = &(table->buckets[h]);
hashtable_entry_t *entry = *entryptr;
while (entry != NULL) {
if ((entry->key.len == key.len) && !memcmp(entry->key.bytes, key.bytes, key.len)) {
break;
}
entryptr = &entry->next;
entry = *entryptr;
}
return entryptr;
}
int hashtable_get(hashtable_t *table, cmsg_bytes_t key, void **valueptr) {
hashtable_entry_t **entryptr = hashtable_find(table, key);
if (*entryptr == NULL) {
return 0;
} else {
*valueptr = (*entryptr)->value;
return 1;
}
}
int hashtable_put(hashtable_t *table, cmsg_bytes_t key, void *value) {
/* TODO: grow and rehash */
hashtable_entry_t **entryptr = hashtable_find(table, key);
if (*entryptr == NULL) {
hashtable_entry_t *entry = malloc(sizeof(hashtable_entry_t));
entry->next = NULL;
entry->key = cmsg_bytes_malloc_dup(key);
entry->value = (table->dup_value == NULL) ? value : table->dup_value(value);
*entryptr = entry;
table->entry_count++;
return 1;
} else {
if (table->free_value != NULL) {
table->free_value((*entryptr)->value);
}
(*entryptr)->value = (table->dup_value == NULL) ? value : table->dup_value(value);
return 0;
}
}
int hashtable_erase(hashtable_t *table, cmsg_bytes_t key) {
hashtable_entry_t **entryptr = hashtable_find(table, key);
if (*entryptr == NULL) {
return 0;
} else {
hashtable_entry_t *entry = *entryptr;
*entryptr = entry->next;
destroy_entry(table, entry);
table->entry_count--;
return 1;
}
}
void hashtable_foreach(hashtable_t *table,
hashtable_iterator_t iterator,
void *context)
{
int i;
for (i = 0; i < table->bucket_count; i++) {
hashtable_entry_t *chain;
for (chain = table->buckets[i]; chain != NULL; chain = chain->next) {
iterator(context, chain->key, chain->value);
}
}
}

35
hashtable.h Normal file
View File

@ -0,0 +1,35 @@
#ifndef cmsg_hashtable_h
#define cmsg_hashtable_h
typedef struct hashtable_entry_t_ {
struct hashtable_entry_t_ *next;
cmsg_bytes_t key;
void *value;
} hashtable_entry_t;
typedef struct hashtable_t_ {
size_t bucket_count;
size_t entry_count;
hashtable_entry_t **buckets;
void *(*dup_value)(void *);
void (*free_value)(void *);
} hashtable_t;
typedef void (*hashtable_iterator_t)(void *context, cmsg_bytes_t key, void *value);
extern uint32_t hash_bytes(cmsg_bytes_t bytes);
extern void init_hashtable(hashtable_t *table,
size_t initial_bucket_count,
void *(*dup_value)(void *),
void (*free_value)(void *));
extern void destroy_hashtable(hashtable_t *table);
extern int hashtable_get(hashtable_t *table, cmsg_bytes_t key, void **valueptr);
extern int hashtable_put(hashtable_t *table, cmsg_bytes_t key, void *value);
extern int hashtable_erase(hashtable_t *table, cmsg_bytes_t key);
extern void hashtable_foreach(hashtable_t *table,
hashtable_iterator_t iterator,
void *context);
#endif

2
net.c
View File

@ -41,7 +41,7 @@ void get_addr_name(char *namebuf, size_t buflen, struct sockaddr_in const *sin)
void endpoint_name(struct sockaddr_in const *peername, cmsg_bytes_t result) {
char name[256];
get_addr_name(name, sizeof(name), peername);
snprintf(result.bytes, result.len, "%s:%d", name, ntohs(peername->sin_port));
snprintf((char *) result.bytes, result.len, "%s:%d", name, ntohs(peername->sin_port));
}
static void accept_connection(int servfd, short what, void *arg) {

16
node.h
View File

@ -1,14 +1,16 @@
#ifndef cmsg_node_h
#define cmsg_node_h
typedef struct Node {
struct NodeClass *node_class;
typedef struct node_t_ {
struct node_class_t_ *node_class;
cmsg_bytes_t name; /* used as (partial) routing key for metamessages */
} Node;
} node_t;
typedef struct NodeClass {
void (*destroy)(Node *n);
void (*handle_message)(Node *n, void *buffer, size_t len);
} NodeClass;
typedef struct node_class_t_ {
void (*destroy)(node_t *n);
void (*handle_message)(node_t *n, msg_t *m);
} node_class_t;
extern node_t *new_node(
#endif

38
ref.h Normal file
View File

@ -0,0 +1,38 @@
#ifndef cmsg_ref_h
#define cmsg_ref_h
typedef struct refcount_t_ {
unsigned int count;
} refcount_t;
#define ZERO_REFCOUNT() ((refcount_t) { .count = 0 })
#define INCREF(x) ({ \
typeof(x) __x = (x); \
if (__x != NULL) { \
__x->refcount.count++; \
} \
__x; \
})
#define UNGRAB(x) ({ \
typeof(x) __x = (x); \
if (__x != NULL) { \
assert(__x->refcount.count); \
__x->refcount.count--; \
} \
__x; \
})
#define DECREF(x, dtor) ({ \
typeof(x) __x = (x); \
if (__x != NULL) { \
(__x->refcount.count)--; \
if (__x->refcount.count == 0) { \
(dtor)(__x); \
} \
} \
(typeof(__x)) 0; \
})
#endif

52
relay.c
View File

@ -22,6 +22,9 @@ typedef unsigned char u_char;
#include "harness.h"
#include "relay.h"
#include "net.h"
#include "ref.h"
#include "sexp.h"
#include "sexpio.h"
struct boot_args {
struct sockaddr_in peername;
@ -30,10 +33,11 @@ struct boot_args {
static void relay_main(struct boot_args *args) {
IOHandle *h = new_iohandle(args->fd);
IOHandle *out = new_iohandle(1);
{
char name[256];
endpoint_name(&args->peername, (cmsg_bytes_t) { .bytes = name, .len = sizeof(name) });
endpoint_name(&args->peername, CMSG_BYTES(sizeof(name), name));
info("Accepted connection from %s on fd %d\n", name, args->fd);
}
@ -43,31 +47,37 @@ static void relay_main(struct boot_args *args) {
ICHECK(iohandle_flush(h), "iohandle_flush 1");
nap(1000);
iohandle_write(h, cmsg_cstring_bytes("Proceed\n"));
iohandle_settimeout(h, 3, 0);
while (1) {
cmsg_bytes_t buf = iohandle_readwait(h, 1);
if (buf.len == 0) {
switch (h->error_kind) {
case EVBUFFER_TIMEOUT:
info("Timeout\n");
iohandle_clear_error(h);
iohandle_write(h, cmsg_cstring_bytes("Timed out\n"));
break;
default:
info("Error! 0x%04X\n", h->error_kind);
break;
}
break;
} else {
info("Read %d: %.*s\n", buf.len, buf.len, buf.bytes);
iohandle_drain(h, buf.len);
//iohandle_settimeout(h, 3, 0);
loop:
{
sexp_t *x = sexp_read(h);
switch (h->error_kind) {
case 0:
fflush(NULL);
sexp_write(out, x);
iohandle_write(out, cmsg_cstring_bytes("\n"));
ICHECK(iohandle_flush(out), "iohandle_flush out");
DECREF(x, sexp_destructor);
iohandle_write(h, cmsg_cstring_bytes("OK, proceed\n"));
goto loop;
case EVBUFFER_TIMEOUT:
info("Timeout\n");
iohandle_clear_error(h);
iohandle_write(h, cmsg_cstring_bytes("Timed out\n"));
ICHECK(iohandle_flush(h), "iohandle_flush 2");
break;
default:
info("Error! 0x%04X\n", h->error_kind);
break;
}
iohandle_write(h, cmsg_cstring_bytes("OK, proceed\n"));
}
ICHECK(iohandle_flush(h), "iohandle_flush 2");
ICHECK(close(h->fd), "close");
delete_iohandle(h);
delete_iohandle(out);
}
void start_relay(struct sockaddr_in const *peername, int fd) {

121
sexp.c Normal file
View File

@ -0,0 +1,121 @@
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include "cmsg_private.h"
#include "ref.h"
#include "sexp.h"
static sexp_t *freelist = NULL;
static inline sexp_t *alloc_shell(sexp_type_t kind) {
sexp_t *x = freelist;
if (x == NULL) {
x = malloc(sizeof(*x));
} else {
freelist = x->data.pair.tail;
}
x->refcount = ZERO_REFCOUNT();
x->kind = kind;
return x;
}
static inline void release_shell(sexp_t *x) {
x->data.pair.tail = freelist;
freelist = x;
}
void sexp_data_destructor(sexp_data_t *data) {
cmsg_bytes_free(data->data);
free(data);
}
void sexp_destructor(sexp_t *x) {
tail_recursion:
switch (x->kind) {
case SEXP_BYTES:
cmsg_bytes_free(x->data.bytes);
break;
case SEXP_SLICE:
DECREF(x->data.slice.data, sexp_data_destructor);
break;
case SEXP_DISPLAY_HINT:
case SEXP_PAIR: {
sexp_t *next = x->data.pair.tail;
DECREF(x->data.pair.head, sexp_destructor);
if (next != NULL) {
if (next->refcount.count == 1) {
release_shell(x);
x = next;
goto tail_recursion;
} else {
DECREF(next, sexp_destructor);
}
}
break;
}
default:
die("Unknown sexp kind %d in dtor\n", x->kind);
}
release_shell(x);
}
sexp_data_t *sexp_data_copy(cmsg_bytes_t body, size_t offset, size_t length) {
assert(offset + length <= body.len);
return sexp_data_alias(cmsg_bytes_malloc_dup(CMSG_BYTES(length, body.bytes + offset)));
}
sexp_data_t *sexp_data_alias(cmsg_bytes_t body) {
sexp_data_t *data = malloc(sizeof(*data));
data->refcount = ZERO_REFCOUNT();
data->data = body;
return data;
}
sexp_t *sexp_bytes(cmsg_bytes_t bytes) {
sexp_t *x = alloc_shell(SEXP_BYTES);
x->data.bytes = cmsg_bytes_malloc_dup(bytes);
return x;
}
sexp_t *sexp_slice(sexp_data_t *data, size_t offset, size_t length) {
sexp_t *x = alloc_shell(SEXP_SLICE);
x->data.slice.data = INCREF(data);
x->data.slice.offset = offset;
x->data.slice.length = length;
return x;
}
sexp_t *sexp_display_hint(sexp_t *hint, sexp_t *body) {
sexp_t *x = alloc_shell(SEXP_DISPLAY_HINT);
assert(sexp_simple_stringp(hint));
assert(sexp_simple_stringp(body));
x->data.pair.head = INCREF(hint);
x->data.pair.tail = INCREF(body);
return x;
}
sexp_t *sexp_cons(sexp_t *head, sexp_t *tail) {
sexp_t *x = alloc_shell(SEXP_PAIR);
x->data.pair.head = INCREF(head);
x->data.pair.tail = INCREF(tail);
return x;
}
cmsg_bytes_t sexp_data(sexp_t *x) {
restart:
switch (x->kind) {
case SEXP_BYTES:
return x->data.bytes;
case SEXP_SLICE:
return CMSG_BYTES(x->data.slice.length,
x->data.slice.data->data.bytes + x->data.slice.offset);
case SEXP_DISPLAY_HINT:
x = x->data.pair.tail;
goto restart;
default:
die("Unknown sexp kind %d in data accessor\n", x->kind);
}
}

99
sexp.h Normal file
View File

@ -0,0 +1,99 @@
#ifndef cmsg_sexp_h
#define cmsg_sexp_h
typedef struct sexp_data_t_ {
refcount_t refcount;
cmsg_bytes_t data;
} sexp_data_t;
typedef enum sexp_type_t_ {
SEXP_BYTES,
SEXP_SLICE,
SEXP_DISPLAY_HINT,
SEXP_PAIR
} sexp_type_t;
typedef struct sexp_t_ {
refcount_t refcount;
sexp_type_t kind;
union {
cmsg_bytes_t bytes;
struct {
sexp_data_t *data;
size_t offset;
size_t length;
} slice;
struct {
struct sexp_t_ *head;
struct sexp_t_ *tail;
} pair; /* and display-hint */
} data;
} sexp_t;
extern void sexp_data_destructor(sexp_data_t *data);
extern void sexp_destructor(sexp_t *x);
extern sexp_data_t *sexp_data_copy(cmsg_bytes_t body, size_t offset, size_t length);
extern sexp_data_t *sexp_data_alias(cmsg_bytes_t body);
extern sexp_t *sexp_bytes(cmsg_bytes_t bytes);
extern sexp_t *sexp_slice(sexp_data_t *data, size_t offset, size_t length);
extern sexp_t *sexp_display_hint(sexp_t *hint, sexp_t *body);
extern sexp_t *sexp_cons(sexp_t *head, sexp_t *tail);
#define sexp_simple_stringp(x) ({ \
sexp_t *__x = (x); \
(__x != NULL) && ((__x->kind == SEXP_BYTES) || (__x->kind == SEXP_SLICE)); \
})
#define sexp_stringp(x) ({ \
sexp_t *__x = (x); \
sexp_simple_stringp(__x) || ((__x != NULL) && (__x->kind == SEXP_DISPLAY_HINT)); \
}
#define sexp_pairp(x) ({ \
sexp_t *__x = (x); \
(__x != NULL) && (__x->kind == SEXP_PAIR); \
})
extern cmsg_bytes_t sexp_data(sexp_t *x);
#define sexp_head(x) ({sexp_t *__x = (x); assert(__x->kind == SEXP_PAIR); __x->data.pair.head;})
#define sexp_tail(x) ({sexp_t *__x = (x); assert(__x->kind == SEXP_PAIR); __x->data.pair.tail;})
#define sexp_hint(x) ({sexp_t *__x = (x); assert(__x->kind == SEXP_DISPLAY_HINT); __x->data.pair.head;})
#define sexp_body(x) ({sexp_t *__x = (x); assert(__x->kind == SEXP_DISPLAY_HINT); __x->data.pair.tail;})
#define sexp_setter_(x,y,fieldname) \
({ \
sexp_t *__x = (x); \
sexp_t *__y = (y); \
sexp_t *__old; \
assert(__x->kind == SEXP_PAIR); \
INCREF(__y); \
__old = __x->data.pair.fieldname; \
__x->data.pair.fieldname = __y; \
DECREF(__old, sexp_destructor); \
__x; \
})
#define sexp_sethead(x,y) sexp_setter_(x,y,head)
#define sexp_settail(x,y) sexp_setter_(x,y,tail)
#define sexp_push(stackvar,val) \
({ \
sexp_t *__oldstack = stackvar; \
stackvar = INCREF(sexp_cons((val), stackvar)); \
DECREF(__oldstack, sexp_destructor); \
stackvar; \
})
#define sexp_pop(stackvar) \
({ \
sexp_t *__nextstack = INCREF(sexp_tail(stackvar)); \
sexp_t *__val = INCREF(sexp_head(stackvar)); \
DECREF(stackvar, sexp_destructor); \
stackvar = __nextstack; \
UNGRAB(__val); \
__val; \
})
#endif

205
sexpio.c Normal file
View File

@ -0,0 +1,205 @@
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
#include <assert.h>
#include <ucontext.h>
#include "cmsg_private.h"
#include "ref.h"
#include "sexp.h"
#include "harness.h"
#include "sexpio.h"
/* TODO: limit size of individual simple strings */
/* TODO: limit nesting of sexps */
static sexp_t *read_simple_string(IOHandle *h, cmsg_bytes_t buf) {
int i = 0;
sexp_t *result;
while (1) {
buf = iohandle_readwait(h, buf.len + 1);
if (h->error_kind) return NULL;
/* Don't reset i to zero: avoids scanning the beginning of the
number repeatedly */
while (i < buf.len) {
if (i > 10) {
/* More than ten digits of length prefix. We're unlikely to be
able to cope with anything that large. */
h->error_kind = SEXP_ERROR_OVERFLOW;
return NULL;
}
if (buf.bytes[i] == ':') {
size_t count;
buf.bytes[i] = '\0';
count = atoi((char *) buf.bytes);
iohandle_drain(h, i + 1);
buf = iohandle_readwait(h, count);
buf.len = count;
result = sexp_bytes(buf);
iohandle_drain(h, count);
return result;
}
if (!isdigit(buf.bytes[i])) {
h->error_kind = SEXP_ERROR_SYNTAX;
return NULL;
}
i++;
}
}
}
#define CHECKH \
if (h->error_kind) goto error;
#define READ1 \
buf = iohandle_readwait(h, 1); \
CHECKH;
sexp_t *sexp_read(IOHandle *h) {
cmsg_bytes_t buf;
sexp_t *stack = NULL; /* held */
sexp_t *hint = NULL; /* held */
sexp_t *body = NULL; /* held */
sexp_t *accumulator = NULL; /* not held */
while (1) {
READ1;
switch (buf.bytes[0]) {
case '[': {
iohandle_drain(h, 1);
hint = INCREF(read_simple_string(h, EMPTY_BYTES));
CHECKH;
READ1;
if (buf.bytes[0] != ']') {
h->error_kind = SEXP_ERROR_SYNTAX;
goto error;
}
iohandle_drain(h, 1);
body = INCREF(read_simple_string(h, EMPTY_BYTES));
CHECKH;
accumulator = sexp_display_hint(hint, body);
DECREF(hint, sexp_destructor); /* these could be UNGRABs */
DECREF(body, sexp_destructor);
break;
}
case '(':
iohandle_drain(h, 1);
sexp_push(stack, sexp_cons(NULL, NULL));
continue;
case ')': {
sexp_t *current;
if (stack == NULL) {
h->error_kind = SEXP_ERROR_SYNTAX;
goto error;
}
current = sexp_pop(stack);
iohandle_drain(h, 1);
accumulator = INCREF(sexp_head(current));
DECREF(current, sexp_destructor);
UNGRAB(accumulator);
break;
}
default:
if (isspace(buf.bytes[0])) {
iohandle_drain(h, 1);
continue;
}
buf.len = 1; /* needed to avoid reading too much in read_simple_string */
accumulator = read_simple_string(h, buf);
if (h->error_kind) goto error;
break;
}
if (stack == NULL) {
return accumulator;
} else {
sexp_t *current = sexp_head(stack); /* not held */
sexp_t *cell = sexp_cons(accumulator, NULL);
if (sexp_tail(current) == NULL) {
sexp_sethead(current, cell);
} else {
sexp_settail(sexp_tail(current), cell);
}
sexp_settail(current, cell);
}
}
error:
DECREF(stack, sexp_destructor);
DECREF(hint, sexp_destructor);
DECREF(body, sexp_destructor);
return NULL;
}
void write_simple_string(IOHandle *h, sexp_t *x) {
cmsg_bytes_t data = sexp_data(x);
char lenstr[16];
snprintf(lenstr, sizeof(lenstr), "%u:", (unsigned int) data.len);
lenstr[sizeof(lenstr) - 1] = '\0';
iohandle_write(h, cmsg_cstring_bytes(lenstr));
iohandle_write(h, data);
}
unsigned short sexp_write(IOHandle *h, sexp_t *x) {
sexp_t *stack = NULL; /* held */
sexp_t *current = x;
write1:
if (current == NULL) {
iohandle_write(h, cmsg_cstring_bytes("()"));
} else {
switch (current->kind) {
case SEXP_BYTES:
case SEXP_SLICE:
write_simple_string(h, current);
break;
case SEXP_DISPLAY_HINT:
iohandle_write(h, cmsg_cstring_bytes("["));
write_simple_string(h, sexp_hint(current));
iohandle_write(h, cmsg_cstring_bytes("]"));
write_simple_string(h, sexp_body(current));
break;
case SEXP_PAIR:
iohandle_write(h, cmsg_cstring_bytes("("));
sexp_push(stack, current);
break;
default:
die("Unknown sexp kind %d in sexp_write\n", current->kind);
}
}
check_stack:
if (stack == NULL) {
return 0;
}
{
sexp_t *cell = sexp_head(stack);
if (cell == NULL) {
iohandle_write(h, cmsg_cstring_bytes(")"));
sexp_pop(stack); /* no need to worry about incref/decref: it's NULL! */
goto check_stack;
}
if (sexp_pairp(cell)) {
current = sexp_head(cell);
sexp_sethead(stack, sexp_tail(cell));
goto write1;
}
return SEXP_ERROR_SYNTAX;
}
}

10
sexpio.h Normal file
View File

@ -0,0 +1,10 @@
#ifndef cmsg_sexpio_h
#define cmsg_sexpio_h
#define SEXP_ERROR_OVERFLOW 0x8000
#define SEXP_ERROR_SYNTAX 0x8001
extern sexp_t *sexp_read(IOHandle *h);
extern unsigned short sexp_write(IOHandle *h, sexp_t *x);
#endif